Displaying publications 21 - 40 of 1193 in total

Abstract:
Sort:
  1. Abu Bakar NB, Makahleh A, Saad B
    Anal Chim Acta, 2012 Sep 12;742:59-66.
    PMID: 22884208 DOI: 10.1016/j.aca.2012.02.045
    An in-vial liquid-liquid microextraction method was developed for the selective extraction of the phenolic acids (caffeic, gallic, cinnamic, ferulic, chlorogenic, syringic, vanillic, benzoic, p-hydroxybenzoic, 2,4-dihydroxybenzoic, o-coumaric, m-coumaric and p-coumaric) in vegetable oil samples. The optimised extraction conditions for 20 g sample were: volume of diluent (n-hexane), 2 mL; extractant, methanol: 5 mM sodium hydroxide (60:40; v/v); volume of extractant, 300 μL (twice); vortex, 1 min; centrifugation, 5 min. Recoveries for the studied phenolic acids were 80.1-119.5%. The simultaneous determination of the phenolic acid extracts was investigated by capillary electrophoresis (CE). Separations were carried out on a bare fused-silica capillary (50 μm i.d.× 40 cm length) involving 25 mM sodium tetraborate (pH 9.15) and 5% methanol as CE background electrolyte in the normal polarity mode, voltage of 30 kV, temperature of 25°C, injection time of 4s (50 mbar) and electropherograms were recorded at 200 nm. The phenolic acids were successfully separated in less than 10 min. The validated in-vial LLME-CE method was applied to the determination of phenolic acids in vegetable oil samples (extra virgin olive oil, virgin olive oil, pure olive oil, walnut oil and grapeseed oil). The developed method shows significant advantages over the current methods as lengthy evaporation step is not required.
    Matched MeSH terms: Hydrogen-Ion Concentration
  2. Saad B, Wai WT, Lim BP, Saleh MI
    Anal Chim Acta, 2007 May 22;591(2):248-54.
    PMID: 17481416
    A flow injection analysis (FIA) procedure for the determination of anisidine value (AV) in palm olein using a triiodide detector is described. Undiluted oil sample and chloramine-T reagent were added to a reaction chamber, and reaction was accelerated by applying a short vortex action (typically for 30 s). After allowing the emulsified oil phase to be separated from the aqueous phase (bottom layer), an aliquot of the aqueous phase (containing unreacted chloramine-T) was aspirated into a carrier stream that contained I(-) where the chloramine-T oxidized the I- to form I3(-) which was finally detected by a flow-through triiodide potentiometric detector. Variables that affect the FIA signals such as size of the reaction chamber, oil and reagent flow rates, chloramine-T concentration, vortex time, time for phase separation, carrier stream pH and injected volume were studied. The optimized FIA procedure is linear over 1.0-23.0 AV. The method exhibits good repeatabililty (R.S.D. of +/-3.16% (n = 4) for the determination of 5.0 AV) and a sampling rate of 40 samples per hour was achieved. Good correlation (r2 = 0.996 (n = 4)) between the proposed method and the manual American Oil Chemists' Society procedure was found when applied to the determination of twenty different types of palm olein samples.
    Matched MeSH terms: Hydrogen-Ion Concentration
  3. Ghadimi H, Tehrani RM, Ali AS, Mohamed N, Ab Ghani S
    Anal Chim Acta, 2013 Feb 26;765:70-6.
    PMID: 23410628 DOI: 10.1016/j.aca.2012.12.039
    A novel glassy carbon electrode (GCE) modified with a composite film of poly (4-vinylpyridine) (P4VP) and multiwalled carbon nanotubes (P4VP/MWCNT GCE) was used for the voltammetric determination of paracetamol (PCT). This novel electrode displayed a combined effect of P4VP and MWCNT on the electro-oxidation of PCT in a solution of phosphate buffer at pH 7. Hence, conducting properties of P4VP along with the remarkable physical properties of MWCNTs might have combined effects in enhancing the kinetics of PCT oxidation. The P4VP/MWCNT GCE has also demonstrated excellent electrochemical activity toward PCT oxidation compared to that with bare GCE and MWCNT GCE. The anodic peak currents of PCT on the P4VP/MWCNT GCE were about 300 fold higher than that of the non-modified electrodes. By applying differential pulse voltammetry technique under optimized experimental conditions, a good linear ratio of oxidation peak currents and concentrations of PCT over the range of 0.02-450 μM with a limit of detection of 1.69 nM were achieved. This novel electrode was stable for more than 60 days and reproducible responses were obtained at 99% of the initial current of PCT without any influence of physiologically common interferences such as ascorbic acid and uric acid. The application of this electrode to determine PCT in tablets and urine samples was proposed.
    Matched MeSH terms: Hydrogen-Ion Concentration
  4. Azmi NE, Ahmad M, Abdullah J, Sidek H, Heng LY, Karuppiah N
    Anal Biochem, 2009 May 1;388(1):28-32.
    PMID: 19454217 DOI: 10.1016/j.ab.2009.02.005
    An optical biosensor based on glutamate dehydrogenase (GLDH) immobilized in a chitosan film for the determination of ammonium in water samples is described. The biosensor film was deposited on a glass slide via a spin-coating method. The ammonium was measured based on beta-nicotinamide adenine dinucleotide (NADH) oxidation in the presence of alpha-ketoglutaric acid at a wavelength of 340 nm. The biosensor showed optimum activity at pH 8. The optimum chitosan concentrations and enzyme loading were found to be at 2% (w/v) and 0.08 mg, respectively. Optimum concentrations of NADH and alpha-ketoglutaric acid both were obtained at 0.15 mM. A linear response of the biosensor was obtained in the ammonium concentration range of 0.005 to 0.5 mM with a detection limit of 0.005 mM. The reproducibility of the biosensor was good, with an observed relative standard deviation of 5.9% (n=8). The biosensor was found to be stable for at least 1 month when stored dry at 4 degrees C.
    Matched MeSH terms: Hydrogen-Ion Concentration
  5. Rahman RN, Baharum SN, Basri M, Salleh AB
    Anal Biochem, 2005 Jun 15;341(2):267-74.
    PMID: 15907872
    An organic solvent-tolerant S5 lipase was purified by affinity chromatography and anion exchange chromatography. The molecular mass of the lipase was estimated to be 60 kDa with 387 purification fold. The optimal temperature and pH were 45 degrees C and 9.0, respectively. The purified lipase was stable at 45 degrees C and pH 6-9. It exhibited the highest stability in the presence of various organic solvents such as n-dodecane, 1-pentanol, and toluene. Ca2+ and Mg2+ stimulated lipase activity, whereas EDTA had no effect on its activity. The S5 lipase exhibited the highest activity in the presence of palm oil as a natural oil and triolein as a synthetic triglyceride. It showed random positional specificity on the thin-layer chromatography.
    Matched MeSH terms: Hydrogen-Ion Concentration
  6. Tan NH, Tan CS
    Anal Biochem, 1988 May 1;170(2):282-8.
    PMID: 3394929
    A convenient acidimetric assay for phospholipase A using egg yolk suspension as substrate has been developed. The substrate mixture consists of 1 part egg yolk, 1 part 8.1 mM sodium deoxycholate, and 1 part 18 mM calcium chloride. Phospholipase A activity is measured by following the initial rate of pH change, which is linear between pH 8.0 and 7.75 and is proportional to enzyme concentration over a wide range. The assay is highly reproducible, with a coefficient of variation of 3%, and as sensitive as most established assays for phospholipase A. The assay uses inexpensive and easily available substrate and is simple to perform. It is particularly useful for monitoring phospholipase A activity in chromatography fractions.
    Matched MeSH terms: Hydrogen-Ion Concentration
  7. Akinsola RO, Lee CW, Sim EUH, Narayanan K
    Anal Biochem, 2021 03 01;616:114088.
    PMID: 33358938 DOI: 10.1016/j.ab.2020.114088
    Endosomal escape is considered a crucial barrier that needs to be overcome by integrin-mediated E. coli for gene delivery into mammalian cells. Bafilomycin, a potent inhibitor of the H+ proton pump commonly employed to lower endosomal pH, was evaluated as part of the E. coli protocol during delivery. We found an increase in green fluorescent protein expression up 6.9, 3.2, 5.0, 2.8, and 4.5 fold in HeLa, HEK-293, A549, HT1080, and MCF-7 respectively, compared to untreated cells. Our result showed for the first time that Inhibition of lysosomal V-ATPase enhances E. coli efficiency.
    Matched MeSH terms: Hydrogen-Ion Concentration
  8. Akhter S, Basirun WJ, Alias Y, Johan MR, Bagheri S, Shalauddin M, et al.
    Anal Biochem, 2018 06 15;551:29-36.
    PMID: 29753720 DOI: 10.1016/j.ab.2018.05.004
    In the present study, a nanocomposite of f-MWCNTs-chitosan-Co was prepared by the immobilization of Co(II) on f-MWCNTs-chitosan by a self-assembly method and used for the quantitative determination of paracetamol (PR). The composite was characterized by field emission scanning electron microscopy (FESEM) and energy dispersive x-ray analysis (EDX). The electroactivity of cobalt immobilized on f-MWCNTs-chitosan was assessed during the electro-oxidation of paracetamol. The prepared GCE modified f-MWCNTs/CTS-Co showed strong electrocatalytic activity towards the oxidation of PR. The electrochemical performances were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). Under favorable experimental conditions, differential pulse voltammetry showed a linear dynamic range between 0.1 and 400 μmol L-1 with a detection limit of 0.01 μmol L-1 for the PR solution. The fabricated sensor exhibited significant selectivity towards PR detection. The fabricated sensor was successfully applied for the determination of PR in commercial tablets and human serum sample.
    Matched MeSH terms: Hydrogen-Ion Concentration
  9. Beh SY, Md Saleh N, Asman S
    Anal Methods, 2021 02 07;13(5):607-619.
    PMID: 33480366 DOI: 10.1039/d0ay02166k
    The usage of phenols in the marketplace has been increasing tremendously, which has raised concerns about their toxicity and potential effect as emerging pollutants. Phenol's structure has closely bonded phenyl and hydroxy groups, thereby making its functional characteristics closely similar to that of alcohol. As a result, phenol is used as a base compound for commercial home-based products. Hence, a simple and efficient procedure is required to determine the low concentration of phenols in environmental water samples. In this research, a method of combining magnetic nanoparticles (MNPs) with surfactant Sylgard 309 was developed to overcome the drawbacks in the classical extraction methods. In addition, this developed method improved the performance of extraction when MNPs and the surfactant Sylgard 309 were used separately, as reported in the previous research. This MNP-Sylgard 309 was synthesised by the coprecipitation method and attracts phenolic compounds in environmental water samples. Response surface methodology was used to study the parameters and responses in order to obtain an optimised condition using MNP-Sylgard 309. The parameters included the effect of pH, extraction time, and concentration of the analyte. Meanwhile, the responses measured were the peak area of the chromatogram and the percentage recovery. From this study, the results of the optimum conditions for extraction using MNP-Sylgard 309 were pH 7, extraction time of 20 min, and analyte concentration of 10.0 μg mL-1. Under the optimized conditions, MNP-Sylgard 309 showed a low limit of detection of 0.665 μg mL-1 and the limit of quantification was about 2.219 μg mL-1. MNP-Sylgard 309 was successfully applied on environmental water samples such as lake and river water. High recovery (76.23%-110.23%) was obtained.
    Matched MeSH terms: Hydrogen-Ion Concentration
  10. Hanifah SA, Heng LY, Ahmad M
    Anal Sci, 2009 Jun;25(6):779-84.
    PMID: 19531887
    Electrochemical biosensors for phenolic compound determination were developed by immobilization of tyrosinase enzyme in a series of methacrylic-acrylic based biosensor membranes deposited directly using a photocuring method. By modifying the hydrophilicity of the membranes using different proportions of 2-hydroxyethyl methacrylate (HEMA) and butyl acrylate (nBA), we developed biosensor membranes of different hydrophilic characters. The differences in hydrophilicity of these membranes led to changes in the sensitivity of the biosensors towards different phenolic compounds. In general biosensors constructed from the methacrylic-acrylic based membranes showed the poorest response to catechol relative to other phenolic compounds, which is in contrast to many other biosensors based on tyrosinase. The decrease in hydrophilicity of the membrane also allowed better selectivity towards chlorophenols. However, phenol biosensors constructed from the more hydrophilic membrane materials demonstrated better analytical performance towards phenol compared with those made from less hydrophilic ones. For the detection of phenols, these biosensors with different membranes gave detection limits of 0.13-0.25 microM and linear response range from 6.2-54.2 microM phenol. The phenol biosensors also showed good phenol recovery from landfill leachate samples (82-117%).
    Matched MeSH terms: Hydrogen-Ion Concentration
  11. Saad B, Wai WT, Ali AS, Saleh MI
    Anal Sci, 2006 Jan;22(1):45-50.
    PMID: 16429771
    A flow injection analysis (FIA) method for the determination of four residual chlorine species, namely combined available chlorine (CAC), free available chlorine (FAC), total available chlorine (TAC) and chlorite (ClO2-) was developed using a flow-through triiodide-selective electrode as a detector. An important strategy of speciation studies utilized the kinetic discrimination of reactions between the CAC and FAC with Fe2+, which was applied to the speciation of FAC, CAC and TAC. The speciation of available chlorine species and chlorite (an oxychlorine species) was achieved by using the same set-up, but using flow streams of different pH. The effects of the pH of the carrier stream, the flow rate and the sample volume were studied. The method exhibited linearity from 2.8 x 10(-6) to 2.8 x 10(-4) M active chlorine (expressed as OCl-) with a detection limit of 1.4 x 10(-6) M. The selectivity of the method was studied by examining the minimum pH for the oxidation of iodide by other oxidants, and also by assessing the potentiometric selectivity coefficients. The proposed method was successfully applied to the determination of chlorine species in tap water, and disinfecting formulations where good agreement occurred between the proposed and standard methods were found.
    Matched MeSH terms: Hydrogen-Ion Concentration
  12. Tarmizi R, Keng Chee Y, Sipangkui S, Zainuddin ZZ, Fitri WN
    Animals (Basel), 2020 Oct 23;10(11).
    PMID: 33113883 DOI: 10.3390/ani10111948
    This article describes the semen characteristics from different collection methods between captive and confiscated Malayan pangolins, Manis javanica. Semen was collected from 15 pangolins; two captive and 13 confiscated individuals at the mean weight of 9.36 ± 1.94 kg. The three semen collection methods employed were electroejaculation, rectal massage and a combination of both techniques. The semen characteristics (mean ± standard deviation) of the Malayan pangolin are volume (73.75 ± 144.57 µL), pH (7.63 ± 0.53), spermatozoa concentration (997.19 ± 728.98 × 106 /mL), total motility (59.60% ± 30.00%), progressive motility (48.95% ± 30.93%), mass motility (3.50 ± 1.50) and live spermatozoa (80.25% ± 13.45%). There was no significant difference in semen characteristics between the three collection methods. The percentages of live spermatozoa were significantly different, suggesting better samples from captive compared to confiscated animals. However, there was no significant difference in spermatozoa kinetics between the captive and confiscated samples, suggesting the potential of utilizing confiscated individuals for gamete recovery to conserve the genetic pool of pangolins. All three methods of semen collection were successfully performed in pangolins and should be considered; however, electroejaculation remains the most consistent method of obtaining semen from the species.
    Matched MeSH terms: Hydrogen-Ion Concentration
  13. Hairuddin, N.M., Abdul Jalil, R.
    Ann Dent, 2000;7(1):-.
    MyJurnal
    The objective of this study was to determine the effect chewing of two differently sized commercially available meswak might have on flow rate and pH of whole saliva. Twenty subjects participated in this study. They were distributed into two groups (A and B). Subjects in both groups A and B were asked to first chew on either a sized #1 or #2 cotton roll followed by the chewing of an equivalent sized piece of meswak (approximately 5 mm. and 10 mm. diameter) respectively. For subjects in group A, no differences in mean flow rate was seen after both the chewing regimes. In group B however, the increase in mean flow rate after the chewing of meswak compared to cotton roll was statistically significant at p < 0.05. Statistically significant lower values for pH were registered after the chewing of meswak compared to cotton roll in both groups A and B at p
    Matched MeSH terms: Hydrogen-Ion Concentration
  14. Sheshala R, Ying LT, Hui LS, Barua A, Dua K
    PMID: 23746224
    In order to achieve better treatment for local wounds and bacterial infections, topical formulations containing Cocos nucifera Linn. were developed. These formulations were evaluated for their physicochemical properties and antimicrobial efficacy against various strains of microorganisms. Semisolid formulations containing 5% w/w of Cocos nucifera Linn. were prepared by employing different dermatological bases and were evaluated for their physical appearance, pH, rheological properties, FTIR-spectroscopic analysis, thermodynamic stability and stability studies. The antimicrobial activity of each prepared formulation was determined using disk-diffusion method against various strains of microorganisms. All the prepared formulations were found to be stable and exhibited suitable physicochemical characteristics including pH, viscosity and spreadability which are necessary for an ideal topical preparation, in addition to strong antimicrobial activity. Carbopol gel base was found to be the most suitable dermatological base for Cocos nucifera Linn. in comparsion to other bases. Cocos nucifera Linn. formulations showed great potential for wounds and local bacterial infections. Moreover, carbopol gel base with its aesthetic appeal was found to be a suitable dermatological base for Cocos nucifera Linn. semisolid formulation as it had demonstrated significant physicochemical properties and greater diffusion when assessed using disk- diffusion method.
    Matched MeSH terms: Hydrogen-Ion Concentration
  15. Parapini S, Olliaro P, Navaratnam V, Taramelli D, Basilico N
    Antimicrob Agents Chemother, 2015 Jul;59(7):4046-52.
    PMID: 25918150 DOI: 10.1128/AAC.00183-15
    Artemisinins are peroxidic antimalarial drugs known to be very potent but highly chemically unstable; they degrade in the presence of ferrous iron, Fe(II)-heme, or biological reductants. Less documented is how this translates into chemical stability and antimalarial activity across a range of conditions applying to in vitro testing and clinical situations. Dihydroartemisinin (DHA) is studied here because it is an antimalarial drug on its own and the main metabolite of other artemisinins. The behaviors of DHA in phosphate-buffered saline, plasma, or erythrocyte lysate at different temperatures and pH ranges were examined. The antimalarial activity of the residual drug was evaluated using the chemosensitivity assay on Plasmodium falciparum, and the extent of decomposition of DHA was established through use of high-performance liquid chromatography with electrochemical detection analysis. The role of the Fe(II)-heme was investigated by blocking its reactivity using carbon monoxide (CO). A significant reduction in the antimalarial activity of DHA was seen after incubation in plasma and to a lesser extent in erythrocyte lysate. Activity was reduced by half after 3 h and almost completely abolished after 24 h. Serum-enriched media also affected DHA activity. Effects were temperature and pH dependent and paralleled the increased rate of decomposition of DHA from pH 7 upwards and in plasma. These results suggest that particular care should be taken in conducting and interpreting in vitro studies, prone as their results are to experimental and drug storage conditions. Disorders such as fever, hemolysis, or acidosis associated with malaria severity may contribute to artemisinin instability and reduce their clinical efficacy.
    Matched MeSH terms: Hydrogen-Ion Concentration
  16. Liang Z, Shi J, Wang C, Li J, Liang D, Yong EL, et al.
    Appl Environ Microbiol, 2020 11 10;86(23).
    PMID: 32948522 DOI: 10.1128/AEM.01920-20
    Pretreatment of waste-activated sludge (WAS) is an effective way to destabilize sludge floc structure and release organic matter for improving sludge digestion efficiency. Nonetheless, information on the impact of WAS pretreatment on digestion sludge microbiomes, as well as mechanistic insights into how sludge pretreatment improves digestion performance, remains elusive. In this study, a genome-centric metagenomic approach was employed to investigate the digestion sludge microbiome in four sludge digesters with different types of feeding sludge: WAS pretreated with 0.25 mol/liter alkaline/acid (APAD), WAS pretreated with 0.8 mol/liter alkaline/acid (HS-APAD), thermally pretreated WAS (thermal-AD), and fresh WAS (control-AD). We retrieved 254 metagenome-assembled genomes (MAGs) to identify the key functional populations involved in the methanogenic digestion process. These MAGs span 28 phyla, including 69 yet-to-be-cultivated lineages, and 30 novel lineages were characterized with metabolic potential associated with hydrolysis and fermentation. Interestingly, functional populations involving carbohydrate digestion were enriched in APAD and HS-APAD, while lineages related to protein and lipid fermentation were enriched in thermal-AD, corroborating the idea that different substrates are released from alkaline/acid and thermal pretreatments. Among the major functional populations (i.e., fermenters, syntrophic acetogens, and methanogens), significant correlations between genome sizes and abundance of the fermenters were observed, particularly in APAD and HS-APAD, which had improved digestion performance.IMPORTANCE Wastewater treatment generates large amounts of waste-activated sludge (WAS), which consists mainly of recalcitrant microbial cells and particulate organic matter. Though WAS pretreatment is an effective way to release sludge organic matter for subsequent digestion, detailed information on the impact of the sludge pretreatment on the digestion sludge microbiome remains scarce. Our study provides unprecedented genome-centric metagenomic insights into how WAS pretreatments change the digestion sludge microbiomes, as well as their metabolic networks. Moreover, digestion sludge microbiomes could be a unique source for exploring microbial dark matter. These results may inform future optimization of methanogenic sludge digestion and resource recovery.
    Matched MeSH terms: Hydrogen-Ion Concentration
  17. Yeo SK, Ong JS, Liong MT
    Appl Biochem Biotechnol, 2014 Oct;174(4):1496-1509.
    PMID: 25119552 DOI: 10.1007/s12010-014-1141-6
    This study aimed to evaluate the effects of electroporation on growth, bioconversion of isoflavones, and probiotic properties of parent organisms and subsequent passages of Bifidobacterium longum FTDC 8643. Electroporation with the strength of electric field at 7.5 kV cm(-1) for 3.5 ms was applied on B. longum FTDC 8643. The viability of B. longum FTDC 8643 increased significantly upon treatment with electroporation. Such treatment also enhanced the intracellular and extracellular β-glucosidase activity, leading to enhanced production of bioactive isoflavone aglycones in mannitol-soymilk (P 
    Matched MeSH terms: Hydrogen-Ion Concentration
  18. Rafiqul IS, Sakinah AM
    Appl Biochem Biotechnol, 2015 Jan;175(1):387-99.
    PMID: 25300602 DOI: 10.1007/s12010-014-1269-4
    Xylose reductase (XR) is an intracellular enzyme, which catalyzes xylose to xylitol conversion in the microbes. It has potential biotechnological applications in the manufacture of various commercially important specialty bioproducts including xylitol. This study aimed to prepare XR from adapted strain of Candida tropicalis and to characterize it. The XR was isolated from adapted C. tropicalis, cultivated on Meranti wood sawdust hemicellulosic hydrolysate (MWSHH)-based medium, via ultrasonication, and was characterized based on enzyme activity, stability, and kinetic parameters. It was specific to NADPH with an activity of 11.16 U/mL. The enzyme was stable at pH 5-7 and temperature of 25-40 °C for 24 h and retained above 95 % of its original activity after 4 months of storage at -80 °C. The K m of XR for xylose and NADPH were 81.78 mM and 7.29 μM while the V max for them were 178.57 and 12.5 μM/min, respectively. The high V max and low K m values of XR for xylose reflect a highly productive reaction among XR and xylose. MWSHH can be a promising xylose source for XR preparation from yeast.
    Matched MeSH terms: Hydrogen-Ion Concentration
  19. Darah I, Nur-Diyana A, Nurul-Husna S, Jain K, Lim SH
    Appl Biochem Biotechnol, 2013 Dec;171(7):1900-10.
    PMID: 24013862 DOI: 10.1007/s12010-013-0496-4
    Keratinous wastes have increasingly become a problem and accumulate in the environment mainly in the form of feathers, generated mainly from a large number of poultry industries. As keratins are very difficult to degrade by general proteases, they pose a major environmental problem. Therefore, microorganisms which would effectively degrade keratins are needed for recycling such wastes. A geophilic dermatophyte, Microsporum fulvum IBRL SD3 which was isolated from a soil sample collected from a chicken feather dumping site using a baiting technique, was capable to produce keratinase significantly. The crude keratinase was able to degrade whole chicken feathers effectively. The end product of the degradation was protein that contained essential amino acids and may have potential application in animal feed production. Thus, M. fulvum could be a novel organism to produce keratinase for chicken feathers degradation.
    Matched MeSH terms: Hydrogen-Ion Concentration
  20. Ibrahim MF, Abd-Aziz S, Razak MN, Phang LY, Hassan MA
    Appl Biochem Biotechnol, 2012 Apr;166(7):1615-25.
    PMID: 22391689 DOI: 10.1007/s12010-012-9538-6
    Acetone-butanol-ethanol (ABE) production from renewable resources has been widely reported. In this study, Clostridium butyricum EB6 was employed for ABE fermentation using fermentable sugar derived from treated oil palm empty fruit bunch (OPEFB). A higher amount of ABE (2.61 g/l) was produced in a fermentation using treated OPEFB as the substrate when compared to a glucose based medium that produced 0.24 g/l at pH 5.5. ABE production was increased to 3.47 g/l with a yield of 0.24 g/g at pH 6.0. The fermentation using limited nitrogen concentration of 3 g/l improved the ABE yield by 64%. The study showed that OPEFB has the potential to be applied for renewable ABE production by C. butyricum EB6.
    Matched MeSH terms: Hydrogen-Ion Concentration
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links