Displaying publications 21 - 40 of 56 in total

Abstract:
Sort:
  1. Guan Q, Yu J, Zhu W, Yang B, Li Y, Zhang L, et al.
    Gene, 2018 Mar 01;645:60-68.
    PMID: 29274907 DOI: 10.1016/j.gene.2017.12.045
    Ultraviolet-B (UVB) irradiation induces oxidative stress in plant cells due to the generation of excessive reactive oxygen species. Morus alba L. (M. abla) is an important medicinal plant used for the treatment of human diseases. Also, its leaves are widely used as food for silkworms. In our previous research, we found that a high level of UVB irradiation with dark incubation led to the accumulation of secondary metabolites in M. abla leaf. The aim of the present study was to describe and compare M. alba leaf transcriptomics with different treatments (control, UVB, UVB+dark). Leaf transcripts from M. alba were sequenced using an Illumina Hiseq 2000 system, which produced 14.27Gb of data including 153,204,462 paired-end reads among the three libraries. We de novo assembled 133,002 transcripts with an average length of 1270bp and filtered 69,728 non-redundant unigenes. A similarity search was performed against the non-redundant National Center of Biotechnology Information (NCBI) protein database, which returned 41.08% hits. Among the 20,040 unigenes annotated in UniProtKB/SwissProt database, 16,683 unigenes were assigned 102,232 gene ontology terms and 6667 unigenes were identified in 287 known metabolic pathways. Results of differential gene expression analysis together with real-time quantitative PCR tests indicated that UVB irradiation with dark incubation enhanced the flavonoid biosynthesis in M. alba leaf. Our findings provided a valuable proof for a better understanding of the metabolic mechanism under abiotic stresses in M. alba leaf.
    Matched MeSH terms: Gene Ontology
  2. Alafiatayo AA, Lai KS, Ahmad S, Mahmood M, Shaharuddin NA
    Genomics, 2020 01;112(1):484-493.
    PMID: 30946891 DOI: 10.1016/j.ygeno.2019.03.011
    Exposing the skin to solar UV radiation induces cascades of signaling pathways and biological alterations such as redox imbalance, suppression of antioxidant genes and programmed cell death. Therefore, the aim of this study was to use RNA-Seq to unravel the effects of UV radiation on Normal Human Adult Fibroblast cells (NHDF). Cells were exposed to UV (20 mJ/cm2 for 3 mins) and incubated for 24 h. Total mRNA from the cells generated libraries of 72,080,648 and 40,750,939 raw reads from UV-treated and control cells respectively. Of the differentially expressed genes (DEGs) produced 2,007 were up-regulated and 2,791 were down-regulated (fold change ≥2, p genes was validated with RT-qPCR. Chemokine signaling pathways in cancer were significantly activated and antioxidant genes were down-regulated. This study applied Next Generation Sequencing technology to reveal the genes and pathways involved in UV-induced human dermal fibroblast cells necrosis.
    Matched MeSH terms: Gene Ontology
  3. Wee JJ, Kumar S
    Genomics Inform, 2020 Dec;18(4):e39.
    PMID: 33412755 DOI: 10.5808/GI.2020.18.4.e39
    Alzheimer's disease (AD) is a chronic, progressive brain disorder that slowly destroys affected individuals' memory and reasoning faculties, and consequently, their ability to perform the simplest tasks. This study investigated the hub genes of AD. Proteins interact with other proteins and non-protein molecules, and these interactions play an important role in understanding protein function. Computational methods are useful for understanding biological problems, in particular, network analyses of protein-protein interactions. Through a protein network analysis, we identified the following top 10 hub genes associated with AD: PTGER3, C3AR1, NPY, ADCY2, CXCL12, CCR5, MTNR1A, CNR2, GRM2, and CXCL8. Through gene enrichment, it was identified that most gene functions could be classified as integral to the plasma membrane, G-protein coupled receptor activity, and cell communication under gene ontology, as well as involvement in signal transduction pathways. Based on the convergent functional genomics ranking, the prioritized genes were NPY, CXCL12, CCR5, and CNR2.
    Matched MeSH terms: Gene Ontology
  4. Roslan ND, Yusop JM, Baharum SN, Othman R, Mohamed-Hussein ZA, Ismail I, et al.
    Int J Mol Sci, 2012;13(3):2692-706.
    PMID: 22489118 DOI: 10.3390/ijms13032692
    P. minus is an aromatic plant, the leaf of which is widely used as a food additive and in the perfume industry. The leaf also accumulates secondary metabolites that act as active ingredients such as flavonoid. Due to limited genomic and transcriptomic data, the biosynthetic pathway of flavonoids is currently unclear. Identification of candidate genes involved in the flavonoid biosynthetic pathway will significantly contribute to understanding the biosynthesis of active compounds. We have constructed a standard cDNA library from P. minus leaves, and two normalized full-length enriched cDNA libraries were constructed from stem and root organs in order to create a gene resource for the biosynthesis of secondary metabolites, especially flavonoid biosynthesis. Thus, large-scale sequencing of P. minus cDNA libraries identified 4196 expressed sequences tags (ESTs) which were deposited in dbEST in the National Center of Biotechnology Information (NCBI). From the three constructed cDNA libraries, 11 ESTs encoding seven genes were mapped to the flavonoid biosynthetic pathway. Finally, three flavonoid biosynthetic pathway-related ESTs chalcone synthase, CHS (JG745304), flavonol synthase, FLS (JG705819) and leucoanthocyanidin dioxygenase, LDOX (JG745247) were selected for further examination by quantitative RT-PCR (qRT-PCR) in different P. minus organs. Expression was detected in leaf, stem and root. Gene expression studies have been initiated in order to better understand the underlying physiological processes.
    Matched MeSH terms: Gene Ontology
  5. Huat TJ, Khan AA, Abdullah JM, Idris FM, Jaafar H
    Int J Mol Sci, 2015;16(5):9693-718.
    PMID: 25938966 DOI: 10.3390/ijms16059693
    Insulin-like growth factor 1 (IGF-1) enhances cellular proliferation and reduces apoptosis during the early differentiation of bone marrow derived mesenchymal stem cells (BMSCs) into neural progenitor-like cells (NPCs) in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). BMSCs were differentiated in three groups of growth factors: (A) EGF + bFGF, (B) EGF + bFGF + IGF-1, and (C) without growth factor. To unravel the molecular mechanisms of the NPCs derivation, microarray analysis using GeneChip miRNA arrays was performed. The profiles were compared among the groups. Annotated microRNA fingerprints (GSE60060) delineated 46 microRNAs temporally up-regulated or down-regulated compared to group C. The expressions of selected microRNAs were validated by real-time PCR. Among the 46 microRNAs, 30 were consistently expressed for minimum of two consecutive time intervals. In Group B, only miR-496 was up-regulated and 12 microRNAs, including the let-7 family, miR-1224, miR-125a-3p, miR-214, miR-22, miR-320, miR-708, and miR-93, were down-regulated. Bioinformatics analysis reveals that some of these microRNAs (miR-22, miR-214, miR-125a-3p, miR-320 and let-7 family) are associated with reduction of apoptosis. Here, we summarize the roles of key microRNAs associated with IGF-1 in the differentiation of BMSCs into NPCs. These findings may provide clues to further our understanding of the mechanisms and roles of microRNAs as key regulators of BMSC-derived NPC maintenance.
    Matched MeSH terms: Gene Ontology
  6. Sabetian S, Shamsir MS
    Int J Mol Sci, 2016 Nov 10;17(11).
    PMID: 27834916
    Non-obstructive azoospermia is a severe infertility factor. Currently, the etiology of this condition remains elusive with several possible molecular pathway disruptions identified in the post-meiotic spermatozoa. In the presented study, in order to identify all possible candidate genes associated with azoospermia and to map their relationship, we present the first protein-protein interaction network related to azoospermia and analyze the complex effects of the related genes systematically. Using Online Mendelian Inheritance in Man, the Human Protein Reference Database and Cytoscape, we created a novel network consisting of 209 protein nodes and 737 interactions. Mathematical analysis identified three proteins, ar, dazap2, and esr1, as hub nodes and a bottleneck protein within the network. We also identified new candidate genes, CREBBP and BCAR1, which may play a role in azoospermia. The gene ontology analysis suggests a genetic link between azoospermia and liver disease. The KEGG analysis also showed 45 statistically important pathways with 31 proteins associated with colorectal, pancreatic, chronic myeloid leukemia and prostate cancer. Two new genes and associated diseases are promising for further experimental validation.
    Matched MeSH terms: Gene Ontology
  7. Tan YJ, Lee YT, Mancera RL, Oon CE
    Life Sci, 2021 Nov 01;284:119747.
    PMID: 34171380 DOI: 10.1016/j.lfs.2021.119747
    BZD9L1 was previously described as a SIRT1/2 inhibitor with anti-cancer activities in colorectal cancer (CRC), either as a standalone chemotherapy or in combination with 5-fluorouracil. BZD9L1 was reported to induce apoptosis in CRC cells; however, the network of intracellular pathways and crosstalk between molecular players mediated by BZD9L1 is not fully understood. This study aimed to uncover the mechanisms involved in BZD9L1-mediated cytotoxicity based on previous and new findings for the prediction and identification of related pathways and key molecular players. BZD9L1-regulated candidate targets (RCTs) were identified using a range of molecular, cell-based and biochemical techniques on the HCT 116 cell line. BZD9L1 regulated major cancer pathways including Notch, p53, cell cycle, NFκB, Myc/MAX, and MAPK/ERK signalling pathways. BZD9L1 also induced reactive oxygen species (ROS), regulated apoptosis-related proteins, and altered cell polarity and adhesion profiles. In silico analyses revealed that most RCTs were interconnected, and were involved in the modulation of catalytic activity, metabolism and transcription regulation, response to cytokines, and apoptosis signalling pathways. These RCTs were implicated in p53-dependent apoptosis pathway. This study provides the first assessment of possible associations of molecular players underlying the cytotoxic activity of BZD9L1, and establishes the links between RCTs and apoptosis through the p53 pathway.
    Matched MeSH terms: Gene Ontology
  8. Sandya Menon Prabhakaran Menon, Asita Elengoe
    MyJurnal
    Introduction: Colorectal cancer is one of the top three most commonly occurring cancer worldwide with more than 1.8 million cases in 2018. In Malaysia, colorectal cancer is the most common cancer in males and the second most common cancer in females. Albeit being the second most common form of cancer in Malaysia, there is a lack of a formal or structured national colorectal cancer screening programme in Malaysia and it remains a low priority in healthcare planning and expenditure in Malaysia. The risk of developing colon cancer is greatly influenced by factors such as lifestyle habits, genetic inheritance, diet, weight, and exercise. Kras, the most frequently mutated oncogene in cancer, occurs in about 50 percent of colorectal cancers. Methods: This study maps the kras gene involved in colon cancer pathway, using bioinformatics applications such as STRING version 11.0 and Cytoscape version 3.7.0 to provide a clear visualisation of all the related and involved proteins and genes that interact with this kras gene in the pathway. Results: The 3391 protein interactions were assembled and visualized in y organic form. Six spe-cific non-overlapping clusters of various sizes, which emerged from the huge network of protein-interactors using MCODE version 1.32 clustering algorithm were found. Biological Networks Gene Ontology (BiNGO) was used to determine two ontologies (molecular function and biological process) involved in the protein network. Based on the resulting protein-protein network interaction map, each interaction plays an important role in the cell cycle, meta-bolic pathways and signal transduction. Conclusion: Understanding these interactions provide insight into cellular activities and thus assist in the understanding of the aetiology of disease.
    Matched MeSH terms: Gene Ontology
  9. Moorthy K, Jaber AN, Ismail MA, Ernawan F, Mohamad MS, Deris S
    Methods Mol Biol, 2019;1986:255-266.
    PMID: 31115893 DOI: 10.1007/978-1-4939-9442-7_12
    In gene expression studies, missing values are a common problem with important consequences for the interpretation of the final data (Satija et al., Nat Biotechnol 33(5):495, 2015). Numerous bioinformatics examination tools are used for cancer prediction, including the data set matrix (Bailey et al., Cell 173(2):371-385, 2018); thus, it is necessary to resolve the problem of missing-values imputation. This chapter presents a review of the research on missing-values imputation approaches for gene expression data. By using local and global correlation of the data, we were able to focus mostly on the differences between the algorithms. We classified the algorithms as global, hybrid, local, or knowledge-based techniques. Additionally, this chapter presents suitable assessments of the different approaches. The purpose of this review is to focus on developments in the current techniques for scientists rather than applying different or newly developed algorithms with identical functional goals. The aim was to adapt the algorithms to the characteristics of the data.
    Matched MeSH terms: Gene Ontology
  10. Saini S, Thakur CJ, Kumar V, Tandon S, Bhardwaj V, Maggar S, et al.
    Mol Biol Res Commun, 2018 Sep;7(3):107-118.
    PMID: 30426028 DOI: 10.22099/mbrc.2018.29577.1322
    Current re-emergence of Nipah virus (NiV) in India caused 11 deaths so far and many patients were kept in quarantine. A thorough study of previous outbreaks occurred in Malaysia, Bangladesh and India represents cases with high rate of fatality due to acute encephalitis. Our work involves genome analysis of NiV for prediction of miRNAs and their targeted genes in human in order to understand encephalitis origin. Ab-intio program-VMir was used for initial screening of genome, obtained nine pre-miRNAs was analyzed by ViralMir to check for any pseudo pre-miRNAs. Eighteen functional mature miRNAs were extracted from pre-miRNAs by using Mature-Bayes tool, which targets 669 genes in human genome as retrieved by miRDB. Gene ontology terms by PANTHER provide important pathways in which target genes were involved like Axon guidance, T cell activation, and nicotinic acetylcholine receptor signaling. Significant outcome was obtained after NCBI Gene and OMIM database mining and literature search for predicted target genes. TLR3, TJP1, NOTCH2, FHL1, and GRIA3 target genes obtained showed their involvement in host defense, blood brain barrier, neurogenesis, mental retardation and encephalitis. To conclude, we predicted significant genes in human that can be inhibited by miRNAs of NiV and results in etiology of encephalitis.
    Matched MeSH terms: Gene Ontology
  11. Yuan JC, Yogarajah T, Lim SK, Yvonne Tee GB, Khoo BY
    Mol Med Rep, 2020 05;21(5):2063-2072.
    PMID: 32323762 DOI: 10.3892/mmr.2020.11012
    Excessive adipose tissue accumulation is an increasing health problem worldwide. The present study aimed to determine differentially expressed genes (DEGs) that are associated with the excessive accumulation of adipose tissues by PCR arrays in an excess dietary intake animal model. For this purpose, male Sprague Dawley rats were randomly assigned to 2 groups: Control (given an ordinary diet) and experimental (given twice the amount of the ordinary diet). After 2 months of feeding, the abdominal cavities of the rats from each group were opened, then subcutaneous and visceral adipose tissues were removed. The adipose tissues collected were then used for total RNA extraction and then reverse transcribed to cDNA, which was then used as a template to identify the DEGs of 84 transcripts for rat obesity by RT2 Profiler PCR Arrays. The results showed significant downregulation of bombesin‑like receptor 3 (BRS3) and uncoupling protein 1 (UCP1) in visceral adipose tissues of experimental rats compared with those of the control rats, and differential gene expression analysis showed an association with fat cell differentiation and regulation of triglyceride sequestration, as well as fatty acid binding. The gene expression patterns observed in the present study, which may be associated with peroxisome proliferator‑activated receptor‑γ (PPARG) on excessive visceral adipose tissue accumulation, may be useful in identifying a group of surrogate biomarkers for the early diet‑induced accumulation of visceral adipose tissue detection in humans. The biomarkers can also be the specific targets for drug development to reduce excessive visceral adipose tissue accumulation in the body and its associated diseases.
    Matched MeSH terms: Gene Ontology
  12. McGuffin LJ, Adiyaman R, Maghrabi AHA, Shuid AN, Brackenridge DA, Nealon JO, et al.
    Nucleic Acids Res, 2019 07 02;47(W1):W408-W413.
    PMID: 31045208 DOI: 10.1093/nar/gkz322
    The IntFOLD server provides a unified resource for the automated prediction of: protein tertiary structures with built-in estimates of model accuracy (EMA), protein structural domain boundaries, natively unstructured or disordered regions in proteins, and protein-ligand interactions. The component methods have been independently evaluated via the successive blind CASP experiments and the continual CAMEO benchmarking project. The IntFOLD server has established its ranking as one of the best performing publicly available servers, based on independent official evaluation metrics. Here, we describe significant updates to the server back end, where we have focused on performance improvements in tertiary structure predictions, in terms of global 3D model quality and accuracy self-estimates (ASE), which we achieve using our newly improved ModFOLD7_rank algorithm. We also report on various upgrades to the front end including: a streamlined submission process, enhanced visualization of models, new confidence scores for ranking, and links for accessing all annotated model data. Furthermore, we now include an option for users to submit selected models for further refinement via convenient push buttons. The IntFOLD server is freely available at: http://www.reading.ac.uk/bioinf/IntFOLD/.
    Matched MeSH terms: Gene Ontology
  13. Wong KK, Gascoyne DM, Soilleux EJ, Lyne L, Spearman H, Roncador G, et al.
    Oncotarget, 2016 Aug 16;7(33):52940-52956.
    PMID: 27224915 DOI: 10.18632/oncotarget.9507
    FOXP2 shares partially overlapping normal tissue expression and functionality with FOXP1; an established diffuse large B-cell lymphoma (DLBCL) oncogene and marker of poor prognosis. FOXP2 is expressed in the plasma cell malignancy multiple myeloma but has not been studied in DLBCL, where a poor prognosis activated B-cell (ABC)-like subtype display partially blocked plasma cell differentiation. FOXP2 protein expression was detected in ABC-DLBCL cell lines, and in primary DLBCL samples tumoral FOXP2 protein expression was detected in both germinal center B-cell-like (GCB) and non-GCB DLBCL. In biopsies from DLBCL patients treated with immunochemotherapy (R-CHOP), ≥ 20% nuclear tumoral FOXP2-positivity (n = 24/158) correlated with significantly inferior overall survival (OS: P = 0.0017) and progression-free survival (PFS: P = 0.0096). This remained significant in multivariate analysis against either the international prognostic index score or the non-GCB DLBCL phenotype (P < 0.05 for both OS and PFS). Expression of BLIMP1, a marker of plasmacytic differentiation that is commonly inactivated in ABC-DLBCL, did not correlate with patient outcome or FOXP2 expression in this series. Increased frequency of FOXP2 expression significantly correlated with FOXP1-positivity (P = 0.0187), and FOXP1 co-immunoprecipitated FOXP2 from ABC-DLBCL cells indicating that these proteins can co-localize in a multi-protein complex. FOXP2-positive DLBCL had reduced expression of HIP1R (P = 0.0348), which is directly repressed by FOXP1, and exhibited distinct patterns of gene expression. Specifically in ABC-DLBCL these were associated with lower expression of immune response and T-cell receptor signaling pathways. Further studies are warranted to investigate the potential functional cooperativity between FOXP1 and FOXP2 in repressing immune responses during the pathogenesis of high-risk DLBCL.
    Matched MeSH terms: Gene Ontology
  14. Kumarasingha R, Young ND, Yeo TC, Lim DSL, Tu CL, Palombo EA, et al.
    Parasit Vectors, 2019 Apr 25;12(1):181.
    PMID: 31023350 DOI: 10.1186/s13071-019-3429-4
    BACKGROUND: Natural compounds from plants are known to provide a source of anthelmintic molecules. In previous studies, we have shown that plant extracts from the plant Picria fel-terrae Lour. and particular fractions thereof have activity against the free-living nematode Caenorhabditis elegans, causing quite pronounced stress responses in this nematode. We have also shown that a fraction, designated Pf-fraction 5, derived from this plant has a substantial adverse effect on this worm; however, nothing is known about the molecular processes affected in the worm. In the present study, we explored this aspect.

    RESULTS: Key biological processes linked to upregulated genes (n = 214) included 'response to endoplasmic reticulum stress' and 'lipid metabolism', and processes representing downregulated genes (n = 357) included 'DNA-conformation change' and 'cellular lipid metabolism'.

    CONCLUSIONS: Exposure of C. elegans to Pf-fraction 5 induces significant changes in the transcriptome. Gene ontology analysis suggests that Pf-fraction 5 induces endoplasmic reticulum and mitochondrial stress, and the changes in gene expression are either a direct or indirect consequence of this. Further work is required to assess specific responses to sub-fractions of Pf-fraction 5 in time-course experiments in C. elegans, to define the chemical(s) with potent anthelmintic properties, to attempt to unravel their mode(s) of action and to assess their selectivity against nematodes.

    Matched MeSH terms: Gene Ontology
  15. Loo SK, Ab Hamid SS, Musa M, Wong KK
    Pathol Res Pract, 2018 Jan;214(1):134-143.
    PMID: 29137822 DOI: 10.1016/j.prp.2017.10.005
    Dysregulation of DNA (cytosine-5)-methyltransferase 1 (DNMT1) is associated with the pathogenesis of various types of cancer. It has been previously shown that DNMT1 is frequently expressed in diffuse large B-cell lymphoma (DLBCL), however its functions remain to be elucidated in the disease. In this study, we gene expression profiled (GEP) shRNA targeting DNMT1(shDNMT1)-treated germinal center B-cell-like DLBCL (GCB-DLBCL)-derived cell line (i.e. HT) compared with non-silencing shRNA (control shRNA)-treated HT cells. Independent gene set enrichment analysis (GSEA) performed using GEPs of shRNA-treated HT cells and primary GCB-DLBCL cases derived from two publicly-available datasets (i.e. GSE10846 and GSE31312) produced three separate lists of enriched gene sets for each gene sets collection from Molecular Signatures Database (MSigDB). Subsequent Venn analysis identified 268, 145 and six consensus gene sets from analyzing gene sets in C2 collection (curated gene sets), C5 sub-collection [gene sets from gene ontology (GO) biological process ontology] and Hallmark collection, respectively to be enriched in positive correlation with DNMT1 expression profiles in shRNA-treated HT cells, GSE10846 and GSE31312 datasets [false discovery rate (FDR) <0.05]. Cell cycle progression and DNA replication were among the significantly enriched biological processes (FDR <0.05). Expression of genes involved in the activation of cell cycle and DNA replication (e.g. CDK1, CCNA2, E2F2, PCNA, RFC5 and POLD3) were highly correlated (r>0.8) with DNMT1 expression and significantly downregulated (log fold-change
    Matched MeSH terms: Gene Ontology
  16. Mohd Ali N, Boo L, Yeap SK, Ky H, Satharasinghe DA, Liew WC, et al.
    PeerJ, 2016;4:e1536.
    PMID: 26788424 DOI: 10.7717/peerj.1536
    Decline in the therapeutic potential of bone marrow-derived mesenchymal stem cells (MSC) is often seen with older donors as compared to young. Although hypoxia is known as an approach to improve the therapeutic potential of MSC in term of cell proliferation and differentiation capacity, its effects on MSC from aged donors have not been well studied. To evaluate the influence of hypoxia on different age groups, MSC from young (<30 years) and aged (>60 years) donors were expanded under hypoxic (5% O2) and normal (20% O2) culture conditions. MSC from old donors exhibited a reduction in proliferation rate and differentiation potential together with the accumulation of senescence features compared to that of young donors. However, MSC cultured under hypoxic condition showed enhanced self-renewing and proliferation capacity in both age groups as compared to normal condition. Bioinformatic analysis of the gene ontology (GO) and KEGG pathway under hypoxic culture condition identified hypoxia-inducible miRNAs that were found to target transcriptional activity leading to enhanced cell proliferation, migration as well as decrease in growth arrest and apoptosis through the activation of multiple signaling pathways. Overall, differentially expressed miRNA provided additional information to describe the biological changes of young and aged MSCs expansion under hypoxic culture condition at the molecular level. Based on our findings, the therapeutic potential hierarchy of MSC according to donor's age group and culture conditions can be categorized in the following order: young (hypoxia) > young (normoxia) > old aged (hypoxia) > old aged (normoxia).
    Matched MeSH terms: Gene Ontology
  17. Ramzi AB, Che Me ML, Ruslan US, Baharum SN, Nor Muhammad NA
    PeerJ, 2019;7:e8065.
    PMID: 31879570 DOI: 10.7717/peerj.8065
    Background: G. boninense is a hemibiotrophic fungus that infects oil palms (Elaeis guineensis Jacq.) causing basal stem rot (BSR) disease and consequent massive economic losses to the oil palm industry. The pathogenicity of this white-rot fungus has been associated with cell wall degrading enzymes (CWDEs) released during saprophytic and necrotrophic stage of infection of the oil palm host. However, there is a lack of information available on the essentiality of CWDEs in wood-decaying process and pathogenesis of this oil palm pathogen especially at molecular and genome levels.

    Methods: In this study, comparative genome analysis was carried out using the G. boninense NJ3 genome to identify and characterize carbohydrate-active enzyme (CAZymes) including CWDE in the fungal genome. Augustus pipeline was employed for gene identification in G. boninense NJ3 and the produced protein sequences were analyzed via dbCAN pipeline and PhiBase 4.5 database annotation for CAZymes and plant-host interaction (PHI) gene analysis, respectively. Comparison of CAZymes from G. boninense NJ3 was made against G. lucidum, a well-studied model Ganoderma sp. and five selected pathogenic fungi for CAZymes characterization. Functional annotation of PHI genes was carried out using Web Gene Ontology Annotation Plot (WEGO) and was used for selecting candidate PHI genes related to cell wall degradation of G. boninense NJ3.

    Results: G. boninense was enriched with CAZymes and CWDEs in a similar fashion to G. lucidum that corroborate with the lignocellulolytic abilities of both closely-related fungal strains. The role of polysaccharide and cell wall degrading enzymes in the hemibiotrophic mode of infection of G. boninense was investigated by analyzing the fungal CAZymes with necrotrophic Armillaria solidipes, A. mellea, biotrophic Ustilago maydis, Melampsora larici-populina and hemibiotrophic Moniliophthora perniciosa. Profiles of the selected pathogenic fungi demonstrated that necrotizing pathogens including G. boninense NJ3 exhibited an extensive set of CAZymes as compared to the more CAZymes-limited biotrophic pathogens. Following PHI analysis, several candidate genes including polygalacturonase, endo β-1,3-xylanase, β-glucanase and laccase were identified as potential CWDEs that contribute to the plant host interaction and pathogenesis.

    Discussion: This study employed bioinformatics tools for providing a greater understanding of the biological mechanisms underlying the production of CAZymes in G. boninense NJ3. Identification and profiling of the fungal polysaccharide- and lignocellulosic-degrading enzymes would further facilitate in elucidating the infection mechanisms through the production of CWDEs by G. boninense. Identification of CAZymes and CWDE-related PHI genes in G. boninense would serve as the basis for functional studies of genes associated with the fungal virulence and pathogenicity using systems biology and genetic engineering approaches.

    Matched MeSH terms: Gene Ontology
  18. Ee Uli J, Yong CSY, Yeap SK, Rovie-Ryan JJ, Mat Isa N, Tan SG, et al.
    PeerJ, 2017;5:e3566.
    PMID: 28828235 DOI: 10.7717/peerj.3566
    The cynomolgus macaque (Macaca fascicularis) is an extensively utilised nonhuman primate model for biomedical research due to its biological, behavioural, and genetic similarities to humans. Genomic information of cynomolgus macaque is vital for research in various fields; however, there is presently a shortage of genomic information on the Malaysian cynomolgus macaque. This study aimed to sequence, assemble, annotate, and profile the Peninsular Malaysian cynomolgus macaque transcriptome derived from three tissues (lymph node, spleen, and thymus) using RNA sequencing (RNA-Seq) technology. A total of 174,208,078 paired end 70 base pair sequencing reads were obtained from the Illumina Hi-Seq 2500 sequencer. The overall mapping percentage of the sequencing reads to the M. fascicularis reference genome ranged from 53-63%. Categorisation of expressed genes to Gene Ontology (GO) and KEGG pathway categories revealed that GO terms with the highest number of associated expressed genes include Cellular process, Catalytic activity, and Cell part, while for pathway categorisation, the majority of expressed genes in lymph node, spleen, and thymus fall under the Global overview and maps pathway category, while 266, 221, and 138 genes from lymph node, spleen, and thymus were respectively enriched in the Immune system category. Enriched Immune system pathways include Platelet activation pathway, Antigen processing and presentation, B cell receptor signalling pathway, and Intestinal immune network for IgA production. Differential gene expression analysis among the three tissues revealed 574 differentially expressed genes (DEG) between lymph and spleen, 5402 DEGs between lymph and thymus, and 7008 DEGs between spleen and thymus. Venn diagram analysis of expressed genes revealed a total of 2,630, 253, and 279 tissue-specific genes respectively for lymph node, spleen, and thymus tissues. This is the first time the lymph node, spleen, and thymus transcriptome of the Peninsular Malaysian cynomolgus macaque have been sequenced via RNA-Seq. Novel transcriptomic data will further enrich the present M. fascicularis genomic database and provide future research potentials, including novel transcript discovery, comparative studies, and molecular markers development.
    Matched MeSH terms: Gene Ontology
  19. Zhang Y, Miao G, Fazhan H, Waiho K, Zheng H, Li S, et al.
    Physiol Genomics, 2018 05 01;50(5):393-405.
    PMID: 29570432 DOI: 10.1152/physiolgenomics.00016.2018
    The crucifix crab, Charybdis feriatus, which mainly inhabits Indo-Pacific region, is regarded as one of the most high-potential species for domestication and incorporation into the aquaculture sector. However, the regulatory mechanisms of sex determination and differentiation of this species remain unclear. To identify candidate genes involved in sex determination and differentiation, high throughput sequencing of transcriptome from the testis and ovary of C. feriatus was performed by the Illumina platform. After removing adaptor primers, low-quality sequences and very short (<50 nt) reads, we obtained 80.9 million and 66.2 million clean reads from testis and ovary, respectively. A total of 86,433 unigenes were assembled, and ~43% (37,500 unigenes) were successfully annotated to the NR, NT, Swiss-Prot, KEGG, COG, GO databases. By comparing the testis and ovary libraries, we obtained 27,636 differentially expressed genes. Some candidate genes involved in the sex determination and differentiation of C. feriatus were identified, such as vasa, pgds, vgr, hsp90, dsx-f, fem-1, and gpr. In addition, 88,608 simple sequence repeats were obtained, and 61,929 and 77,473 single nucleotide polymorphisms from testis and ovary were detected, respectively. The transcriptome profiling was validated by quantitative real-time PCR in 30 selected genes, which showed a good consistency. The present study is the first high-throughput transcriptome sequencing of C. feriatus. These findings will be useful for future functional analysis of sex-associated genes and molecular marker-assisted selections in C. feriatus.
    Matched MeSH terms: Gene Ontology
  20. Kumar IS, Nadarajah K
    Plants (Basel), 2020 Nov 05;9(11).
    PMID: 33167299 DOI: 10.3390/plants9111491
    Rice blast, sheath blight and bacterial leaf blight are major rice diseases found worldwide. The development of resistant cultivars is generally perceived as the most effective way to combat these diseases. Plant disease resistance is a polygenic trait where a combinatorial effect of major and minor genes affects this trait. To locate the source of this trait, various quantitative trait loci (QTL) mapping studies have been performed in the past two decades. However, investigating the congruency between the reported QTL is a daunting task due to the heterogeneity amongst the QTLs studied. Hence, the aim of our study is to integrate the reported QTLs for resistance against rice blast, sheath blight and bacterial leaf blight and objectively analyze and consolidate the location of QTL clusters in the chromosomes, reducing the QTL intervals and thus identifying candidate genes within the selected meta-QTL. A total of twenty-seven studies for resistance QTLs to rice blast (8), sheath blight (15) and bacterial leaf blight (4) was compiled for QTL projection and analyses. Cumulatively, 333 QTLs associated with rice blast (114), sheath blight (151) and bacterial leaf blight (68) resistance were compiled, where 303 QTLs could be projected onto a consensus map saturated with 7633 loci. Meta-QTL analysis on 294 QTLs yielded 48 meta-QTLs, where QTLs with membership probability lower than 60% were excluded, reducing the number of QTLs within the meta-QTL to 274. Further, three meta-QTL regions (MQTL2.5, MQTL8.1 and MQTL9.1) were selected for functional analysis on the basis that MQTL2.5 harbors the highest number of QTLs; meanwhile, MQTL8.1 and MQTL9.1 have QTLs associated with all three diseases mentioned above. The functional analysis allows for determination of enriched gene ontology and resistance gene analogs (RGAs) and other defense-related genes. To summarize, MQTL2.5, MQTL8.1 and MQTL9.1 have a considerable number of R-genes that account for 10.21%, 4.08% and 6.42% of the total genes found in these meta-QTLs, respectively. Defense genes constitute around 3.70%, 8.16% and 6.42% of the total number of genes in MQTL2.5, MQTL8.1 and MQTL9.1, respectively. This frequency is higher than the total frequency of defense genes in the rice genome, which is 0.0096% (167 defense genes/17,272 total genes). The integration of the QTLs facilitates the identification of QTL hotspots for rice blast, sheath blight and bacterial blight resistance with reduced intervals, which helps to reduce linkage drag in breeding. The candidate genes within the promising regions could be utilized for improvement through genetical engineering.
    Matched MeSH terms: Gene Ontology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links