Displaying publications 21 - 40 of 46 in total

Abstract:
Sort:
  1. Darah I, Sumathi G, Jain K, Lim SH
    Appl Biochem Biotechnol, 2011 Dec;165(7-8):1682-90.
    PMID: 21947762 DOI: 10.1007/s12010-011-9387-8
    Agitation speed was found to influence the tannase production and fungal growth of Aspergillus niger FETL FT3. The optimal agitation speed was at 200 rpm which produced 1.41 U/ml tannase and 3.75 g/l of fungal growth. Lower or higher agitation speeds than 200 rpm produced lower enzyme production and fungal growth. Based on the SEM and TEM micrograph observation, there was a significant correlation between agitation speed and the morphology of the fungal mycelia. The results revealed an increase of the enzyme production with the change of the fungal growth morphology from filamentous to pelleted growth forms. However, the exposure to higher shear stress with an increasing agitation speed of the shaker also resulted in lower biomass yields as well as enzyme production.
    Matched MeSH terms: Fungal Proteins/metabolism*
  2. Tan CH, Show PL, Ooi CW, Ng EP, Lan JC, Ling TC
    Biotechnol J, 2015 Jan;10(1):31-44.
    PMID: 25273633 DOI: 10.1002/biot.201400301
    Microbial lipases are popular biocatalysts due to their ability to catalyse diverse reactions such as hydrolysis, esterification, and acidolysis. Lipases function efficiently on various substrates in aqueous and non-aqueous media. Lipases are chemo-, regio-, and enantio-specific, and are useful in various industries, including those manufacturing food, detergents, and pharmaceuticals. A large number of lipases from fungal and bacterial sources have been isolated and purified to homogeneity. This success is attributed to the development of both conventional and novel purification techniques. This review highlights the use of these techniques in lipase purification, including conventional techniques such as: (i) ammonium sulphate fractionation; (ii) ion-exchange; (iii) gel filtration and affinity chromatography; as well as novel techniques such as (iv) reverse micellar system; (v) membrane processes; (vi) immunopurification; (vi) aqueous two-phase system; and (vii) aqueous two-phase floatation. A summary of the purification schemes for various bacterial and fungal lipases are also provided.
    Matched MeSH terms: Fungal Proteins/metabolism
  3. Surendran A, Siddiqui Y, Ali NS, Manickam S
    J Appl Microbiol, 2018 Jun;124(6):1544-1555.
    PMID: 29405525 DOI: 10.1111/jam.13717
    AIM: Ganoderma sp, the causal pathogen of the basal stem rot (BSR) disease of oil palm, secretes extracellular hydrolytic enzymes. These play an important role in the pathogenesis of BSR by nourishing the pathogen through the digestion of cellulose and hemicellulose of the host tissue. Active suppression of hydrolytic enzymes secreted by Ganoderma boninense by various naturally occurring phenolic compounds and estimation of their efficacy on pathogen suppression is focused in this study.

    METHODS AND RESULTS: Ten naturally occurring phenolic compounds were assessed for their inhibitory effect on the hydrolytic enzymes of G. boninense. The enzyme kinetics (Vmax and Km ) and the stability of the hydrolytic enzymes were also characterized. The selected compounds had shown inhibitory effect at various concentrations. Two types of inhibitions namely uncompetitive and noncompetitive were observed in the presence of phenolic compounds. Among all the phenolic compounds tested, benzoic acid was the most effective compound suppressive to the growth and production of hydrolytic enzymes secreted by G. boninense. The phenolic compounds as inhibitory agents can be a better replacement for the metal ions which are known as conventional inhibitors till date. The three hydrolytic enzymes were stable in a wide range of pH and temperature.

    CONCLUSION: These findings highlight the efficacy of the applications of phenolic compounds to control Ganoderma.

    SIGNIFICANCE AND IMPACT OF THE STUDY: The study has proved a replacement for chemical controls of G. boninense with naturally occurring phenolic compounds.

    Matched MeSH terms: Fungal Proteins/metabolism
  4. El-Boulifi N, Ashari SE, Serrano M, Aracil J, Martínez M
    Enzyme Microb Technol, 2014 Feb 5;55:128-32.
    PMID: 24411455 DOI: 10.1016/j.enzmictec.2013.10.009
    The aim of this work was the synthesis of a novel hydroxyl-fatty acid derivative of kojic acid rich in kojic acid monoricinoleate (KMR) which can be widely used in the cosmetic and food industry. The synthesis of KMR was carried out by lipase-catalysed esterification of ricinoleic and kojic acids in solvent-free system. Three immobilized lipases were tested and the best KMR yields were attained with Lipozyme TL IM and Novozym 435. Since Lipozyme TL IM is the cheapest, it was selected to optimize the reaction conditions. The optimal reaction conditions were 80 °C for the temperature, 1:1 for the alcohol/acid molar ratio, 600 rpm for stirring speed and 7.8% for the catalyst concentration. Under these conditions, the reaction was scaled up in a 5×10⁻³ m³ stirred tank reactor. ¹H-¹³C HMBC-NMR showed that the primary hydroxyl group of kojic acid was regioselectively esterified. The KMR has more lipophilicity than kojic acid and showed antioxidant activity that improves the oxidation stability of biodiesel.
    Matched MeSH terms: Fungal Proteins/metabolism
  5. Aljuboori AH, Idris A, Abdullah N, Mohamad R
    Bioresour Technol, 2013 Jan;127:489-93.
    PMID: 23159465 DOI: 10.1016/j.biortech.2012.09.016
    The production and characterization of a bioflocculant, IH-7, by Aspergillus flavus was investigated. About 0.4 g of purified bioflocculant with an average molecular weight of 2.574 × 10(4)Da could be obtained from 1L of fermentation medium. The bioflocculant mainly consisted of protein (28.5%) and sugar (69.7%), including 40% of neutral sugar, 2.48% of uronic acid and 1.8% amino sugar. The neutral sugar components are sucrose, lactose, glucose, xylose, galactose, mannose and fructose at a molar ratio of 2.4:4.4:4.1:5.8:9.9:0.8:3.1. Fourier-transform infrared spectroscopy analysis revealed that purified IH-7 contained hydroxyl, amide, carboxyl and methoxyl groups. The elemental analysis of purified IH-7 showed that the weight fractions of the elements C, H, O, N and S were 29.9%, 4.8%, 34.7%, 3.3%, and 2.0%, respectively. IH-7 had good flocculating rate in kaolin suspension without cation addition and stable over wide range of pH and temperature.
    Matched MeSH terms: Fungal Proteins/metabolism*
  6. Yusof NA, Hashim NH, Beddoe T, Mahadi NM, Illias RM, Bakar FD, et al.
    Cell Stress Chaperones, 2016 Jul;21(4):707-15.
    PMID: 27154490 DOI: 10.1007/s12192-016-0696-2
    The ability of eukaryotes to adapt to an extreme range of temperatures is critically important for survival. Although adaptation to extreme high temperatures is well understood, reflecting the action of molecular chaperones, it is unclear whether these molecules play a role in survival at extremely low temperatures. The recent genome sequencing of the yeast Glaciozyma antarctica, isolated from Antarctic sea ice near Casey Station, provides an opportunity to investigate the role of molecular chaperones in adaptation to cold temperatures. We isolated a G. antarctica homologue of small heat shock protein 20 (HSP20), GaSGT1, and observed that the GaSGT1 mRNA expression in G. antarctica was markedly increased following culture exposure at low temperatures. Additionally, we demonstrated that GaSGT1 overexpression in Escherichia coli protected these bacteria from exposure to both high and low temperatures, which are lethal for growth. The recombinant GaSGT1 retained up to 60 % of its native luciferase activity after exposure to luciferase-denaturing temperatures. These results suggest that GaSGT1 promotes cell thermotolerance and employs molecular chaperone-like activity toward temperature assaults.
    Matched MeSH terms: Fungal Proteins/metabolism*
  7. Yong HY, Bakar FD, Illias RM, Mahadi NM, Murad AM
    Braz J Microbiol, 2013 Dec;44(4):1241-50.
    PMID: 24688518
    The mitogen-activated protein (MAP) kinase pathways has been implicated in the pathogenicity of various pathogenic fungi and plays important roles in regulating pathogenicity-related morphogenesis. This work describes the isolation and characterization of MAP kinase gene, Cgl-SLT2, from Colletotrichum gloeosporioides. A DNA sequence, including 1,633 bp of Cgl-SLT2 open-reading frame and its promoter and terminator regions, was isolated via DNA walking and cloned. To analyze gene function, a gene disruption cassette containing hygromycin-resistant gene was constructed, and Cgl-SLT2 was inactivated via gene deletion. Analysis on Cgl-slt2 mutant revealed a defect in vegetative growth and sporulation as compared to the wild-type strain. When grown under nutrient-limiting conditions, hyperbranched hyphal morphology was observed in the mutant. Conidia induction for germination on rubber wax-coated hard surfaces revealed no differences in the percentage of conidial germination between the wild-type and Cgl-slt2 mutant. However, the percentage of appressorium formation in the mutant was greatly reduced. Bipolar germination in the mutant was higher than in the wild-type at 8-h post-induction. A pathogenicity assay revealed that the mutant was unable to infect either wounded or unwounded mangoes. These results suggest that the Cgl-SLT2 MAP kinase is required for C. gloeosporioides conidiation, polarized growth, appressorium formation and pathogenicity.
    Matched MeSH terms: Fungal Proteins/metabolism*
  8. Mohamad Nor N, Hashim NHF, Quay DHX, Mahadi NM, Illias RM, Abu Bakar FD, et al.
    Int J Biol Macromol, 2020 Feb 01;144:231-241.
    PMID: 31843615 DOI: 10.1016/j.ijbiomac.2019.12.099
    Genome data mining of the Antarctic yeast, Glaciozyma antarctica PI12 revealed an expansin-like protein encoding sequence (GaEXLX1). The GaEXLX1 protein is 24.8 kDa with a high alkaline pI of 9.81. Homology modeling of GaEXLX1 showed complete D1 and D2 domains of a conventional expansin. The protein exhibited 36% sequence similarity to Clavibacter michiganensis EXLX1 (PDB: 4JCW). Subsequently, a recombinant GaEXLX1 protein was produced using Escherichia coli expression system. Incubation with Avicel, filter paper and cotton fiber showed that the protein can disrupt the surface of crystalline and pure cellulose, suggesting a cell wall modification activity usually exhibited by expansin-like proteins. Binding assays displayed that GaEXLX1 can bind to polymeric substrates, including those postulated to be present in the sea ice ecosystem such as crab chitin and moss lichenan. GaEXLX1 may assist in the recognition and loosening of these substrates in the sea ice prior to hydrolysis by other extracellular enzymes. Similar loosening mechanism to classical expansin-like protein has been postulated for this psychrophilic protein based on several conserved residues of GaEXLX1 involved in binding interaction identified by docking analyses.
    Matched MeSH terms: Fungal Proteins/metabolism*
  9. Chan CL, Yew SM, Ngeow YF, Na SL, Lee KW, Hoh CC, et al.
    BMC Genomics, 2015 Nov 18;16:966.
    PMID: 26581579 DOI: 10.1186/s12864-015-2200-2
    BACKGROUND: Daldinia eschscholtzii is a wood-inhabiting fungus that causes wood decay under certain conditions. It has a broad host range and produces a large repertoire of potentially bioactive compounds. However, there is no extensive genome analysis on this fungal species.

    RESULTS: Two fungal isolates (UM 1400 and UM 1020) from human specimens were identified as Daldinia eschscholtzii by morphological features and ITS-based phylogenetic analysis. Both genomes were similar in size with 10,822 predicted genes in UM 1400 (35.8 Mb) and 11,120 predicted genes in UM 1020 (35.5 Mb). A total of 751 gene families were shared among both UM isolates, including gene families associated with fungus-host interactions. In the CAZyme comparative analysis, both genomes were found to contain arrays of CAZyme related to plant cell wall degradation. Genes encoding secreted peptidases were found in the genomes, which encode for the peptidases involved in the degradation of structural proteins in plant cell wall. In addition, arrays of secondary metabolite backbone genes were identified in both genomes, indicating of their potential to produce bioactive secondary metabolites. Both genomes also contained an abundance of gene encoding signaling components, with three proposed MAPK cascades involved in cell wall integrity, osmoregulation, and mating/filamentation. Besides genomic evidence for degrading capability, both isolates also harbored an array of genes encoding stress response proteins that are potentially significant for adaptation to living in the hostile environments.

    CONCLUSIONS: Our genomic studies provide further information for the biological understanding of the D. eschscholtzii and suggest that these wood-decaying fungi are also equipped for adaptation to adverse environments in the human host.

    Matched MeSH terms: Fungal Proteins/metabolism
  10. Low CF, Chong PP, Yong PV, Lim CS, Ahmad Z, Othman F
    J Appl Microbiol, 2008 Dec;105(6):2169-77.
    PMID: 19120662 DOI: 10.1111/j.1365-2672.2008.03912.x
    The aims of the present study were to determine whether Allium sativum (garlic) extract has any effect on the morphology transformation of Candida albicans, and to investigate whether it could alter the gene expression level of SIR2, a morphogenetic control gene and SAP4, a gene encoding secreted aspartyl proteinase.
    Matched MeSH terms: Fungal Proteins/metabolism*
  11. Kato T, Azegami J, Yokomori A, Dohra H, El Enshasy HA, Park EY
    BMC Genomics, 2020 Apr 23;21(1):319.
    PMID: 32326906 DOI: 10.1186/s12864-020-6709-7
    BACKGROUND: Ashbya gossypii naturally overproduces riboflavin and has been utilized for industrial riboflavin production. To improve riboflavin production, various approaches have been developed. In this study, to investigate the change in metabolism of a riboflavin-overproducing mutant, namely, the W122032 strain (MT strain) that was isolated by disparity mutagenesis, genomic analysis was carried out.

    RESULTS: In the genomic analysis, 33 homozygous and 1377 heterozygous mutations in the coding sequences of the genome of MT strain were detected. Among these heterozygous mutations, the proportion of mutated reads in each gene was different, ranging from 21 to 75%. These results suggest that the MT strain may contain multiple nuclei containing different mutations. We tried to isolate haploid spores from the MT strain to prove its ploidy, but this strain did not sporulate under the conditions tested. Heterozygous mutations detected in genes which are important for sporulation likely contribute to the sporulation deficiency of the MT strain. Homozygous and heterozygous mutations were found in genes encoding enzymes involved in amino acid metabolism, the TCA cycle, purine and pyrimidine nucleotide metabolism and the DNA mismatch repair system. One homozygous mutation in AgILV2 gene encoding acetohydroxyacid synthase, which is also a flavoprotein in mitochondria, was found. Gene ontology (GO) enrichment analysis showed heterozygous mutations in all 22 DNA helicase genes and genes involved in oxidation-reduction process.

    CONCLUSION: This study suggests that oxidative stress and the aging of cells were involved in the riboflavin over-production in A. gossypii riboflavin over-producing mutant and provides new insights into riboflavin production in A. gossypii and the usefulness of disparity mutagenesis for the creation of new types of mutants for metabolic engineering.

    Matched MeSH terms: Fungal Proteins/metabolism
  12. Kato T, Azegami J, Kano M, El Enshasy HA, Park EY
    Mol Biotechnol, 2024 May;66(5):1144-1153.
    PMID: 38184809 DOI: 10.1007/s12033-023-01012-6
    AgHST1 and AgHST3 genes encode sirtuins that are NAD+-dependent protein deacetylases. According to previous reports, their disruption leads to the overproduction of riboflavin in Ashbya gossypii. In this study, we investigated the potential causes of riboflavin overproduction in the AgHST1Δ and AgHST3Δ mutant strains of A. gossypii. The generation of reactive oxygen species was increasd in the mutants compared to in WT. Additionally, membrane potential was lower in the mutants than in WT. The NAD+/NADH ratio in AgHST1Δ mutant strain was lower than that in WT; however, the NAD+/NADH ratio in AgHST3Δ was slightly higher than that in WT. AgHST1Δ mutant strain was more sensitive to high temperatures and hydroxyurea treatment than WT or AgHST3Δ. Expression of the AgGLR1 gene, encoding glutathione reductase, was substantially decreased in AgHST1Δ and AgHST3Δ mutant strains. The addition of N-acetyl-L-cysteine, an antioxidant, suppressed the riboflavin production in the mutants, indicating that it was induced by oxidative stress. Therefore, high oxidative stress resulting from the disruption of sirtuin genes induces riboflavin overproduction in AgHST1Δ and AgHST3Δ mutant strains. This study established that oxidative stress is an important trigger for riboflavin overproduction in sirtuin gene-disrupted mutant strains of A. gossypii and helped to elucidate the mechanism of riboflavin production in A. gossypii.
    Matched MeSH terms: Fungal Proteins/metabolism
  13. Phan CW, Sabaratnam V
    Appl Microbiol Biotechnol, 2012 Nov;96(4):863-73.
    PMID: 23053096 DOI: 10.1007/s00253-012-4446-9
    Mushroom industries generate a virtually in-exhaustible supply of a co-product called spent mushroom substrate (SMS). This is the unutilised substrate and the mushroom mycelium left after harvesting of mushrooms. As the mushroom industry is steadily growing, the volume of SMS generated annually is increasing. In recent years, the mushroom industry has faced challenges in storing and disposing the SMS. The obvious solution is to explore new applications of SMS. There has been considerable discussion recently about the potentials of using SMS for production of value-added products. One of them is production of lignocellulosic enzymes such as laccase, xylanase, lignin peroxidase, cellulase and hemicellulase. This paper reviews scientific research and practical applications of SMS as a readily available and cheap source of enzymes for bioremediation, animal feed and energy feedstock.
    Matched MeSH terms: Fungal Proteins/metabolism*
  14. Lok B, Adam MAA, Kamal LZM, Chukwudi NA, Sandai R, Sandai D
    Med Mycol, 2021 Feb 04;59(2):115-125.
    PMID: 32944760 DOI: 10.1093/mmy/myaa080
    Candida albicans is a commensal yeast commonly found on the skin and in the body. However, in immunocompromised individuals, the fungi could cause local and systemic infections. The carbon source available plays an important role in the establishment of C. albicans infections. The fungi's ability to assimilate a variety of carbon sources plays a vital role in its colonization, and by extension, its fitness and pathogenicity, as it often inhabits niches that are glucose-limited but rich in alternative carbon sources. A difference in carbon sources affect the growth and mating of C. albicans, which contributes to its pathogenicity as proliferation helps the fungi colonize its environment. The carbon source also affects its metabolism and signaling pathways, which are integral parts of the fungi's fitness and pathogenicity. As a big percentage of the carbon assimilated by C. albicans goes to cell wall biogenesis, the availability of different carbon sources will result in cell walls with variations in rigidity, adhesion, and surface hydrophobicity. In addition to the biofilm formation of the fungi, the carbon source also influences whether the fungi grow in yeast- or mycelial-form. Both forms play different roles in C. albicans's infection process. A better understanding of the role of the carbon sources in C. albicans's pathogenicity would contribute to more effective treatment solutions for fungal infections.
    Matched MeSH terms: Fungal Proteins/metabolism
  15. Mostafa AA, Elshikh MS, Al-Askar AA, Hadibarata T, Yuniarto A, Syafiuddin A
    Bioprocess Biosyst Eng, 2019 Sep;42(9):1483-1494.
    PMID: 31076865 DOI: 10.1007/s00449-019-02144-3
    Due to environmental concern, the research to date has tended to focus on how textile dye removal can be carried out in a greener manner. Therefore, this study aims to evaluate the decolorization and biotransformation pathway of Mordant Orange-1 (MO-1) by Cylindrocephalum aurelium RY06 (C. aurelium RY06). Decolorization study was conducted in a batch experiment including the investigation of the effects of physio-chemical parameters. Enzymatic activity of C. aurelium RY06 during the decolorization was also investigated. Moreover, transformation and biodegradation of MO-1 by C. aurelium RY06 were observed using the gas chromatography-mass spectrometry. Manganese peroxidase, lignin peroxidase, laccase, 1,2-dioxygenase, and 2,3-dioxygenase enzymes were detected during the decolorization. In general, the present work concluded that the MO-1 was successfully degraded by C. aurelium RY06 and transformed to be maleic acid and to be isophtalic acid.
    Matched MeSH terms: Fungal Proteins/metabolism
  16. Yap HY, Chooi YH, Firdaus-Raih M, Fung SY, Ng ST, Tan CS, et al.
    BMC Genomics, 2014;15:635.
    PMID: 25073817 DOI: 10.1186/1471-2164-15-635
    The sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden or Tiger milk mushroom (Polyporales, Basidiomycota) is a valuable folk medicine for indigenous peoples in Southeast Asia. Despite the increasing interest in this ethnobotanical mushroom, very little is known about the molecular and genetic basis of its medicinal and nutraceutical properties.
    Matched MeSH terms: Fungal Proteins/metabolism
  17. Chew SY, Brown AJP, Lau BYC, Cheah YK, Ho KL, Sandai D, et al.
    J Biomed Sci, 2021 Jan 02;28(1):1.
    PMID: 33388061 DOI: 10.1186/s12929-020-00700-8
    BACKGROUND: Emergence of Candida glabrata, which causes potential life-threatening invasive candidiasis, has been widely associated with high morbidity and mortality. In order to cause disease in vivo, a robust and highly efficient metabolic adaptation is crucial for the survival of this fungal pathogen in human host. In fact, reprogramming of the carbon metabolism is believed to be indispensable for phagocytosed C. glabrata within glucose deprivation condition during infection.

    METHODS: In this study, the metabolic responses of C. glabrata under acetate growth condition was explored using high-throughput transcriptomic and proteomic approaches.

    RESULTS: Collectively, a total of 1482 transcripts (26.96%) and 242 proteins (24.69%) were significantly up- or down-regulated. Both transcriptome and proteome data revealed that the regulation of alternative carbon metabolism in C. glabrata resembled other fungal pathogens such as Candida albicans and Cryptococcus neoformans, with up-regulation of many proteins and transcripts from the glyoxylate cycle and gluconeogenesis, namely isocitrate lyase (ICL1), malate synthase (MLS1), phosphoenolpyruvate carboxykinase (PCK1) and fructose 1,6-biphosphatase (FBP1). In the absence of glucose, C. glabrata shifted its metabolism from glucose catabolism to anabolism of glucose intermediates from the available carbon source. This observation essentially suggests that the glyoxylate cycle and gluconeogenesis are potentially critical for the survival of phagocytosed C. glabrata within the glucose-deficient macrophages.

    CONCLUSION: Here, we presented the first global metabolic responses of C. glabrata to alternative carbon source using transcriptomic and proteomic approaches. These findings implicated that reprogramming of the alternative carbon metabolism during glucose deprivation could enhance the survival and persistence of C. glabrata within the host.

    Matched MeSH terms: Fungal Proteins/metabolism*
  18. Chew SY, Ho KL, Cheah YK, Ng TS, Sandai D, Brown AJP, et al.
    Sci Rep, 2019 02 26;9(1):2843.
    PMID: 30808979 DOI: 10.1038/s41598-019-39117-1
    The human fungal pathogen Candida glabrata appears to utilise unique stealth, evasion and persistence strategies in subverting the onslaught of host immune response during systemic infection. However, macrophages actively deprive the intracellular fungal pathogen of glucose, and therefore alternative carbon sources probably support the growth and survival of engulfed C. glabrata. The present study aimed to investigate the role of the glyoxylate cycle gene ICL1 in alternative carbon utilisation and its importance for the virulence of C. glabrata. The data showed that disruption of ICL1 rendered C. glabrata unable to utilise acetate, ethanol or oleic acid. In addition, C. glabrata icl1∆ cells displayed significantly reduced biofilm growth in the presence of several alternative carbon sources. It was also found that ICL1 is crucial for the survival of C. glabrata in response to macrophage engulfment. Disruption of ICL1 also conferred a severe attenuation in the virulence of C. glabrata in the mouse model of invasive candidiasis. In conclusion, a functional glyoxylate cycle is essential for C. glabrata to utilise certain alternative carbon sources in vitro and to display full virulence in vivo. This reinforces the view that antifungal drugs that target fungal Icl1 have potential for future therapeutic intervention.
    Matched MeSH terms: Fungal Proteins/metabolism
  19. Zainudin NA, Condon B, De Bruyne L, Van Poucke C, Bi Q, Li W, et al.
    Mol Plant Microbe Interact, 2015 Oct;28(10):1130-41.
    PMID: 26168137 DOI: 10.1094/MPMI-03-15-0068-R
    The Sfp-type 4'-phosphopantetheinyl transferase Ppt1 is required for activation of nonribosomal peptide synthetases, including α-aminoadipate reductase (AAR) for lysine biosynthesis and polyketide synthases, enzymes that biosynthesize peptide and polyketide secondary metabolites, respectively. Deletion of the PPT1 gene, from the maize pathogen Cochliobolus heterostrophus and the rice pathogen Cochliobolus miyabeanus, yielded strains that were significantly reduced in virulence to their hosts. In addition, ppt1 mutants of C. heterostrophus race T and Cochliobolus victoriae were unable to biosynthesize the host-selective toxins (HST) T-toxin and victorin, respectively, as judged by bioassays. Interestingly, ppt1 mutants of C. miyabeanus were shown to produce tenfold higher levels of the sesterterpene-type non-HST ophiobolin A, as compared with the wild-type strain. The ppt1 strains of all species were also reduced in tolerance to oxidative stress and iron depletion; both phenotypes are associated with inability to produce extracellular siderophores biosynthesized by the nonribosomal peptide synthetase Nps6. Colony surfaces were hydrophilic, a trait previously associated with absence of C. heterostrophus Nps4. Mutants were decreased in asexual sporulation and C. heterostrophus strains were female-sterile in sexual crosses; the latter phenotype was observed previously with mutants lacking Nps2, which produces an intracellular siderophore. As expected, mutants were albino, since they cannot produce the polyketide melanin and were auxotrophic for lysine because they lack an AAR.
    Matched MeSH terms: Fungal Proteins/metabolism
  20. Onoja E, Chandren S, Razak FIA, Wahab RA
    J Biotechnol, 2018 Oct 10;283:81-96.
    PMID: 30063951 DOI: 10.1016/j.jbiotec.2018.07.036
    The study reports the preparation of a composite consisting of magnetite coated with nanosilica extracted from oil palm leaves (OPL) ash as nanosupports for immobilization of Candida rugosa lipase (CRL) and its application for the synthesis of butyl butyrate. Results of immobilization parameters showed that ∼ 80% of CRL (84.5 mg) initially offered was immobilized onto the surface of the nanosupports to yield a maximum protein loading and specific activity of 67.5 ± 0.72 mg/g and 320.8 ± 0.42 U/g of support, respectively. Surface topography, morphology as well as information on surface composition obtained by Raman spectroscopy, atomic force microscopy, field emission scanning electron microscopy and transmission electron microscopy showed that CRL was successfully immobilized onto the nanosupports, affirming its biocompatibility. Under optimal conditions (3.5 mg/mL protein loading, at 45 ℃, 3 h and molar ratio 2:1 (1-butanol:n-butyric acid) the CRL/Gl-A-SiO2-MNPs gave a maximum yield of 94 ± 0.24% butyl butyrate as compared to 84 ± 0.32% in the lyophilized CRL. CRL/Gl-A-SiO2-MNPs showed an extended operational stability, retaining 50% of its initial activity after 17 consecutive esterification cycles. The results indicated that OPL derived nanosilica coated on magnetite can potentially be employed as carrier for lipase immobilization in replacement of the non-renewable conventionalsilica sources.
    Matched MeSH terms: Fungal Proteins/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links