Displaying publications 21 - 40 of 133 in total

Abstract:
Sort:
  1. Lo MK, Rota PA
    J Clin Virol, 2008 Dec;43(4):396-400.
    PMID: 18835214 DOI: 10.1016/j.jcv.2008.08.007
    Nipah virus first emerged in Malaysia and Singapore between 1998 and 1999, causing severe febrile encephalitis in humans with a mortality rate of close to 40%. In addition, a significant portion of those recovering from acute infection had relapse encephalitis and long-term neurological defects. Since its initial outbreak, there have been numerous outbreaks in Bangladesh and India, in which the mortality rate rose to approximately 70%. These subsequent outbreaks were distinct from the initial outbreak, both in their epidemiology and in their clinical presentations. Recent developments in diagnostics may expedite disease diagnosis and outbreak containment, while progress in understanding the molecular biology of Nipah virus could lead to novel therapeutics and vaccines for this deadly pathogen.
    Matched MeSH terms: Henipavirus Infections/mortality; Henipavirus Infections/epidemiology*; Henipavirus Infections/virology
  2. Field HE, Mackenzie JS, Daszak P
    PMID: 17848064
    Two related, novel, zoonotic paramyxoviruses have been described recently. Hendra virus was first reported in horses and thence humans in Australia in 1994; Nipah virus was first reported in pigs and thence humans in Malaysia in 1998. Human cases of Nipah virus infection, apparently unassociated with infection in livestock, have been reported in Bangladesh since 2001. Species of fruit bats (genus Pteropus) have been identified as natural hosts of both agents. Anthropogenic changes (habitat loss, hunting) that have impacted the population dynamics of Pteropus species across much of their range are hypothesised to have facilitated emergence. Current strategies for the management of henipaviruses are directed at minimising contact with the natural hosts, monitoring identified intermediate hosts, improving biosecurity on farms, and better disease recognition and diagnosis. Investigation of the emergence and ecology of henipaviruses warrants a broad, cross-disciplinary ecosystem health approach that recognises the critical linkages between human activity, ecological change, and livestock and human health.
    Matched MeSH terms: Henipavirus Infections/epidemiology; Henipavirus Infections/transmission; Henipavirus Infections/veterinary*
  3. Wongnak P, Thanapongtharm W, Kusakunniran W, Karnjanapreechakorn S, Sutassananon K, Kalpravidh W, et al.
    BMC Vet Res, 2020 Aug 24;16(1):300.
    PMID: 32838786 DOI: 10.1186/s12917-020-02502-4
    BACKGROUND: Nipah virus (NiV) is a fatal zoonotic agent that was first identified amongst pig farmers in Malaysia in 1998, in an outbreak that resulted in 105 fatal human cases. That epidemic arose from a chain of infection, initiating from bats to pigs, and which then spilled over from pigs to humans. In Thailand, bat-pig-human communities can be observed across the country, particularly in the central plain. The present study therefore aimed to identify high-risk areas for potential NiV outbreaks and to model how the virus is likely to spread. Multi-criteria decision analysis (MCDA) and weighted linear combination (WLC) were employed to produce the NiV risk map. The map was then overlaid with the nationwide pig movement network to identify the index subdistricts in which NiV may emerge. Subsequently, susceptible-exposed-infectious-removed (SEIR) modeling was used to simulate NiV spread within each subdistrict, and network modeling was used to illustrate how the virus disperses across subdistricts.

    RESULTS: Based on the MCDA and pig movement data, 14 index subdistricts with a high-risk of NiV emergence were identified. We found in our infectious network modeling that the infected subdistricts clustered in, or close to the central plain, within a range of 171 km from the source subdistricts. However, the virus may travel as far as 528.5 km (R0 = 5).

    CONCLUSIONS: In conclusion, the risk of NiV dissemination through pig movement networks in Thailand is low but not negligible. The risk areas identified in our study can help the veterinary authority to allocate financial and human resources to where preventive strategies, such as pig farm regionalization, are required and to contain outbreaks in a timely fashion once they occur.

    Matched MeSH terms: Henipavirus Infections/epidemiology; Henipavirus Infections/transmission; Henipavirus Infections/veterinary*
  4. Tanimura N, Imada T, Kashiwazaki Y, Shahirudin S, Sharifah SH, Aziz AJ
    J Comp Pathol, 2004 Aug-Oct;131(2-3):199-206.
    PMID: 15276859
    Formalin-fixed, paraffin wax-embedded tissues of three Malaysian farm pigs naturally infected with Nipah virus were used to investigate the value of anti-Nipah virus mouse monoclonal antibodies (Mabs) and rabbit polyclonal antibody for immunohistochemical diagnosis. Mabs 11F6 and 12A5 gave intense immunolabelling in lung tissue that had been fixed in 10% neutral buffered formalin for about 4 years, whereas the reactivity of Mabs 13A5 and 18C4 and polyclonal antibody was reduced significantly by long-term formalin fixation. Immunohistochemical examination of Malaysian farm pig samples with Mab 11F6 confirmed the affinity of Nipah virus for respiratory epithelium, renal glomerular and tubular epithelium, meningeal arachnoidal cells, and systemic vascular endothelium and smooth muscle. In addition, Nipah virus antigens were identified in laryngeal epithelial cells, Schwann cells of peripheral nerve fascicles in the spleen, and endothelial cells in the atrioventricular valve. The study demonstrated the value of Mabs 11F6 and 12A5 for the immunohistochemical diagnosis of Nipah virus infection in pigs.
    Matched MeSH terms: Henipavirus Infections/diagnosis*; Henipavirus Infections/immunology; Henipavirus Infections/veterinary*
  5. Choudhary OP, Priyanka, Fahrni ML, Metwally AA, Saied AA
    Vet Q, 2022 Dec;42(1):172-174.
    PMID: 36001038 DOI: 10.1080/01652176.2022.2117874
    Matched MeSH terms: Henipavirus
  6. Pulliam JR, Field HE, Olival KJ, Henipavirus Ecology Research Group
    Emerg Infect Dis, 2005 Dec;11(12):1978-9; author reply 1979.
    PMID: 16485499
    Matched MeSH terms: Henipavirus Infections/epidemiology; Henipavirus Infections/veterinary*; Henipavirus Infections/virology*
  7. Gaudino M, Aurine N, Dumont C, Fouret J, Ferren M, Mathieu C, et al.
    Emerg Infect Dis, 2020 01;26(1):104-113.
    PMID: 31855143 DOI: 10.3201/eid2601.191284
    We conducted an in-depth characterization of the Nipah virus (NiV) isolate previously obtained from a Pteropus lylei bat in Cambodia in 2003 (CSUR381). We performed full-genome sequencing and phylogenetic analyses and confirmed CSUR381 is part of the NiV-Malaysia genotype. In vitro studies revealed similar cell permissiveness and replication of CSUR381 (compared with 2 other NiV isolates) in both bat and human cell lines. Sequence alignments indicated conservation of the ephrin-B2 and ephrin-B3 receptor binding sites, the glycosylation site on the G attachment protein, as well as the editing site in phosphoprotein, suggesting production of nonstructural proteins V and W, known to counteract the host innate immunity. In the hamster animal model, CSUR381 induced lethal infections. Altogether, these data suggest that the Cambodia bat-derived NiV isolate has high pathogenic potential and, thus, provide insight for further studies and better risk assessment for future NiV outbreaks in Southeast Asia.
    Matched MeSH terms: Henipavirus Infections/epidemiology; Henipavirus Infections/veterinary*; Henipavirus Infections/virology
  8. Leon AJ, Borisevich V, Boroumand N, Seymour R, Nusbaum R, Escaffre O, et al.
    PLoS Negl Trop Dis, 2018 03;12(3):e0006343.
    PMID: 29538374 DOI: 10.1371/journal.pntd.0006343
    Henipavirus infection causes severe respiratory and neurological disease in humans that can be fatal. To characterize the pathogenic mechanisms of henipavirus infection in vivo, we performed experimental infections in ferrets followed by genome-wide gene expression analysis of lung and brain tissues. The Hendra, Nipah-Bangladesh, and Nipah-Malaysia strains caused severe respiratory and neurological disease with animals succumbing around 7 days post infection. Despite the presence of abundant viral shedding, animal-to-animal transmission did not occur. The host gene expression profiles of the lung tissue showed early activation of interferon responses and subsequent expression of inflammation-related genes that coincided with the clinical deterioration. Additionally, the lung tissue showed unchanged levels of lymphocyte markers and progressive downregulation of cell cycle genes and extracellular matrix components. Infection in the brain resulted in a limited breadth of the host responses, which is in accordance with the immunoprivileged status of this organ. Finally, we propose a model of the pathogenic mechanisms of henipavirus infection that integrates multiple components of the host responses.
    Matched MeSH terms: Henipavirus/genetics; Henipavirus/physiology*; Henipavirus Infections/genetics*; Henipavirus Infections/immunology*; Henipavirus Infections/virology
  9. Berhane Y, Weingartl HM, Lopez J, Neufeld J, Czub S, Embury-Hyatt C, et al.
    Transbound Emerg Dis, 2008 May;55(3-4):165-74.
    PMID: 18405339 DOI: 10.1111/j.1865-1682.2008.01021.x
    Nipah virus (NiV; Paramyxoviridae) caused fatal encephalitis in humans during an outbreak in Malaysia in 1998/1999 after transmission from infected pigs. Our previous study demonstrated that the respiratory, lymphatic and central nervous systems are targets for virus replication in experimentally infected pigs. To continue the studies on pathogenesis of NiV in swine, six piglets were inoculated oronasally with 2.5 x 10(5) PFU per animal. Four pigs developed mild clinical signs, one exudative epidermitis, and one neurologic signs due to suppurative meningoencephalitis, and was euthanized at 11 days post-inoculation (dpi). Neutralizing antibodies reached in surviving animals titers around 1280 at 16 dpi. Nasal and oro-pharyngeal shedding of the NiV was detected between 2 and 17 dpi. Virus appeared to be cleared from the tissues of the infected animals by 23 dpi, with low amount of RNA detected in submandibular and bronchial lymph nodes of three pigs, and olfactory bulb of one animal. Despite the presence of neutralizing antibodies, virus was isolated from serum at 24 dpi, and the viral RNA was still detected in serum at 29 dpi. Our results indicate slower clearance of NiV from some of the infected pigs. Bacteria were detected in the cerebrospinal fluid of five NiV inoculated animals, with isolation of Streptococcus suis and Enterococcus faecalis. Staphylococcus hyicus was isolated from the skin lesions of the animal with exudative epidermitis. Along with the observed lymphoid depletion in the lymph nodes of all NiV-infected animals, and the demonstrated ability of NiV to infect porcine peripheral blood mononuclear cells in vitro, this finding warrants further investigation into a possible NiV-induced immunosuppression of the swine host.
    Matched MeSH terms: Henipavirus Infections/epidemiology; Henipavirus Infections/pathology; Henipavirus Infections/veterinary*; Henipavirus Infections/virology
  10. Kaku Y
    Uirusu, 2004 Dec;54(2):237-42.
    PMID: 15745162
    Nipah virus (NiV), emerged in Peninsular Malaysia, caused an outbreak of severe febrile encephalitis in humans and respiratory diseases in pigs between 1998 and 1999. By May of 1999, the death of 105 humans and the culling of about 1.1 million pigs were reported. Fruitbats of Pteropid species were identified as the natural reservoir hosts. The epidemiological studies suggested that NiV was introduced into pig farms by fruitbats, and was than transmitted to humans (mainly pig farmers) and other animals such as dogs, cats and horses. In 2004, NiV reappeared in Bangladesh with greater lethality. In contrast to the Malaysia case, epidemiologic characteristics of this outbreak suggested the possibility of fruitbats-to-person, or person-to-person transmission. In this article, the epidemiological comparison between two outbreaks in Malaysia and Bangladesh, and the new-trends of virological studies of NiV will be discussed.
    Matched MeSH terms: Henipavirus Infections/epidemiology*; Henipavirus Infections/prevention & control; Henipavirus Infections/transmission; Henipavirus Infections/virology
  11. Singh RK, Dhama K, Chakraborty S, Tiwari R, Natesan S, Khandia R, et al.
    Vet Q, 2019 Dec;39(1):26-55.
    PMID: 31006350
    Nipah (Nee-pa) viral disease is a zoonotic infection caused by Nipah virus (NiV), a paramyxovirus belonging to the genus Henipavirus of the family Paramyxoviridae. It is a biosafety level-4 pathogen, which is transmitted by specific types of fruit bats, mainly Pteropus spp. which are natural reservoir host. The disease was reported for the first time from the Kampung Sungai Nipah village of Malaysia in 1998. Human-to-human transmission also occurs. Outbreaks have been reported also from other countries in South and Southeast Asia. Phylogenetic analysis affirmed the circulation of two major clades of NiV as based on currently available complete N and G gene sequences. NiV isolates from Malaysia and Cambodia clustered together in NiV-MY clade, whereas isolates from Bangladesh and India clusterered within NiV-BD clade. NiV isolates from Thailand harboured mixed population of sequences. In humans, the virus is responsible for causing rapidly progressing severe illness which might be characterized by severe respiratory illness and/or deadly encephalitis. In pigs below six months of age, respiratory illness along with nervous symptoms may develop. Different types of enzyme-linked immunosorbent assays along with molecular methods based on polymerase chain reaction have been developed for diagnostic purposes. Due to the expensive nature of the antibody drugs, identification of broad-spectrum antivirals is essential along with focusing on small interfering RNAs (siRNAs). High pathogenicity of NiV in humans, and lack of vaccines or therapeutics to counter this disease have attracted attention of researchers worldwide for developing effective NiV vaccine and treatment regimens.
    Matched MeSH terms: Henipavirus Infections/epidemiology; Henipavirus Infections/prevention & control; Henipavirus Infections/veterinary*; Henipavirus Infections/virology
  12. Yoneda M, Guillaume V, Ikeda F, Sakuma Y, Sato H, Wild TF, et al.
    Proc Natl Acad Sci U S A, 2006 Oct 31;103(44):16508-13.
    PMID: 17053073
    Nipah virus (NiV), a paramyxovirus, was first discovered in Malaysia in 1998 in an outbreak of infection in pigs and humans and incurred a high fatality rate in humans. Fruit bats, living in vast areas extending from India to the western Pacific, were identified as the natural reservoir of the virus. However, the mechanisms that resulted in severe pathogenicity in humans (up to 70% mortality) and that enabled crossing the species barrier were not known. In this study, we established a system that enabled the rescue of replicating NiVs from a cloned DNA by cotransfection of a constructed full-length cDNA clone and supporting plasmids coding virus nucleoprotein, phosphoprotein, and polymerase with the infection of the recombinant vaccinia virus, MVAGKT7, expressing T7 RNA polymerase. The rescued NiV (rNiV), by using the newly developed reverse genetics system, showed properties in vitro that were similar to the parent virus and retained the severe pathogenicity in a previously established animal model by experimental infection. A recombinant NiV was also developed, expressing enhanced green fluorescent protein (rNiV-EGFP). Using the virus, permissibility of NiV was compared with the presence of a known cellular receptor, ephrin B2, in a number of cell lines of different origins. Interestingly, two cell lines expressing ephrin B2 were not susceptible for rNiV-EGFP, indicating that additional factors are clearly required for full NiV replication. The reverse genetics for NiV will provide a powerful tool for the analysis of the molecular mechanisms of pathogenicity and cross-species infection.
    Matched MeSH terms: Henipavirus Infections/genetics; Henipavirus Infections/metabolism; Henipavirus Infections/pathology*; Henipavirus Infections/virology*
  13. Rahman SA, Hassan L, Epstein JH, Mamat ZC, Yatim AM, Hassan SS, et al.
    Emerg Infect Dis, 2013 Jan;19(1):51-60.
    PMID: 23261015 DOI: 10.3201/eid1901.120221
    We conducted cross-sectional and longitudinal studies to determine the distribution of and risk factors for seropositivity to Nipah virus (NiV) among Pteropus vampyrus and P. hypomelanus bats in Peninsular Malaysia. Neutralizing antibodies against NiV were detected at most locations surveyed. We observed a consistently higher NiV risk (odds ratio 3.9) and seroprevalence (32.8%) for P. vampyrus than P. hypomelanus (11.1%) bats. A 3-year longitudinal study of P. hypomelanus bats indicated nonseasonal temporal variation in seroprevalence, evidence for viral circulation within the study period, and an overall NiV seroprevalence of 9.8%. The seroprevalence fluctuated over the study duration between 1% and 20% and generally decreased during 2004-2006. Adult bats, particularly pregnant, with dependent pup and lactating bats, had a higher prevalence of NiV antibodies than juveniles. Antibodies in juveniles 6 months-2 years of age suggested viral circulation within the study period.
    Matched MeSH terms: Henipavirus Infections/immunology; Henipavirus Infections/epidemiology; Henipavirus Infections/veterinary*; Henipavirus Infections/virology
  14. Tamin A, Rota PA
    Dev Biol (Basel), 2013;135:139-45.
    PMID: 23689891 DOI: 10.1159/000189236
    Hendra virus (HeV) and Nipah virus (NiV) are the causative agents of emerging transboundary animal disease in pigs and horses. They also cause fatal disease in humans. NiV has a case fatality rate of 40 - 100%. In the initial NiV outbreak in Malaysia in 1999, about 1.1 million pigs had to be culled. The economic impact was estimated to be approximately US$450 million. Worldwide, HeV has caused more than 60 deaths in horses with 7 human cases and 4 deaths. Since the initial outbreak, HeV spillovers from Pteropus bats to horses and humans continue. This article presents a brief review on the currently available diagnostic methods for henipavirus infections, including advances achieved since the initial outbreak, and a gap analysis of areas needing improvement.
    Matched MeSH terms: Henipavirus*; Henipavirus Infections/diagnosis; Henipavirus Infections/veterinary*; Henipavirus Infections/virology
  15. Hayman DT, Wang LF, Barr J, Baker KS, Suu-Ire R, Broder CC, et al.
    PLoS One, 2011;6(9):e25256.
    PMID: 21966471 DOI: 10.1371/journal.pone.0025256
    Henipaviruses, Hendra virus (HeV) and Nipah virus (NiV), have Pteropid bats as their known natural reservoirs. Antibodies against henipaviruses have been found in Eidolon helvum, an old world fruit bat species, and henipavirus-like nucleic acid has been detected in faecal samples from E. helvum in Ghana. The initial outbreak of NiV in Malaysia led to over 265 human encephalitis cases, including 105 deaths, with infected pigs acting as amplifier hosts for NiV during the outbreak. We detected non-neutralizing antibodies against viruses of the genus Henipavirus in approximately 5% of pig sera (N = 97) tested in Ghana, but not in a small sample of other domestic species sampled under a E. helvum roost. Although we did not detect neutralizing antibody, our results suggest prior exposure of the Ghana pig population to henipavirus(es). Because a wide diversity of henipavirus-like nucleic acid sequences have been found in Ghanaian E. helvum, we hypothesise that these pigs might have been infected by henipavirus(es) sufficiently divergent enough from HeVor NiV to produce cross-reactive, but not cross-neutralizing antibodies to HeV or NiV.
    Matched MeSH terms: Henipavirus/immunology*
  16. Luby SP
    Antiviral Res, 2013 Oct;100(1):38-43.
    PMID: 23911335 DOI: 10.1016/j.antiviral.2013.07.011
    Nipah virus, a paramyxovirus whose wildlife reservoir is Pteropus bats, was first discovered in a large outbreak of acute encephalitis in Malaysia in 1998 among persons who had contact with sick pigs. Apparently, one or more pigs was infected from bats, and the virus then spread efficiently from pig to pig, then from pigs to people. Nipah virus outbreaks have been recognized nearly every year in Bangladesh since 2001 and occasionally in neighboring India. Outbreaks in Bangladesh and India have been characterized by frequent person-to-person transmission and the death of over 70% of infected people. Characteristics of Nipah virus that increase its risk of becoming a global pandemic include: humans are already susceptible; many strains are capable of limited person-to-person transmission; as an RNA virus, it has an exceptionally high rate of mutation: and that if a human-adapted strain were to infect communities in South Asia, high population densities and global interconnectedness would rapidly spread the infection. Appropriate steps to estimate and manage this risk include studies to explore the molecular and genetic basis of respiratory transmission of henipaviruses, improved surveillance for human infections, support from high-income countries to reduce the risk of person-to-person transmission of infectious agents in low-income health care settings, and consideration of vaccination in communities at ongoing risk of exposure to the secretions and excretions of Pteropus bats.
    Matched MeSH terms: Henipavirus Infections/epidemiology*; Henipavirus Infections/transmission; Henipavirus Infections/virology
  17. Wkly. Epidemiol. Rec., 2010 Feb 19;85(8):64-7.
    PMID: 20210044
    Matched MeSH terms: Henipavirus Infections/epidemiology*; Henipavirus Infections/prevention & control; Henipavirus Infections/veterinary
  18. Diederich S, Maisner A
    Ann N Y Acad Sci, 2007 Apr;1102:39-50.
    PMID: 17470910
    Nipah virus (NiV) is a highly pathogenic paramyxovirus, which emerged in 1998 from fruit bats in Malaysia and caused an outbreak of severe respiratory disease in pigs and fatal encephalitis in humans with high mortality rates. In contrast to most paramyxoviruses, NiV can infect a large variety of mammalian species. Due to this broad host range, its zoonotic potential, its high pathogenicity for humans, and the lack of effective vaccines or therapeutics, NiV was classified as a biosafety level 4 pathogen. This article provides an overview of the molecular characteristics of NiV focusing on the structure, functions, and unique biological properties of the two NiV surface glycoproteins, the receptor-binding G protein, and the fusion protein F. Since viral glycoproteins are major determinants for cell tropism and virus spread, a detailed knowledge of these proteins can help to understand the molecular basis of viral pathogenicity.
    Matched MeSH terms: Henipavirus Infections/epidemiology; Henipavirus Infections/veterinary; Henipavirus Infections/virology
  19. Lo Presti A, Cella E, Giovanetti M, Lai A, Angeletti S, Zehender G, et al.
    J Med Virol, 2016 Mar;88(3):380-8.
    PMID: 26252523 DOI: 10.1002/jmv.24345
    Nipah virus, member of the Paramyxoviridae family, is classified as a Biosafety Level-4 agent and category C priority pathogen. Nipah virus disease is endemic in south Asia and outbreaks have been reported in Malaysia, Singapore, India, and Bangladesh. Bats of the genus Pteropus appear to be the natural reservoir of this virus. The aim of this study was to investigate the genetic diversity of Nipah virus, to estimate the date of origin and the spread of the infection. The mean value of Nipah virus N gene evolutionary rate, was 6.5 × 10(-4) substitution/site/year (95% HPD: 2.3 × 10(-4)-1.18 × 10(-3)). The time-scaled phylogenetic analysis showed that the root of the tree originated in 1947 (95% HPD: 1888-1988) as the virus entered in south eastern Asiatic regions. The segregation of sequences in two main clades (I and II) indicating that Nipah virus had two different introductions: one in 1995 (95% HPD: 1985-2002) which correspond to clade I, and the other in 1985 (95% HPD: 1971-1996) which correspond to clade II. The phylogeographic reconstruction indicated that the epidemic followed two different routes spreading to the other locations. The trade of infected pigs may have played a role in the spread of the virus. Bats of the Pteropus genus, that are able to travel to long distances, may have contributed to the spread of the infection. Negatively selected sites, statistically supported, could reflect the stability of the viral N protein.
    Matched MeSH terms: Henipavirus Infections/epidemiology; Henipavirus Infections/transmission*; Henipavirus Infections/virology*
  20. Atherstone C, Diederich S, Weingartl HM, Fischer K, Balkema-Buschmann A, Grace D, et al.
    Transbound Emerg Dis, 2019 Mar;66(2):921-928.
    PMID: 30576076 DOI: 10.1111/tbed.13105
    Hendra virus (HeV) and Nipah virus (NiV), belonging to the genus Henipavirus, are among the most pathogenic of viruses in humans. Old World fruit bats (family Pteropodidae) are the natural reservoir hosts. Molecular and serological studies found evidence of henipavirus infection in fruit bats from several African countries. However, little is known about the potential for spillover into domestic animals in East Africa, particularly pigs, which served as amplifying hosts during the first outbreak of NiV in Malaysia and Singapore. We collected sera from 661 pigs presented for slaughter in Uganda between December 2015 and October 2016. Using HeV G and NiV G indirect ELISAs, 14 pigs (2%) were seroreactive in at least one ELISA. Seroprevalence increased to 5.4% in October 2016, when pigs were 9.5 times more likely to be seroreactive than pigs sampled in December 2015 (p = 0.04). Eight of the 14 ELISA-positive samples reacted with HeV N antigen in Western blot. None of the sera neutralized HeV or NiV in plaque reduction neutralization tests. Although we did not detect neutralizing antibodies, our results suggest that pigs in Uganda are exposed to henipaviruses or henipa-like viruses. Pigs in this study were sourced from many farms throughout Uganda, suggesting multiple (albeit rare) introductions of henipaviruses into the pig population. We postulate that given the widespread distribution of Old World fruit bats in Africa, spillover of henipaviruses from fruit bats to pigs in Uganda could result in exposure of pigs at multiple locations. A higher risk of a spillover event at the end of the dry season might be explained by higher densities of bats and contact with pigs at this time of the year, exacerbated by nutritional stress in bat populations and their reproductive cycle. Future studies should prioritize determining the risk of spillover of henipaviruses from pigs to people, so that potential risks can be mitigated.
    Matched MeSH terms: Henipavirus Infections/epidemiology; Henipavirus Infections/veterinary*; Henipavirus Infections/virology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links