Displaying publications 21 - 40 of 47 in total

Abstract:
Sort:
  1. Ali ZA, Roslan MA, Yahya R, Wan Sulaiman WY, Puteh R
    IET Nanobiotechnol, 2017 Mar;11(2):152-156.
    PMID: 28476997 DOI: 10.1049/iet-nbt.2015.0123
    In this study, larvicidal activity of silver nanoparticles (AgNPs) synthesised using apple extract against fourth instar larvae of Aedes aegypti was determined. As a result, the AgNPs showed moderate larvicidal effects against Ae. aegypti larvae (LC50 = 15.76 ppm and LC90 = 27.7 ppm). In addition, comparison of larvicidal activity performance of AgNPs at high concentration prepared using two different methods showed that Ae. aegypti larvae was fully eliminated within the duration of 2.5 h. From X-ray diffraction, the AgNP crystallites were found to exhibit face centred cubic structure. The average size of these AgNPs as estimated by particle size distribution was in the range of 50-120 nm. The absorption maxima of the synthesised Ag showed characteristic Ag surface plasmon resonance peak. This green synthesis provides an economic, eco-friendly and clean synthesis route to Ag.
    Matched MeSH terms: Drug Compounding/methods
  2. Chellappan DK, Hansbro PM, Dua K, Hsu A, Gupta G, Ng ZY, et al.
    Pharm Nanotechnol, 2017;5(4):250-254.
    PMID: 28786351 DOI: 10.2174/2211738505666170808094635
    BACKGROUND: Vesicular systems like nanotechnology and liposomes are gaining tremendous attention lately in the field of respiratory diseases. These formulations enhance bioavailability of the drug candidate, which could be achieved through a novel drug delivery mechanism. Moreover, the therapeutic potential achieved through these systems is highly controllable over long durations of time providing better efficacy and patient compliance.

    OBJECTIVE: The objective of this paper is to review the recent literature on vesicular drug delivery systems containing curcumin.

    METHODS: We have collated and summarized various recent attempts made to develop different controlled release drug delivery systems containing curcumin which would be of great interest for herbal, formulation and biological scientists. There are several vesicular nanotechnological techniques involving curcumin which have been studied recently, targeting pulmonary diseases.

    RESULTS: Different vesicular systems containing curcumin are being studied for their therapeutic potential in different respiratory diseases. There has been a renewed interest in formulations containing curcumin recently, primarily owing to the broad spectrum therapeutic potential of this miracle substance. Various types of formulations, containing curcumin, targeting different bodily systems have recently emerged and, nevertheless, the search for newer frontiers with this drug goes on.

    CONCLUSION: This mini review, in this direction, tries to highlight the key research interventions employing vesicular systems of drug delivery with curcumin.

    Matched MeSH terms: Drug Compounding/methods
  3. Balan S, Hassali MA, Mak VSL
    Res Social Adm Pharm, 2017 May-Jun;13(3):653-655.
    PMID: 27493130 DOI: 10.1016/j.sapharm.2016.06.014
    The pediatric population is an enormously diverse segment of population varying both in size and age. The diversity caused pharmacists face various challenges primarily related to procuring, provision as well as use of drugs in this group of patients. Pediatric dose calculation is particularly a concern for pharmacists. Another challenge faced by pharmacists is unavailability of suitable formulations for pediatric use. This has also led many pharmacists to prepare extemporaneous liquid preparations, even though stability data on such preparations are scarce. Some extemporaneous preparations contain excipients which are potentially harmful in children. Besides that, inadequate labeling and drug information for pediatric drug use had not only challenged pharmacists in recommending and optimizing drug use in children, but also inadvertently caused many drugs used outside the approved terms of the product license (off-label use). Pharmacists are striving to stay connected to overcome the common and comparable challenges faced in their day to day duties and strive to maximize the safe and effective use of medicines for children.
    Matched MeSH terms: Drug Compounding/methods*
  4. Siddiqui R, Aqeel Y, Khan NA
    Cont Lens Anterior Eye, 2016 Oct;39(5):389-93.
    PMID: 27133448 DOI: 10.1016/j.clae.2016.04.004
    Acanthamoeba castellanii is the causative agent of blinding keratitis. Though reported in non-contact lens wearers, it is most frequently associated with improper use of contact lens. For contact lens wearers, amoebae attachment to the lens is a critical first step, followed by amoebae binding to the corneal epithelial cells during extended lens wear. Acanthamoeba attachment to surfaces (biological or inert) and migration is an active process and occurs during the trophozoite stage. Thus retaining amoebae in the cyst stage (dormant form) offers an added preventative measure in impeding parasite traversal from the contact lens onto the cornea. Here, we showed that as low as 3% DMSO, abolished A. castellanii excystation. Based on the findings, it is proposed that DMSO should be included in the contact lens disinfectants as an added preventative strategy against contracting Acanthamoeba keratitis.
    Matched MeSH terms: Drug Compounding/methods
  5. Noor NM, Khan AA, Hasham R, Talib A, Sarmidi MR, Aziz R, et al.
    IET Nanobiotechnol, 2016 Aug;10(4):195-9.
    PMID: 27463789 DOI: 10.1049/iet-nbt.2015.0041
    Virgin coconut oil (VCO) is the finest grade of coconut oil, rich in phenolic content, antioxidant activity and contains medium chain triglycerides (MCTs). In this work formulation, characterisation and penetration of VCO-solid lipid particles (VCO-SLP) have been studied. VCO-SLP were prepared using ultrasonication of molten stearic acid and VCO in an aqueous solution. The electron microscopy imaging revealed that VCO-SLP were solid and spherical in shape. Ultrasonication was performed at several power intensities which resulted in particle sizes of VCO-SLP ranged from 0.608 ± 0.002 µm to 44.265 ± 1.870 µm. The particle size was directly proportional to the applied power intensity of ultrasonication. The zeta potential values of the particles were from -43.2 ± 0.28 mV to -47.5 ± 0.42 mV showing good stability. The cumulative permeation for the smallest sized VCO-SLP (0.608 µm) was 3.83 ± 0.01 µg/cm(2) whereas for larger carriers it was reduced (3.59 ± 0.02 µg/cm(2)). It is concluded that SLP have the potential to be exploited as a micro/nano scale cosmeceutical carrying vehicle for improved dermal delivery of VCO.
    Matched MeSH terms: Drug Compounding/methods
  6. Shaharuddin S, Muhamad II
    Carbohydr Polym, 2015 Mar 30;119:173-81.
    PMID: 25563958 DOI: 10.1016/j.carbpol.2014.11.045
    The aim of this research was to enhance the survivability of Lactobacillus rhamnosus NRRL 442 against heat exposure via a combination of immobilization and microencapsulation processes using sugarcane bagasse (SB) and sodium alginate (NaA), respectively. The microcapsules were synthesized using different alginate concentration of 1, 2 and 3% and NaA:SB ratio of 1:0, 1:1 and 1:1.5. This beneficial step of probiotic immobilization before microencapsulation significantly enhanced microencapsulation efficiency and cell survivability after heat exposure of 90°C for 30s. Interestingly, the microcapsule of SB-immobilized probiotic could obtain protection from heat using microencapsulation of NaA concentration as low as 1%. SEM images illustrated the incorporation of immobilized L. rhamnosus within alginate matrices and its changes after heat exposure. FTIR spectra confirmed the change in functional bonding in the presence of sugarcane bagasse, probiotic and alginate. The results demonstrated a great potential in the synthesis of heat resistant microcapsules for probiotic.
    Matched MeSH terms: Drug Compounding/methods*
  7. Karim S, Baie SH, Hay YK, Bukhari NI
    Pak J Pharm Sci, 2014 May;27(3):425-38.
    PMID: 24811797
    Pelletized dosage forms can be prepared by different methods which, in general, are time consuming and labor intensive. The current study was carried out to investigate the feasibility of preparing the spherical pellets of omeprazole by sieving-spheronization. An optimized formulation was also prepared by extrusion-spheronization process to compare the physical parameters between these two methods. The omeprazole pellets were consisted of microcrystalline cellulose, polyvinylpyrrolidone K 30, sodium lauryl sulphate and polyethylene glycol 6000. The omeprazole delay release system was developed by coating the prepared pellets with aqueous dispersion of Kollicoat 30 DP. The moisture content, spheronization speed and residence time found to influence the final properties of omeprazole pellets prepared by extrusion-spheronization and sieving-spheronization. The Mann-Whitney test revealed that both methods produced closely similar characteristics of the pellets in terms of, friability (p=0.553), flowability (p=0.677), hardness (p=0.103) and density (bulk, p=0.514, tapped, p=0.149) except particle size distribution (p=0.004). The percent drug release from the coated formulation prepared by sieving-spheronization and extrusion spheronization was observed to be 84.12 ± 1.10% and 82.67 ± 0.96%, respectively. Dissolution profiles of both formulations were similar as indicated by values of f1 and f2, 1.52 and 89.38, respectively. The coated formulation prepared by sieving-spheronization and commercial reference product, Zimore ® also showed similar dissolution profiles (f1=1.22, f2=91.52). The pellets could be prepared using sieving-spheronization. The process is simple, easy, less time- and labor-consuming and economical as compared to extrusion-spheronization process.
    Matched MeSH terms: Drug Compounding/methods*
  8. Venkata Srikanth M, Songa AS, Nali SR, Battu JR, Kolapalli VR
    Drug Dev Ind Pharm, 2014 Jan;40(1):33-45.
    PMID: 23317339 DOI: 10.3109/03639045.2012.744416
    The objective of the present investigation was to study the applicability of thermal sintering technique for the development of gastric floating tablets of propranolol HCl. Formulations were prepared using four independent variables, namely (i) polymer quantity, (ii) sodium bicarbonate concentration, (iii) sintering temperature and (iv) sintering time. Floating lag time and t95 were taken as dependent variables. Tablets were prepared by the direct compression method and were evaluated for physicochemical properties, in vitro buoyancy and dissolution studies. From the drug release studies, it was observed that drug retarding property mainly depends upon the sintering temperature and time of exposure. The statistically optimized formulation (PTSso) was characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry studies, and no significant chemical interaction between drug and polymer was observed. Optimized formulation was stable at accelerated conditions for a period of six months. PTSso was evaluated for in vivo buoyancy studies in humans for both fed and fasted states and found that gastric residence time of the floating tablets were enhanced by fed stage but not in fasted state. Optimized formulation PTSso and commercial formulation Ciplar LA 80 were subjected to bioavailability studies in healthy human volunteers by estimating pharmacokinetic parameters such as Cmax, Tmax, area under curve (AUC), elimination rate constant (Kel), biological half-life (t1/2) and mean residence time (MRT). There was a significant increase in the bioavailability of the propranolol HCl from PTSso formulation, which was evident from increased AUC levels and larger MRT values than Ciplar LA 80.
    Matched MeSH terms: Drug Compounding/methods
  9. Lim WM, Rajinikanth PS, Mallikarjun C, Kang YB
    Int J Nanomedicine, 2014;9:2117-26.
    PMID: 24833900 DOI: 10.2147/IJN.S57565
    The objectives of this study were to develop and characterize itraconazole (ITZ)-loaded nanostructured lipid carriers (NLCs) and to study their potential for drug delivery into the brain. Precirol(®) ATO 5 and Transcutol(®) HP were selected as the lipid phase, and Tween(®) 80 and Solutol(®) HS15 as surfactants. The ITZ-NLCs were prepared by a hot and high-pressure homogenization method. The entrapment efficiency for the best formulation batch was analyzed using high-performance liquid chromatography and was found to be 70.5%±0.6%. The average size, zeta potential, and polydispersity index for the ITZ-NLCs used for animal studies were found to be 313.7±15.3 nm, -18.7±0.30 mV, and 0.562±0.070, respectively. Transmission electron microscopy confirmed that ITZ-NLCs were spherical in shape, with a size of less than 200 nm. Differential scanning calorimetry and X-ray diffractometry analysis showed that ITZ was encapsulated in the lipid matrix and present in the amorphous form. The in vitro release study showed that ITZ-NLCs achieved a sustained release, with cumulative release of 80.6%±5.3% up to 24 hours. An in vivo study showed that ITZ-NLCs could increase the ITZ concentration in the brain by almost twofold. These results suggest that ITZ-NLCs can be exploited as nanocarriers to achieve sustained release and brain-targeted delivery.
    Matched MeSH terms: Drug Compounding/methods
  10. Rehman K, Amin MC, Muda S
    Drug Res (Stuttg), 2013 Dec;63(12):657-62.
    PMID: 23842943 DOI: 10.1055/s-0033-1349129
    The increase in diseases of the colon underscores the need to develop cost-effective site-directed therapies. We formulated a polysaccharide-based matrix system that could release ibuprofen under conditions simulating those in the colon by employing a wet granulation method. Tablets were prepared in a series of formulations containing a polysaccharide (beta-cyclodextrin and chitosan) matrix system along with ethylcellulose. We characterized physicochemical properties and performed an in vitro drug release assay in the absence and presence of digestive enzymes to assess the ability of the polysaccharides to function as a protective barrier against the upper gastrointestinal environment. Fourier transform infrared spectroscopy studies revealed no chemical interaction between ibuprofen and polysaccharides; however, spectrum analysis suggested the formation of an inclusion complex of beta-cyclodextrin with ibuprofen. The formulations contained 50% ethylcellulose and 50% beta-cyclodextrins (1:1) were proven to be the better formulation that slowly released the drug until 24 h (101.04 ± 0.65% maximum drug release in which 83.08 ± 0.89% drug was released in colonic medium) showed better drug release profiles than the formulations containing chitosan. We conclude that a beta-cyclodextrin drug carrier system may represent an effective approach for treatment of diseases of the colon.
    Matched MeSH terms: Drug Compounding/methods
  11. Hanafi A, Nograles N, Abdullah S, Shamsudin MN, Rosli R
    J Pharm Sci, 2013 Feb;102(2):617-26.
    PMID: 23192729 DOI: 10.1002/jps.23389
    Cellulose acetate phthalate (CAP) microcapsules were formulated to deliver plasmid DNA (pDNA) to the intestines. The microcapsules were characterized and were found to have an average diameter of 44.33 ± 30.22 μm, and were observed to be spherical with smooth surface. The method to extract pDNA from CAP was modified to study the release profile of the pDNA. The encapsulated pDNA was found to be stable. Exposure to the acidic and basic pH conditions, which simulates the pH environment in the stomach and the intestines, showed that the release occurred in a stable manner in the former, whereas it was robust in the latter. The loading capacity and encapsulation efficiency of the microcapsules were low but the CAP recovery yield was high which indicates that the microcapsules were efficiently formed but the loading of pDNA can be improved. In vitro transfection study in 293FT cells showed that there was a significant percentage of green-fluorescent-protein-positive cells as a result of efficient transfection from CAP-encapsulated pDNA. Biodistribution studies in BALB/c mice indicate that DNA was released at the stomach and intestinal regions. CAP microcapsules loaded with pDNA, as described in this study, may be useful for potential gene delivery to the intestines for prophylactic or therapeutic measures for gastrointestinal diseases.
    Matched MeSH terms: Drug Compounding/methods*
  12. Elsaid Ali AA, Taher M, Mohamed F
    J Microencapsul, 2013;30(8):728-40.
    PMID: 23631380 DOI: 10.3109/02652048.2013.788081
    Documented to exhibit cytotoxicity and poor oral bioavailability, alpha-mangostin was encapsulated into PLGA microspheres with optimization of formulation using response surface methodology. Mixed levels of four factors Face central composite design was employed to evaluate critical formulation variables. With 30 runs, optimized formula was 1% w/v polyvinyl alcohol, 1:10 ratio of oil to aqueous and sonicated at 2 and 5 min time for primary and secondary emulsion, respectively. Optimized responses for encapsulation efficiency, particle size and polydispersity index were found to be 39.12 ± 0.01%, 2.06 ± 0.017 µm and 0.95 ± 0.009, respectively, which matched values predicted by mathematical models. About 44.4% of the encapsulated alpha-mangostin was released over 4 weeks. Thermal analysis of the microspheres showed physical conversion of alpha-mangostin from crystallinity to amorphous with encapsulated one had lower in vitro cytotoxicity than free alpha-mangostin. Aerodynamic diameter (784.3 ± 7.5 nm) of this alpha-mangostin microsphere suggests suitability for peripheral pulmonary delivery.
    Matched MeSH terms: Drug Compounding/methods
  13. Wong TW, Nurulaini H
    Drug Dev Ind Pharm, 2012 Dec;38(12):1417-27.
    PMID: 22309449 DOI: 10.3109/03639045.2011.653364
    Alginate-chitosan pellets prepared by extrusion-spheronization technique exhibited fast drug dissolution.
    Matched MeSH terms: Drug Compounding/methods*
  14. Meka VS, Nali SR, Songa AS, Kolapalli VR
    AAPS PharmSciTech, 2012 Dec;13(4):1451-64.
    PMID: 23090110 DOI: 10.1208/s12249-012-9873-5
    The main objective of the present study is the physicochemical characterization of naturally available Terminalia catappa gum (Badam gum [BG]) as a novel pharmaceutical excipient and its suitability in the development of gastroretentive floating drug delivery systems (GRFDDS) to retard the drug for 12 h when the dosage form is exposed to gastrointestinal fluids in the gastric environment. As BG was being explored for the first time for its pharmaceutical application, physicochemical, microbiological, rheological, and stability studies were carried out on this gum. In the present investigation, the physicochemical properties, such as micromeritic, rheological, melting point, moisture content, pH, swelling index, water absorption, and volatile acidity, were evaluated. The gum was characterized by scanning electron microscopy, differential scanning calorimetry (DSC), powder X-ray diffraction studies (PXRD), and Fourier transform infrared spectroscopy (FTIR). Gastroretentive floating tablets of BG were prepared with the model drug propranolol HCl by direct compression methods. The prepared tablets were evaluated for all their physicochemical properties, in vitro buoyancy, in vitro drug release, and rate order kinetics. PBG 04 was selected as an optimized formulation based on its 12-h drug release and good buoyancy characteristics. The optimized formulation was characterized with FTIR, DSC, and PXRD studies, and no interaction between the drug and BG was found. Thus, the study confirmed that BG might be used in the gastroretentive drug delivery system as a release-retarding polymer.
    Matched MeSH terms: Drug Compounding/methods
  15. Aziz HA, Tan YT, Peh KK
    AAPS PharmSciTech, 2012 Mar;13(1):35-45.
    PMID: 22101965 DOI: 10.1208/s12249-011-9707-x
    Microencapsulation of water-soluble drugs using coacervation-phase separation method is very challenging, as these drugs partitioned into the aqueous polymeric solution, resulting in poor drug entrapment. For evaluating the effect of ovalbumin on the microencapsulation of drugs with different solubility, pseudoephedrine HCl, verapamil HCl, propranolol HCl, paracetamol, and curcuminoid were used. In addition, drug mixtures comprising of paracetamol and pseudoephedrine HCl were also studied. The morphology, encapsulation efficiency, particle size, and in vitro release profile were investigated. The results showed that the solubility of the drug determined the ratio of ovalbumin to be used for successful microencapsulation. The optimum ratios of drug, ovalbumin, and gelatin for water-soluble (pseudoephedrine HCl, verapamil HCl, and propranolol HCl), sparingly water-soluble (paracetamol), and water-insoluble (curcuminoid) drugs were found to be 1:1:2, 2:3:5, and 1:3:4. As for the drug mixture, the optimum ratio of drug, ovalbumin, and gelatin was 2:3:5. Encapsulated particles prepared at the optimum ratios showed high yield, drug loading, entrapment efficiency, and sustained release profiles. The solubility of drug affected the particle size of the encapsulated particle. Highly soluble drugs resulted in smaller particle size. In conclusion, addition of ovalbumin circumvented the partitioning effect, leading to the successful microencapsulation of water-soluble drugs.
    Matched MeSH terms: Drug Compounding/methods*
  16. Hezaveh H, Muhamad II, Noshadi I, Shu Fen L, Ngadi N
    J Microencapsul, 2012;29(4):368-79.
    PMID: 22309480 DOI: 10.3109/02652048.2011.651501
    We studied a model system of controlled drug release using beta-carotene and κ-carrageenan/NaCMC hydrogel as a drug and a device, respectively. Different concentrations of genipin were added to crosslink the beta-carotene loaded beads by using the dripping method. Results have shown that the cross-linked beads possess lower swelling ability in all pH conditions (pH 1.2 and 7.4), and swelling ratio decreases with increasing genipin concentration. Microstructure study shows that cross-linking has enhanced the stability and structure of the beads network. Determination of diffusion coefficient for the release of encapsulated beta-carotene indicates less diffusivity when beads are cross-linked. Swelling models using adaptive neuro fuzzy show that using genipin as a cross-linker in the kC/NaCMC hydrogels affects the transport mechanism. The model shows very good agreement with the experimental data that indicates that applying ANFIS modelling is an accurate, rapid and simple way to model in such a case for controlled release applications.
    Matched MeSH terms: Drug Compounding/methods*
  17. Kalani M, Yunus R
    Int J Nanomedicine, 2012;7:2165-72.
    PMID: 22619552 DOI: 10.2147/IJN.S29805
    The reported work demonstrates and discusses the effect of supercritical fluid density (pressure and temperature of supercritical fluid carbon dioxide) on particle size and distribution using the supercritical antisolvent (SAS) method in the purpose of drug encapsulation. In this study, paracetamol was encapsulated inside L-polylactic acid, a semicrystalline polymer, with different process parameters, including pressure and temperature, using the SAS process. The morphology and particle size of the prepared nanoparticles were determined by scanning electron microscopy and transmission electron microscopy. The results revealed that increasing temperature enhanced mean particle size due to the plasticizing effect. Furthermore, increasing pressure enhanced molecular interaction and solubility; thus, particle size was reduced. Transmission electron microscopy images defined the internal structure of nanoparticles. Thermal characteristics of nanoparticles were also investigated via differential scanning calorimetry. Furthermore, X-ray diffraction pattern revealed the changes in crystallinity structure during the SAS process. In vitro drug release analysis determined the sustained release of paracetamol in over 4 weeks.
    Matched MeSH terms: Drug Compounding/methods
  18. Dorniani D, Hussein MZ, Kura AU, Fakurazi S, Shaari AH, Ahmad Z
    Int J Nanomedicine, 2012;7:5745-56.
    PMID: 23166439 DOI: 10.2147/IJN.S35746
    Magnetic iron oxide nanoparticles were prepared using a sonochemical method under atmospheric conditions at a Fe²⁺ to Fe³⁺ molar ratio of 1:2. The iron oxide nanoparticles were subsequently coated with chitosan and gallic acid to produce a core-shell structure.
    Matched MeSH terms: Drug Compounding/methods
  19. Yeow ST, Shahar A, Abdul Aziz N, Anuar MS, Yusof YA, Taip FS
    Drug Des Devel Ther, 2011;5:465-9.
    PMID: 22162640 DOI: 10.2147/DDDT.S25047
    To investigate the effect of feed preparation characteristics and operational parameters on mixing homogeneity in a convective batch ribbon mixer.
    Matched MeSH terms: Drug Compounding/methods*
  20. Kalani M, Yunus R
    Int J Nanomedicine, 2011;6:1429-42.
    PMID: 21796245 DOI: 10.2147/IJN.S19021
    The review focuses on the application of supercritical fluids as antisolvents in the pharmaceutical field and demonstrates the supercritical antisolvent method in the use of drug encapsulation. The main factors for choosing the solvent and biodegradable polymer to produce fine particles to ensure effective drug delivery are emphasized and the effect of polymer structure on drug encapsulation is illustrated. The review also demonstrates the drug release mechanism and polymeric controlled release system, and discusses the effects of the various conditions in the process, such as pressure, temperature, concentration, chemical compositions (organic solvents, drug, and biodegradable polymer), nozzle geometry, CO(2) flow rate, and the liquid phase flow rate on particle size and its distribution.
    Matched MeSH terms: Drug Compounding/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links