Displaying publications 21 - 30 of 30 in total

Abstract:
Sort:
  1. Dinesh, S.
    ASM Science Journal, 2010;4(1):62-73.
    MyJurnal
    Studies conducted on the various geometric properties of skeletons of water bodies have shown highly promising results. However, these studies were made under the assumption that water bodies were static objects and that they remained constant over time. Water bodies are actually dynamic objects; they go through significant spatio-temporal changes due to drought and flood. In this study, the characterization of skeletons of simulated drought and flood of water bodies was performed. It was observed that as the drought level increased from 1 to 9, the average length of the skeletons decreased due to reduction in the size of the water bodies and increase in the number of water bodies. As the drought level increased from 9 to 15, the average length of the skeletons increased further due to vanishing of small water bodies. Flood caused an increase in the average length of the skeletons due to merging of adjacent water bodies. Power law relationships were observed between the average length of the skeletons of the simulated drought/flood and the level of drought/flood. The scaling exponent of these power laws which was named as a fractal dimension, indicated the rate of change of the average length of the skeletons of simulated drought/flood of water bodies over varying levels of drought/flood. However, errors observed in the goodness of fit of the plots indicated that monofractals were not sufficient to characterise the skeletons of simulated drought and flood of water bodies. Multifractals and lacunarity analysis were required for more accurate characterisation.
    Matched MeSH terms: Fractals
  2. Megat Harun Al Rashid Megat Ahmad, Abdul Aziz Mohamed, Azmi Ibrahim, Che Seman Mahmood, Putra, Edy Giri Rachman, Muhammad Rawi Muhammad Zin, et al.
    MyJurnal
    Alumina powder was synthesized from an aluminum precursor and studied using small angle neutron scattering (SANS) technique and complemented with transmission electron microscope (TEM). XRD measurement confirmed that the alumina produced was of high purity and highly crystalline D-phase. SANS examination indicates the formation of mass fractals microstructures with fractal dimension of about 2.8 on the alumina powder.
    Matched MeSH terms: Fractals
  3. Abdullah N, Yuzir A, Curtis TP, Yahya A, Ujang Z
    Bioresour Technol, 2013 Jan;127:181-7.
    PMID: 23131639 DOI: 10.1016/j.biortech.2012.09.047
    Understanding the relationship between microbial community and mechanism of aerobic granulation could enable wider applications of granules for high-strength wastewater treatment. The majority of granulation studies principally determine the engineering aspects of granules formation with little emphasis on the microbial diversity. In this study, three identical reactors namely R1, R2 and R3 were operated using POME at volumetric loadings of 1.5, 2.5 and 3.5 kg COD m(-3) d(-1), respectively. Aeration was provided at a volumetric flow rate of 2.5 cms(-1). Aerobic granules were successfully developed in R2 and R3 while bioflocs dominated R1 until the end of experiments. Fractal dimension (D(f)) averaged at 1.90 suggesting good compactness of granules. The PCR-DGGE results indicated microbial evolutionary shift throughout granulation despite different operating OLRs based on decreased Raup and Crick similarity indices upon mature granule formation. The characteristics of aerobic granules treating high strength agro-based wastewater are determined at different volumetric loadings.
    Matched MeSH terms: Fractals
  4. Acharya UR, Sree SV, Muthu Rama Krishnan M, Krishnananda N, Ranjan S, Umesh P, et al.
    Comput Methods Programs Biomed, 2013 Dec;112(3):624-32.
    PMID: 23958645 DOI: 10.1016/j.cmpb.2013.07.012
    Coronary Artery Disease (CAD), caused by the buildup of plaque on the inside of the coronary arteries, has a high mortality rate. To efficiently detect this condition from echocardiography images, with lesser inter-observer variability and visual interpretation errors, computer based data mining techniques may be exploited. We have developed and presented one such technique in this paper for the classification of normal and CAD affected cases. A multitude of grayscale features (fractal dimension, entropies based on the higher order spectra, features based on image texture and local binary patterns, and wavelet based features) were extracted from echocardiography images belonging to a huge database of 400 normal cases and 400 CAD patients. Only the features that had good discriminating capability were selected using t-test. Several combinations of the resultant significant features were used to evaluate many supervised classifiers to find the combination that presents a good accuracy. We observed that the Gaussian Mixture Model (GMM) classifier trained with a feature subset made up of nine significant features presented the highest accuracy, sensitivity, specificity, and positive predictive value of 100%. We have also developed a novel, highly discriminative HeartIndex, which is a single number that is calculated from the combination of the features, in order to objectively classify the images from either of the two classes. Such an index allows for an easier implementation of the technique for automated CAD detection in the computers in hospitals and clinics.
    Matched MeSH terms: Fractals
  5. Adam M, Oh SL, Sudarshan VK, Koh JE, Hagiwara Y, Tan JH, et al.
    Comput Methods Programs Biomed, 2018 Jul;161:133-143.
    PMID: 29852956 DOI: 10.1016/j.cmpb.2018.04.018
    Cardiovascular diseases (CVDs) are the leading cause of deaths worldwide. The rising mortality rate can be reduced by early detection and treatment interventions. Clinically, electrocardiogram (ECG) signal provides useful information about the cardiac abnormalities and hence employed as a diagnostic modality for the detection of various CVDs. However, subtle changes in these time series indicate a particular disease. Therefore, it may be monotonous, time-consuming and stressful to inspect these ECG beats manually. In order to overcome this limitation of manual ECG signal analysis, this paper uses a novel discrete wavelet transform (DWT) method combined with nonlinear features for automated characterization of CVDs. ECG signals of normal, and dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM) and myocardial infarction (MI) are subjected to five levels of DWT. Relative wavelet of four nonlinear features such as fuzzy entropy, sample entropy, fractal dimension and signal energy are extracted from the DWT coefficients. These features are fed to sequential forward selection (SFS) technique and then ranked using ReliefF method. Our proposed methodology achieved maximum classification accuracy (acc) of 99.27%, sensitivity (sen) of 99.74%, and specificity (spec) of 98.08% with K-nearest neighbor (kNN) classifier using 15 features ranked by the ReliefF method. Our proposed methodology can be used by clinical staff to make faster and accurate diagnosis of CVDs. Thus, the chances of survival can be significantly increased by early detection and treatment of CVDs.
    Matched MeSH terms: Fractals
  6. Sudarshan VK, Acharya UR, Ng EY, Tan RS, Chou SM, Ghista DN
    Comput Biol Med, 2016 Apr 1;71:231-40.
    PMID: 26898671 DOI: 10.1016/j.compbiomed.2016.01.028
    Cross-sectional view echocardiography is an efficient non-invasive diagnostic tool for characterizing Myocardial Infarction (MI) and stages of expansion leading to heart failure. An automated computer-aided technique of cross-sectional echocardiography feature assessment can aid clinicians in early and more reliable detection of MI patients before subsequent catastrophic post-MI medical conditions. Therefore, this paper proposes a novel Myocardial Infarction Index (MII) to discriminate infarcted and normal myocardium using features extracted from apical cross-sectional views of echocardiograms. The cross-sectional view of normal and MI echocardiography images are represented as textons using Maximum Responses (MR8) filter banks. Fractal Dimension (FD), Higher-Order Statistics (HOS), Hu's moments, Gabor Transform features, Fuzzy Entropy (FEnt), Energy, Local binary Pattern (LBP), Renyi's Entropy (REnt), Shannon's Entropy (ShEnt), and Kapur's Entropy (KEnt) features are extracted from textons. These features are ranked using t-test and fuzzy Max-Relevancy and Min-Redundancy (mRMR) ranking methods. Then, combinations of highly ranked features are used in the formulation and development of an integrated MII. This calculated novel MII is used to accurately and quickly detect infarcted myocardium by using one numerical value. Also, the highly ranked features are subjected to classification using different classifiers for the characterization of normal and MI LV ultrasound images using a minimum number of features. Our current technique is able to characterize MI with an average accuracy of 94.37%, sensitivity of 91.25% and specificity of 97.50% with 8 apical four chambers view features extracted from only single frame per patient making this a more reliable and accurate classification.
    Matched MeSH terms: Fractals
  7. Che Azemin MZ, Ab Hamid F, Aminuddin A, Wang JJ, Kawasaki R, Kumar DK
    Exp Eye Res, 2013 Nov;116:355-358.
    PMID: 24512773 DOI: 10.1016/j.exer.2013.10.010
    The fractal dimension is a global measure of complexity and is useful for quantifying anatomical structures, including the retinal vascular network. A previous study found a linear declining trend with aging on the retinal vascular fractal dimension (DF); however, it was limited to the older population (49 years and older). This study aimed to investigate the possible models of the fractal dimension changes from young to old subjects (10-73 years). A total of 215 right-eye retinal samples, including those of 119 (55%) women and 96 (45%) men, were selected. The retinal vessels were segmented using computer-assisted software, and non-vessel fragments were deleted. The fractal dimension was measured based on the log-log plot of the number of grids versus the size. The retinal vascular DF was analyzed to determine changes with increasing age. Finally, the data were fitted to three polynomial models. All three models are statistically significant (Linear: R2 = 0.1270, 213 d.f., p 
    Matched MeSH terms: Fractals
  8. Namazi H, Kulish VV, Hussaini J, Hussaini J, Delaviz A, Delaviz F, et al.
    Oncotarget, 2016 Jan 5;7(1):342-50.
    PMID: 26586477 DOI: 10.18632/oncotarget.6341
    One of the main areas of behavioural neuroscience is forecasting the human behaviour. Epilepsy is a central nervous system disorder in which nerve cell activity in the brain becomes disrupted, causing seizures or periods of unusual behaviour, sensations and sometimes loss of consciousness. An estimated 5% of the world population has epileptic seizure but there is not any method to cure it. More than 30% of people with epilepsy cannot control seizure. Epileptic seizure prediction, refers to forecasting the occurrence of epileptic seizures, is one of the most important but challenging problems in biomedical sciences, across the world. In this research we propose a new methodology which is based on studying the EEG signals using two measures, the Hurst exponent and fractal dimension. In order to validate the proposed method, it is applied to epileptic EEG signals of patients by computing the Hurst exponent and fractal dimension, and then the results are validated versus the reference data. The results of these analyses show that we are able to forecast the onset of a seizure on average of 25.76 seconds before the time of occurrence.
    Matched MeSH terms: Fractals
  9. Sharma M, Tan RS, Acharya UR
    Comput Biol Med, 2018 11 01;102:341-356.
    PMID: 30049414 DOI: 10.1016/j.compbiomed.2018.07.005
    Myocardial infarction (MI), also referred to as heart attack, occurs when there is an interruption of blood flow to parts of the heart, due to the acute rupture of atherosclerotic plaque, which leads to damage of heart muscle. The heart muscle damage produces changes in the recorded surface electrocardiogram (ECG). The identification of MI by visual inspection of the ECG requires expert interpretation, and is difficult as the ECG signal changes associated with MI can be short in duration and low in magnitude. Hence, errors in diagnosis can lead to delay the initiation of appropriate medical treatment. To lessen the burden on doctors, an automated ECG based system can be installed in hospitals to help identify MI changes on ECG. In the proposed study, we develop a single-channel single lead ECG based MI diagnostic system validated using noisy and clean datasets. The raw ECG signals are taken from the Physikalisch-Technische Bundesanstalt database. We design a novel two-band optimal biorthogonal filter bank (FB) for analysis of the ECG signals. We present a method to design a novel class of two-band optimal biorthogonal FB in which not only the product filter but the analysis lowpass filter is also a halfband filter. The filter design problem has been composed as a constrained convex optimization problem in which the objective function is a convex combination of multiple quadratic functions and the regularity and perfect reconstruction conditions are imposed in the form linear equalities. ECG signals are decomposed into six subbands (SBs) using the newly designed wavelet FB. Following to this, discriminating features namely, fuzzy entropy (FE), signal-fractal-dimensions (SFD), and renyi entropy (RE) are computed from all the six SBs. The features are fed to the k-nearest neighbor (KNN). The proposed system yields an accuracy of 99.62% for the noisy dataset and an accuracy of 99.74% for the clean dataset, using 10-fold cross validation (CV) technique. Our MI identification system is robust and highly accurate. It can thus be installed in clinics for detecting MI.
    Matched MeSH terms: Fractals
  10. Kipli K, Hoque ME, Lim LT, Mahmood MH, Sahari SK, Sapawi R, et al.
    Comput Math Methods Med, 2018;2018:4019538.
    PMID: 30065780 DOI: 10.1155/2018/4019538
    Digital image processing is one of the most widely used computer vision technologies in biomedical engineering. In the present modern ophthalmological practice, biomarkers analysis through digital fundus image processing analysis greatly contributes to vision science. This further facilitates developments in medical imaging, enabling this robust technology to attain extensive scopes in biomedical engineering platform. Various diagnostic techniques are used to analyze retinal microvasculature image to enable geometric features measurements such as vessel tortuosity, branching angles, branching coefficient, vessel diameter, and fractal dimension. These extracted markers or characterized fundus digital image features provide insights and relates quantitative retinal vascular topography abnormalities to various pathologies such as diabetic retinopathy, macular degeneration, hypertensive retinopathy, transient ischemic attack, neovascular glaucoma, and cardiovascular diseases. Apart from that, this noninvasive research tool is automated, allowing it to be used in large-scale screening programs, and all are described in this present review paper. This paper will also review recent research on the image processing-based extraction techniques of the quantitative retinal microvascular feature. It mainly focuses on features associated with the early symptom of transient ischemic attack or sharp stroke.
    Matched MeSH terms: Fractals
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links