Displaying publications 21 - 40 of 73 in total

Abstract:
Sort:
  1. Yong HS, Song SL, Eamsobhana P, Lim PE
    Acta Trop, 2016 May 17;161:33-40.
    PMID: 27207134 DOI: 10.1016/j.actatropica.2016.05.002
    Angiostrongylus malaysiensis is a nematode parasite of various rat species. When first documented in Malaysia, it was referred to as A. cantonensis. Unlike A. cantonensis, the complete mitochondrial genome of A. malaysiensis has not been documented. We report here its complete mitogenome, its differentiation from A. cantonensis, and the phylogenetic relationships with its congeners and other Metastrongyloid taxa. The whole mitogenome of A. malaysiensis had a total length of 13,516bp, comprising 36 genes (12 PCGs, 2 rRNA and 22 tRNA genes) and a control region. It is longer than that of A. cantonensis (13,509bp). Its control region had a long poly T-stretch of 12bp which was not present in A. cantonensis. A. malaysiensis and A. cantonensis had identical start codon for the 12 PCGs, but four PCGs (atp6, cob, nad2, nad6) had different stop codon. The cloverleaf structure for the 22 tRNAs was similar in A. malaysiensis and A. cantonensis except the TΨC-arm was absent in trnV for A. malaysiensis but present in A. cantonensis. The Angiostrongylus genus was monophyletic, with A. malaysiensis and A. cantonensis forming a distinct lineage from that of A. costaricensis and A. vasorum. The genetic distance between A. malaysiensis and A. cantonensis was p=11.9% based on 12 PCGs, p=9.5% based on 2 rRNA genes, and p=11.6% based on 14 mt-genes. The mitogenome will prove useful for studies on phylogenetics and systematics of Angiostrongylus lungworms and other Metastrongyloid nematodes.
    Matched MeSH terms: Genes, rRNA
  2. Uni S, Fukuda M, Agatsuma T, Bain O, Otsuka Y, Nakatani J, et al.
    Parasitol Int, 2015 Dec;64(6):493-502.
    PMID: 26165205 DOI: 10.1016/j.parint.2015.07.001
    Human zoonotic onchocercosis is caused by Onchocerca dewittei japonica, parasitic in wild boars (Sus scrofa leucomystax) in Japan. Previously, microfilariae longer than those of Onchocerca dewittei japonica were observed in skin snips from wild boars during the study of O. dewittei japonica. Moreover, the third-stage larvae (L3) of these longer microfilariae were obtained from the blackfly Simulium bidentatum after experimental injections. Based on morphometric and molecular studies, similar L3 were found in blackflies during fieldwork in Oita, Japan. However, except for O. dewittei japonica, adult worms of Onchocerca have not been found in wild boars. In this study, we discovered adult females of a novel Onchocerca species in the skin of a wild boar in Oita, and named it Onchocerca takaokai n. sp. Females of this new species had longer microfilariae and differed from O. dewittei japonica in terms of their morphological characteristics and parasitic location. The molecular characteristics of the cytochrome c oxidase subunit 1 and 12S rRNA genes of the new species were identical to those of the longer microfilariae and L3 previously detected, but they differed from those of O. dewittei japonica at the species level. However, both species indicated a close affinity among their congeners and Onchocerca ramachandrini, parasitic in the warthog in Africa, was basal in the Suidae cluster of the 12S rRNA tree.
    Matched MeSH terms: Genes, rRNA
  3. Zhang YY, Fan LL, Zheng FY, Zhao T, Rong JD, Chen LG, et al.
    Mitochondrial DNA B Resour, 2020 Feb 06;5(1):306-307.
    PMID: 33366532 DOI: 10.1080/23802359.2019.1702484
    Gigantochloa verticillata is produced in Mengla and Jinghong, Yunnan Province, China, and cultivated in Hong Kong. Vietnam, Thailand, India, Indonesia, and Malaysia are distributed and cultivated. We determined the complete chloroplast genome sequence for G. verticillata using Illumina sequencing data. The complete chloroplast sequence is 139,489 bp, including large single-copy (LSC) region of 83,062 bp, small single-copy (SSC) region of 12,877 bp, and a pair of invert repeats (IR) regions of 21,775 bp. Plastid genome contain 132 genes, 85 protein-coding genes, 39 tRNA genes, and 8 rRNA genes. Phylogenetic analysis based on 23 chloroplast genomes indicates that G. verticillata is closely related to Dendrocalamus latiflorus in Bambusodae.
    Matched MeSH terms: Genes, rRNA
  4. Takahashi JI, Tingek S, Okuyama H
    Mitochondrial DNA B Resour, 2017 Sep 05;2(2):585-586.
    PMID: 33473910 DOI: 10.1080/23802359.2017.1372714
    The cavity-nesting honeybee Apis nuluensis inhabits only the highlands of Mount Kinabalu of Sabah, Borneo Island. The mitochondrial genome is a circular molecule of approximately 1.6 kb that includes 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and one AT-rich control region. The average AT content was 84.5%. The start codons ATC, ATG, and ATT were found in one, three, and nine genes, respectively, whereas the stop codon TAA was observed in all genes. The phylogenetic relationship, inferred using 13 PCGs, was consistent with that reported in previous studies that predicted a sister taxon relationship between A. nuluensis and A. cerana.
    Matched MeSH terms: Genes, rRNA
  5. Wang JH, Zhao KK, Zhu ZX, Wang HF
    Mitochondrial DNA B Resour, 2018 Oct 03;3(2):1145-1146.
    PMID: 33490565 DOI: 10.1080/23802359.2018.1522977
    Vatica mangachapoi is a tree up to 20 m tall with white resinous. It is distributed in China (Hainan province), Indonesia, Malaysia (N Borneo), Philippines, Thailand, and Vietnam. It grows in forests on hills and mountain slopes below 700 metres. Its durable wood is used for making boats and building bridges and houses. It has been ranked as a VU (Vulnerable) species in China. Here we report and characterize the complete plastid genome sequence of V. mangachapoi in an effort to provide genomic resources useful for promoting its conservation and phylogenetic research. The complete plastome is 151,538 bp in length and contains the typical structure and gene content of angiosperm plastome, including two Inverted Repeat (IR) regions of 23,921 bp, a Large Single-Copy (LSC) region of 83,587 bp and a Small Single-Copy (SSC) region of 20,109 bp. The plastome contains 114 genes, consisting of 80 unique protein-coding genes, 30 unique tRNA gene, and 4 unique rRNA genes. The overall A/T content in the plastome of V. mangachapoi is 62.80%. The phylogenetic analysis indicated that V. mangachapoi and V. odorata is closely related and as an independent branch in Malvales in our study. The complete plastome sequence of V. mangachapoi will provide a useful resource for the conservation genetics of this species and for the phylogenetic studies for Vatica.
    Matched MeSH terms: Genes, rRNA
  6. Jahari PNS, Mohd Azman S, Munian K, M Fauzi NF, Shamsir MS, Richter SR, et al.
    Mitochondrial DNA B Resour, 2020 Sep 01;5(3):3262-3264.
    PMID: 33458132 DOI: 10.1080/23802359.2020.1812449
    The increasing interest in understanding the evolutionary relationship between members of the Pteropodidae family has been greatly aided by genomic data from the Old World fruit bats. Here we present the complete mitogenome of Geoffroy's rousette, Rousettus amplexicaudatus found in Peninsular Malaysia . The mitogenome constructed is 16,511bp in length containing 37 genes; 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and a D-loop region. The overall base composition is estimated to be 32.28% for A, 25.64% for T, 14.09% for G and 27.98% for C, indicating a slightly AT rich feature (57.93%). A phylogenetic and BLASTn analysis against other available mitogenomes showed Malaysian R. amplexicaudatus matched 98% similarity to the same species in Cambodia and Vietnam. However, it differed considerably (92.53% similarity) with the same species in the Philippines. This suggests flexibility in Rousettus sp. with regards to adapting to mesic and dry habitats, ability for long-distance dispersal and remarkably precise lingual echolocation thus supporting its wide-range distribution and colonization. Further taxonomical and mitogenomic comparatives are required in resolving the evolutionary relationship between Rousettus spp.
    Matched MeSH terms: Genes, rRNA
  7. Tao L, Shi ZG, Long QY
    Mitochondrial DNA B Resour, 2020 Oct 09;5(3):3549-3550.
    PMID: 33458237 DOI: 10.1080/23802359.2020.1829132
    Syzygium malaccense is native to Malaysia. It is sometimes called the malay apple, malay rose-apple, mountain rose-apple, mountain apple, water apple, or French cashew. The tree is very popular in many tropical and subtropical regions for its fruit and traditional medicine. The first complete chloroplast genome of Syzygium malaccense has been reported in this study. The complete chloroplast genome of Syzygium malaccense is 158,954 bp, composed of four regions: a large single-copy region with a size of 87,991 bp, a small single copy region with a size of 18,793 bp, and two inverted repeat regions with a size of 26,085 bp. The GC content is 36.97%. A total of 132 genes were annotated, including 84 encoding proteins, eight encoding rRNA genes, 37 encoding tRNA genes, and three encoding pseudo genes. Phylogenetic analysis showed that Syzygium aromaticum, Syzygium cumini, and Syzygium forrestii are closely related to Syzygium malaccense.
    Matched MeSH terms: Genes, rRNA
  8. Nur Aisyah Atikah Alizan, Sarah S. Zakaria
    MyJurnal
    Bacteria of the genus Komagataeibacter are described to be the most noteworthy for having several of its species being efficient and strong cellulose producers. The 16S ribosomal RNA (rRNA) gene analysis is often used for the identification and taxonomic classification of these bacteria species. In order to observe the phylogenetic relationship among Komagataeibacter sp., twelve sequences of the 16S rRNA gene with three sequences each for species namely Komagataeibacter europaeus, Komagataeibacter hansenii, Komagataeibacter intermedius and Komagataeibacter xylinus were retrieved from NCBI GenBank database. The sequences were aligned and analysed using PAUP, OrthoANI and BLAST, followed by the phylogenetic tree construction using a Maximum Likelihood method. The parsimony character diagnostic analysis showed very few numbers of parsimony- informative characters present in the aligned sequences which is only 1.5% of the total characters. The inferred phylogenetic relationships demonstrated the unexpected positioning of K. xylinus (GQ240638: Gluconacetobacter xylinus strain) and K. xylinus (KC11853: G. xylinus strain) into the clades of K. europaeus and K. hansenii respectively. The also very low bootstrap values of the branch points linking the K. europaeus species indicated low support for the produced topologies. The findings of this study indicate that more phylogenies information can be attained by increasing the taxon sampling. In addition, more robust molecular data are needed to infer the phylogenetic relationships between the Komagataeibacter species more accurately.
    Matched MeSH terms: Genes, rRNA
  9. Pin LC, Teen LP, Ahmad A, Usup G
    Mar Biotechnol (NY), 2001 May;3(3):246-55.
    PMID: 14961362
    The genus Ostreopsis is an important component of benthic and epiphytic dinoflagellate assemblages in coral reefs and seaweed beds of Malaysia. Members of the species may produce toxins that contribute to ciguatera fish poisoning. In this study, two species have been isolated and cultured, Ostreopsis ovata and Ostreopsis lenticularis. Analyses of the 5.8S subunit and internal transcribed spacer regions ITS1 and ITS2 of the ribosomal RNA gene sequences of these two species showed that they are separate species, consistent with morphological designations. The nucleotide sequences of the 5.8S subunit and ITS1 and ITS2 regions of the rRNA gene were also used to evaluate the interpopulation and intrapopulation genetic diversity of O. ovata found in Malaysian waters. Results showed a low level of sequence divergence within populations. At the interpopulation level, the rRNA gene sequence distinguished two groups of genetically distinct strains, representative of a Malacca Straits group (isolates from Port Dickson) and a South China Sea group (isolates from Pulau Redang and Kota Kinabalu). Part of the sequences in the ITS regions may be useful in the design of oligonucleotide probes specific for each group. Results from this study show that the ITS regions can be used as genetic markers for taxonomic, biogeographic, and fine-scale population studies of this species.
    Matched MeSH terms: Genes, rRNA
  10. Kamarudin KR, Ngah N, Hamid TH, Susanti D
    Trop Life Sci Res, 2013 Aug;24(1):85-100.
    PMID: 24575244
    Staphylococcus kloosii, an orange pigment-producing bacterium, was isolated from the respiratory tree of Holothuria (Mertensiothuria) leucospilota (Brandt 1835) from Teluk Nipah, Pangkor Island, Perak, Malaysia. This report is the first documentation of this Gram-positive strain, referred to as Strain 68 in Malaysia. A partial 16S ribosomal RNA gene sequence of the mesophilic strain has been registered with GenBank (National Center for Biotechnology Information, US National Library of Medicine) with accession number JX102547. Phylogenetic analysis using the neighbour-joining method further supported the identification of Strain 68 as S. kloosii. The circular strain produced orange pigments on tryptone glucose yeast extract agar (TGYEA) and in nutrient broth (NB) at approximately pH 7. The visible spectra of ethanolic and methanolic pigment extracts of the bacterial strain were considered identical with λmax at 426, 447 and 475 nm and λmax at 426, 445 and 473 nm, respectively. Both visible spectra resemble the visible spectra of lutein, which is a commercial carotenoid; however, further analyses are required to confirm the identity of this pigment. The methanolic extracts of the intracellular pigments comprised at least three pigment compounds: an orange pigment compound (major compound), a yellow pigment compound (the least polar) and a pink pigment compound (the most polar). These findings are the first documentation of the pigment composition of S. kloosii as no such record could be found to date.
    Matched MeSH terms: Genes, rRNA
  11. Saminathan M, Gan HM, Abdullah N, Wong CMVL, Ramiah SK, Tan HY, et al.
    J Appl Microbiol, 2017 Apr 23.
    PMID: 28434189 DOI: 10.1111/jam.13477
    AIMS: To evaluate the effects of condensed tannins (CTs) fractions of differing molecular weights (MWs) from a Leucaena leucocephala hybrid-Rendang on the rumen protozoal community in vitro.

    METHODS AND RESULTS: The effects of unfractionated CTs (F0) and CT fractions of different MWs (F1 > F2 > F3 > F4 > F5) on protozoal population and community were evaluated in vitro using rumen microbes and ground guinea grass as the substrate. Higher-MW CT fractions F1 and F2 significantly (P rRNA gene showed that the genus Entodinium significantly (P 

    Matched MeSH terms: Genes, rRNA
  12. Sahilah Abu Mutalib, Wan Sakeenah Wan Nazari, Safiyyah Shahimi, Norhayati Yaakob, Norrakiah Abdullah Sani, Aminah Abdullah, et al.
    Sains Malaysiana, 2012;41:199-204.
    A method of PCR-restriction fragment length polymorphism (RFLP) has been utilized to differentiate the mitochondrial genes of pork and wild boar meat (Sus scrofa). The amplification PCR products of 359 bp and 531 bp were successfully amplified from the cyt b gene of these two meats. The amplification product of pork and wild boar using mt-12S rRNA gene successfully produced a single band with molecular size of 456 bp. Three restriction endonucleases (AluI, HindIII and BsaJI) were used to restrict the amplification products of the mitochondrial genes. The restriction enzymes of AluI and BsaJI were identified as potential restriction endonucleases to differentiate those meats. HindIII enzyme was unable to restrict the PCR product of both meats. The genetic differences within the cyt b gene among the two meats were successfully confirmed by PCR-RFLP analysis.
    Matched MeSH terms: Genes, rRNA
  13. Kamarul Rahim Kamarudin, ‘Aisyah Mohamed Rehan, Ridzwan Hashim, Usup G, Maryam Mohamed Rehan
    Sains Malaysiana, 2016;45:1079-1087.
    This study aimed to resolve the taxonomic status of a morphologically undetermined sea cucumber species of order Apodida
    from Malaysia (GenBank accession no.: FJ223867) using partial 16S mitochondrial rRNA gene sequences and subsequently
    to determine the validity of morphological taxonomy of Holothuria species into its current subgenera. The undetermined
    species clustered with all taxa of Holothuria in previous study. Phylogenetic analyses using maximum parsimony and
    Bayesian methods suggest that the undetermined species was genetically closer to Holothuria (Lessonothuria) pardalis and
    Holothuria (Acanthotrapeza) coluber; and its position in both phylogenetic trees further suggests its status as a Holothuria
    taxon. Subgenera of Holothuria, Merthensiothuria and Metriatyla are monophyletic with strong bootstrap supports and
    posterior probabilities of clades, thus strengthening their morphological taxonomies. Nonetheless, the non-monophyly of
    subgenera of Halodeima, Microthele and Platyperona suggests a requirement for their taxonomic revisions using integrative
    taxonomy. The status of Holothuria (Halodeima) edulis subgroups in the maximum parsimony and Bayesian trees is
    indistinct and further taxonomic revisions are necessary. In terms of sister relationship, both phylogenetic trees suggest
    that subgenus Holothuria is a sister taxon of subgenus Roweothuria while the other sister relationships were unclear due
    to the undetermined species, paraphyly and polyphyly of a number of subgenera. Further studies with more specimens of
    genus Holothuria from broader geographical locations and various mtDNA genes along with morphological approaches
    may facilitate to provide better insights into the molecular phylogeny of subgenera of Holothuria.
    Matched MeSH terms: Genes, rRNA
  14. Kamarul Rahim Kamarudin, Ridzwan Hashim, Usup G
    Sains Malaysiana, 2010;39:209-218.
    This study aimed to determine phylogenetic relationship between and among selected species of sea cucumbers (Echinodermata: Holothuroidea) using 16S mitochondrial ribosomal RNA (rRNA) gene. Phylogenetic analyses of 37 partial sequences of 16S mitochondrial rRNA gene using three main methods namely neighbour joining (NJ), maximum parsimony (MP) and maximum likelihood (ML) showed the presence of five main genera of sea cucumbers: Molpadia from order Molpadiida and four genera of order Aspidochirotida namely Holothuria, Stichopus, Bohadschia and Actinopyga. All of the 17 species obtained from Malaysia distributed among the main genera except within Actinopyga. Interestingly, Holothuria excellens was out of Holothuria group causing Holothuria to be paraphyletic. High bootstrap value and consistent clustering made Molpadia, Stichopus, Bohadschia and Actinopyga monophyletic. The relationship of Actinopyga with the other genera was unclarified and Stichopus was sister to Molpadia. The latter finding caused the resolution at order level unclear. The pairwise genetic distance calculated using Kimura 2-parameter model further supported and verified findings from the phylogenetic trees. Further studies with more samples and different mitochondrial DNA genes need to be done to get a better view and verification on the molecular phylogeny of sea cucumbers.
    Matched MeSH terms: Genes, rRNA
  15. Sekhar Goud EVS, Kannan R, Rao UK, Joshua E, Tavaraja R, Jain Y
    J Pharm Bioallied Sci, 2019 Nov;11(Suppl 3):S523-S529.
    PMID: 31920269 DOI: 10.4103/jpbs.JPBS_260_18
    Aims and Objective: The aim of this study was to identify the presence of Helicobacter pylori in saliva of patients with and without gastritis by polymerase chain reaction (PCR) method.

    Materials and Methods: The study comprised 20 patients in Group I presenting with various symptoms of gastritis and 10 asymptomatic subjects in Group II. The intestinal endoscopy antral biopsies were collected from 20 symptomatic patients with gastroduodenal disorders. The saliva specimens were taken from all patients before endoscopy. PCR was performed using genomic DNA, isolated from the saliva and the biopsies of the patients as the template to detect the presence of the 16S ribosomal RNA gene in H. pylori.

    Results: In Group I, 10 (50%) cases of clinical gastritis were positive for H. pylori by endoscopy biopsy and 10 (50%) were negative. Of the 10 endoscopy biopsy positive cases for H. pylori, eight were PCR positive in saliva and two were negative. Of the 10 endoscopy biopsy negative cases, three were PCR positive for H. pylori in saliva and seven were negative. In Groups II, four were symptomatic for gastritis and six were negative. Of the six gastritis negative cases, three were PCR positive, four were gastritis positive, and three were PCR positive. Sensitivity and specificity of PCR were found to be 80% and 70%, respectively. The positive predictive and negative predictive values of PCR in saliva were 72.7% and 77.7%, respectively.

    Conclusion: PCR analysis of saliva may be handy in identification of H. pylori and serves as a noninvasive technique to diagnose and monitor the prognosis.

    Matched MeSH terms: Genes, rRNA
  16. Sze-Looi Song, Kar-Hoe Loh, Phaik-Eem Lim, Amy Yee-Hui Then, Hoi-Sen Yong, Praphathip Eamsobhana
    Sains Malaysiana, 2018;47:2519-2531.
    Gymnothorax minor is a moray eel of the family Muraenidae found in the Western Pacific Ocean. We report here
    its complete mitogenome as determined by Illumina next-generation sequencing and the phylogenetic relationship
    with its congeners and other taxa of the family Muraenidae. The whole mitogenome of G. minor had a total length
    of 16,574 bp, comprising 37 genes - 13 protein-coding genes (PCGs), two ribosomal ribonucleic acid (rRNA) and 22
    transfer ribonucleic acid (tRNA) genes - and a control region. Excepting cox1 with GTG, the other 12 PCGs had ATG
    start codon. Seven of its PCGs had incomplete stop codon - five (nad2; cox1; cox2; nad3 and nad4) with T and two
    (atp6 and cox3) with TA. Molecular phylogeny based on 13 PCGs was concordant with 15 mitochondrial genes (13 PCGs
    and 2 rRNA genes). The subfamily Muraeninae as well as the subfamily Uropterygiinae were monophyletic. However,
    the genus Gymnothorax was paraphyletic, with G. minor forming a sister group with Rhinomuraena quaesita in the
    lineage containing also G. kidako and G. formosus forming a sister group with Enchelynassa canina. The phylogenetic
    relationship of the genus Gymnothorax and related taxa of the family Muraenidae, based on the mitochondrial cob
    gene, was in general similar to that based on 15 mt-genes. The mitogenome is useful for future studies on phylogenetics
    and systematics of eels of the family Muraenidae and other taxa of the order Anguilliformes.
    Matched MeSH terms: Genes, rRNA
  17. Basher MHA, Ithoi I, Mahmud R, Abdulsalam AM, Foead AI, Dawaki S, et al.
    Acta Trop, 2018 Feb;178:219-228.
    PMID: 29203378 DOI: 10.1016/j.actatropica.2017.11.015
    Acanthamoeba species are ubiquitous free-living protozoa that can be found worldwide. Occasionally, it can become parasitic and the causative agent of acanthamoebic keratitis (AK) and Granulomatous Amoebic Encephalitis (GAE) in man. A total of 160 environmental samples and 225 naturally-infected animal corneal swabs were collected for Acanthamoeba cultivation. Acanthamoeba was found to be high in samples collected from environments (85%, 136/160) compared to infected animal corneas (24.89%, 56/225) by microscopic examination. Analysis of nucleotide sequence of 18S rRNA gene of all the 192 cultivable Acanthamoeba isolates revealed 4 genotypes (T3, T4. T5 and T15) with T4 as the most prevalent (69.27%, 133/192) followed by T5 (20.31%), T15 (9.90%) and T3 (0.52%). Genotype T4 was from the strain of A. castellanii U07401 (44.27%), A. castellanii U07409 (20.83%) and A. polyphagaAY026243 (4.17%), but interestingly, only A. castellanii U07401 was detected in naturally infected corneal samples. In environmental samples, T4 was commonly detected in all samples including dry soil, dust, wet debris, wet soil and water. Among the T4, A. castellanii (U07409) strains were detected high occurrence in dry (45%) followed by aquatic (32.50%) and moist (22.50%) samples but however A. castellanii (U07401) strains were dominant in dry samples of soil and dust (93.10%). Subsequently, genotype T5 of A. lenticulata (U94741) strains were dominant in samples collected from aquatic environments (58.97%). In summary, A. castellanii (U07401) strains were found dominant in both environmental and corneal swab samples. Therefore, these strains are possibly the most virulent and dry soil or dusts are the most possible source of Acanthamoeba infection in cats and dogs corneas.
    Matched MeSH terms: Genes, rRNA
  18. Shen KN, Chang CW, Loh KH, Chen CH, Hsiao CD
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 11;27(6):4118-4119.
    PMID: 25600747
    In this study, the complete mitogenome sequence of the Clarion angelfish, Holacanthus clarionensis (Perciformes: Pomacanthidae) has been sequenced by next-generation sequencing method. The length of the assembled mitogenome is 16,615 bp, including 13 protein coding genes, 22 transfer RNAs, and two ribosomal RNAs genes. The overall base composition of Clarion angelfish is 28.3% for A, 29.3% for C, 16.5% for G, 25.9% for T and show 85% identities to flame angelfish Centropyge loriculus. The complete mitogenome of the Clarion angelfish provides essential and important DNA molecular data for further phylogeography and evolutionary analysis for marine angelfish phylogeny.
    Matched MeSH terms: Genes, rRNA/genetics
  19. Maizatul-Suriza M, Dickinson M, Idris AS
    World J Microbiol Biotechnol, 2019 Feb 27;35(3):44.
    PMID: 30810828 DOI: 10.1007/s11274-019-2618-9
    Bud rot disease is a damaging disease of oil palm in Colombia. The pathogen responsible for this disease is a species of oomyctes, Phytophthora palmivora which is also the causal pathogen of several tropical crop diseases such as fruit rot and stem canker of cocoa, rubber, durian and jackfruit. No outbreaks of bud rot have been reported in oil palm in Malaysia or other Southeast Asian countries, despite this particular species being present in the region. Analysis of the genomic sequences of several genetic markers; the internal transcribe spacer regions (ITS) of the ribosomal RNA gene cluster, beta-tubulin gene, translation elongation factor 1 alpha gene (EF-1α), cytochrome c oxidase subunit I & II (COXI and COXII) gene cluster along with amplified fragment length polymorphism (AFLP) analyses have been carried out to investigate the genetic diversity and variation of P. palmivora isolates from around the world and from different hosts in comparison to Colombian oil palm isolates, as one of the steps in understanding why this species of oomycetes causes devastating damage to oil palm in Latin America but not in other regions. Phylogenetic analyses of these regions showed that the Colombian oil palm isolates were not separated from Malaysian isolates. AFLP analysis and a new marker PPHPAV, targeting an unclassified hypothetical protein, was found to be able to differentiate Malaysian and Colombian isolates and showed a clear clade separations. Despite this, pathogenicity studies did not show any significant differences in the level of aggressiveness of different isolates against oil palm in glasshouse tests.
    Matched MeSH terms: Genes, rRNA/genetics
  20. Zaw MT, Lin Z
    J Microbiol Immunol Infect, 2017 Oct;50(5):559-564.
    PMID: 28065415 DOI: 10.1016/j.jmii.2016.08.004
    Plasmodium ovale is widely distributed in tropical countries, whereas it has not been reported in the Americas. It is not a problem globally because it is rarely detected by microscopy owing to low parasite density, which is a feature of clinical ovale malaria. P.o. curtisi and P.o. wallikeri are widespread in both Africa and Asia, and were known to be sympatric in many African countries and in southeast Asian countries. Small subunit ribosomal RNA (SSUrRNA) gene, cytochrome b (cytb) gene, and merozoite surface protein-1 (msp-1) gene were initially studied for molecular discrimination of P.o. curtisi and P.o. wallikeri using polymerase chain reaction (PCR) and DNA sequencing. DNA sequences of other genes from P. ovale in Southeast Asia and the southwestern Pacific regions were also targeted to differentiate the two sympatric types. In terms of clinical manifestations, P.o. wallikeri tended to produce higher parasitemia levels and more severe symptoms. To date, there have been a few studies that used the quantitative PCR method for discrimination of the two distinct P. ovale types. Conventional PCR with consequent DNA sequencing is the common method used to differentiate these two types. It is necessary to identify these two types because relapse periodicity, drug susceptibility, and mosquito species preference need to be studied to reduce ovale malaria. In this article, an easier method of molecular-level discrimination of P.o. curtisi and P.o. wallikeri is proposed.
    Matched MeSH terms: Genes, rRNA/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links