Displaying publications 21 - 40 of 67 in total

Abstract:
Sort:
  1. Masir N, Campbell LJ, Jones M, Mason DY
    Pathology, 2010 Apr;42(3):212-6.
    PMID: 20350212 DOI: 10.3109/00313021003631296
    The t(14;18)(q32;q21) chromosomal translocation induces BCL2 protein expression in most follicular lymphomas. However, a small number of cases lack BCL2 expression despite carrying the t(14;18)(q32;q21) translocation. This study aims to explore the mechanism accounting for the lack of BCL2 protein expression when the t(14;18) translocation is present.
    Matched MeSH terms: In Situ Hybridization, Fluorescence
  2. Tai YC, Kim LH, Peh SC
    Pathology, 2003 Oct;35(5):436-43.
    PMID: 14555389
    AIMS: The most common recurrent genetic aberration in anaplastic large cell lymphoma (ALCL) is translocation involving the ALK gene that results in ectopic expression of ALK protein in lymphoid tissue. This study aims to investigate the frequency of ALK gene rearrangement in a series of Asian ALCL.

    METHODS: ALK gene rearrangement was detected by immunostaining of ALK protein and fluorescence in situ hybridisation (FISH) targeting at the 2p23 region.

    RESULTS: The expression of ALK protein was detected in 24/34 (71%) of the cases, and it was significantly higher in childhood cases (100%) when compared to adult cases (47%). The analyses by FISH were consistent with the results from immunostaining of ALK protein, but the analyses were only successful in 15/34 (44%) cases. FISH analyses detected extra copies of ALK gene in three cases, including one case that expressed ALK protein and showed 2p23 rearrangement.

    CONCLUSIONS: The current series revealed a high frequency of ALK gene rearrangement, especially in the children. Immunostaining of ALK protein is a reliable indication of ALK gene rearrangement, and is superior to FISH. However, FISH analysis is useful in detecting other genetic aberrations that are not related to ALK gene rearrangement.

    Matched MeSH terms: In Situ Hybridization, Fluorescence*
  3. Shaminie J, Peh SC, Tan MJ
    Pathology, 2003 Oct;35(5):414-21.
    PMID: 14555386
    AIMS: PCR has been the primary method used for the detection of t(14;18) translocation in formalin-fixed, paraffin-embedded tissues. This technique mainly targets the well-characterised breakpoint regions in chromosomes 14 and 18. FISH is now applicable on paraffin tissue sections and has been suggested to be capable of detecting essentially 100% of t(14;18) translocated cases. In this study, we described the application of both PCR and FISH for the detection of t(14;18) translocation.

    METHODS: Fifty follicular lymphoma cases were retrieved from the files of the Department of Pathology, University of Malaya Medical Centre (UMMC). Nested PCR amplification of MBR/JH and mcr/JH was performed in these cases, and those cases that did not demonstrate the translocation were subjected to FISH analysis.

    RESULTS: Thirty cases (60%) had t(14;18) translocation detected by PCR, 25 (50%) had breakpoint with MBR and five (10%) involved mcr. Twenty cases without detectable t(14;18) translocation by PCR were analysed by FISH. Eleven cases were successfully probed, and four of them showed positive translocation signal.

    CONCLUSIONS: The combination of PCR and FISH analysis on paraffin tissue sections for the detection of t(14;18) translocation increases the sensitivity of detection from 60 to 68%. Problems encountered in our FISH analysis on tissue sections impose certain limitations in using this technique for retrospective screening of large number of samples. Therefore, we suggested the application of PCR as the first screening tool on retrospective archival materials, followed by FISH on those PCR-negative cases.

    Matched MeSH terms: In Situ Hybridization, Fluorescence/methods*
  4. Lee ES, Kim LH, Abdullah WA, Peh SC
    Pathobiology, 2010;77(2):96-105.
    PMID: 20332669 DOI: 10.1159/000278291
    This study aimed to examine (1) the expression of P16 protein relative to sites of presentation, immunophenotypic subgroups and proliferative indices of tumour cells, and (2) the relationship between p16 gene alterations and P16 protein overexpression in 70 cases of diffuse large B cell lymphoma (DLBCL).
    Matched MeSH terms: In Situ Hybridization, Fluorescence
  5. Zakaria Z, Zulkifle MF, Wan Hasan WAN, Azhari AK, Abdul Raub SH, Eswaran J, et al.
    Onco Targets Ther, 2019;12:7749-7756.
    PMID: 31571924 DOI: 10.2147/OTT.S214611
    Background: Epidermal growth factor receptor (EGFR) is a member of the ErbB family of tyrosine kinase receptor proteins that plays important roles in tumour cell survival and proliferation. EGFR has been reported to be overexpressed in up to 78% of triple-negative breast cancer (TNBC) cases suggesting it as a potential therapeutic target. The clinical trials of anti-EGFR agents in breast cancer showed low response rates. However, a subgroup of patients demonstrated response to EGFR inhibitors highlighting the necessity to stratify patients, who might benefit from effective combination therapy that could include anti EGFR-agents. Population variability in EGFR expression warrants systematic evaluation in specific populations.

    Purpose: To study EGFR alterations and expressions in a multi ethnic Malaysian TNBC patient cohort to determine the possibility of using anti-EGFR combinatorial therapy for this population.

    Patients and methods: In this study, we evaluated 58 cases of Malaysian TNBC patient samples for EGFR gene copy number alteration and EGFR protein overexpression using fluorescence in-situ hybridization (FISH) and immunohistochemistry (IHC) methods, respectively.

    Results: EGFR protein overexpression was observed in about 30% while 15.5% displayed high EGFR copy number including 5.17% gene amplification and over 10% high polysomy. There is a positive correlation between EGFR protein overexpression and gene copy number and over expression of EGFR is observed in ten out of the 48 low copy number cases (20.9%) without gene amplification.

    Conclusion: This study provides the first glimpse of EGFR alterations and expressions in a multi ethnic Malaysian TNBC patient cohort emphasising the need for the nationwide large scale EGFR expression evaluation in Malaysia.

    Matched MeSH terms: In Situ Hybridization, Fluorescence
  6. Chin SF, Hamid NA, Latiff AA, Zakaria Z, Mazlan M, Yusof YA, et al.
    Nutrition, 2008 Jan;24(1):1-10.
    PMID: 17884341
    The free radical theory of aging (FRTA) suggests that free radicals are the leading cause of deteriorating physiologic function during senescence. Free radicals attack cellular structures or molecules such as DNA resulting in various modifications to the DNA structures. Accumulation of unrepaired DNA contributes to a variety of disorders associated with the aging process.
    Matched MeSH terms: In Situ Hybridization, Fluorescence
  7. Liu S, Punthambaker S, Iyer EPR, Ferrante T, Goodwin D, Fürth D, et al.
    Nucleic Acids Res, 2021 06 04;49(10):e58.
    PMID: 33693773 DOI: 10.1093/nar/gkab120
    We present barcoded oligonucleotides ligated on RNA amplified for multiplexed and parallel insitu analyses (BOLORAMIS), a reverse transcription-free method for spatially-resolved, targeted, in situ RNA identification of single or multiple targets. BOLORAMIS was demonstrated on a range of cell types and human cerebral organoids. Singleplex experiments to detect coding and non-coding RNAs in human iPSCs showed a stem-cell signature pattern. Specificity of BOLORAMIS was found to be 92% as illustrated by a clear distinction between human and mouse housekeeping genes in a co-culture system, as well as by recapitulation of subcellular localization of lncRNA MALAT1. Sensitivity of BOLORAMIS was quantified by comparing with single molecule FISH experiments and found to be 11%, 12% and 35% for GAPDH, TFRC and POLR2A, respectively. To demonstrate BOLORAMIS for multiplexed gene analysis, we targeted 96 mRNAs within a co-culture of iNGN neurons and HMC3 human microglial cells. We used fluorescence in situ sequencing to detect error-robust 8-base barcodes associated with each of these genes. We then used this data to uncover the spatial relationship among cells and transcripts by performing single-cell clustering and gene-gene proximity analyses. We anticipate the BOLORAMIS technology for in situ RNA detection to find applications in basic and translational research.
    Matched MeSH terms: In Situ Hybridization, Fluorescence/methods*
  8. Mizutani Y, Iehata S, Mori T, Oh R, Fukuzaki S, Tanaka R
    Microbiologyopen, 2019 10;8(10):e890.
    PMID: 31168933 DOI: 10.1002/mbo3.890
    Arcobacter have been frequently detected in and isolated from bivalves, but there is very little information on the genus Arcobacter in the abalone, an important fishery resource. This study aimed to investigate the genetic diversity and abundance of bacteria from the genus Arcobacter in the Japanese giant abalone, Haliotis gigantea, using molecular methods such as Arcobacter-specific clone libraries and fluorescence in situ hybridization (FISH). Furthermore, we attempted to isolate the Arcobacter species detected. Twelve genotypes of clones were obtained from Arcobacter-specific clone libraries. These sequences are not classified with any other known Arcobacter species including pathogenic Arcobacter spp., A. butzleri, A. skirrowii, and A. cryaerophilus, commonly isolated or detected from bivalves. From the FISH analysis, we observed that ARC94F-positive cells, presumed to be Arcobacter, accounted for 6.96 ± 0.72% of all EUB338-positive cells. In the culture method, three genotypes of Arcobacter were isolated from abalones. One genotype had a similarity of 99.2%-100.0% to the 16S rRNA gene of Arcobacter marinus, while the others showed only 93.3%-94.3% similarity to other Arcobacter species. These data indicate that abalones carry Arcobacter as a common bacterial genus which includes uncultured species.
    Matched MeSH terms: In Situ Hybridization, Fluorescence
  9. Isiaku AI, Sabri MY, Ina-Salwany MY, Hassan MD, Tanko PN, Bello MB
    Microb Pathog, 2017 Jan;102:59-68.
    PMID: 27890651 DOI: 10.1016/j.micpath.2016.10.029
    Biofilms are aggregates of attached microbial organisms whose existence on tissues is often recognised as a mechanism for the establishment of most chronic diseases. Herein we investigated the ability of piscine Streptococcus agalactiae, an important aquatic pathogen, for adaptation to this sessile lifestyle in vitro and in the brain of a tilapia fish model. Piscine S. agalactiae exhibited a weak attachment to polystyrene plates and expressed a low biofilm phenotype under the study conditions. Furthermore, fluorescent in situ hybridization and confocal laser scanning microscopy revealed discrete aggregates of attached S. agalactiae within brain tissues and around meningeal surfaces. They were embedded in an exopolysaccharide containing matrix, intractable to inflammatory response and showed some level of resistance to penicillin despite proven susceptibility on sensitivity test. Intracellular bacterial aggregates were also observed, moreover, antibody mediated response was not demonstrated during infection. Nucleated erythrocytes appear to facilitate brain invasion possibly via the Trojan horse mechanism leading to a granulomatous inflammation. We have demonstrated that biofilm is associated with persistence of S. agalactiae and the development of chronic meningoencephalitis in fish.
    Matched MeSH terms: In Situ Hybridization, Fluorescence
  10. Sharifah NA, Zakaria Z, Chia WK
    Methods Mol Biol, 2013;952:187-96.
    PMID: 23100233 DOI: 10.1007/978-1-62703-155-4_13
    Fluorescence in situ hybridization (FISH) is increasingly gaining importance in clinical diagnostics settings. Due to the ability of the technique to detect chromosomal abnormalities in samples with low cellularity or containing a mixed population of cells even at a single-cell level, it has become more popular in cancer research and diagnosis. Here, we describe the FISH technique for detection of PAX8-PPARγ translocation in follicular thyroid neoplasms, and the optimal protocol for the detection of this fusion gene using in archival formalin-fixed paraffin-embedded (FFPE) thyroid tissue sections.
    Matched MeSH terms: In Situ Hybridization, Fluorescence/methods*
  11. Chiam CW, Sam IC, Chan YF, Wong KT, Ong KC
    Methods Mol Biol, 2016;1426:235-40.
    PMID: 27233276 DOI: 10.1007/978-1-4939-3618-2_21
    Immunohistochemistry is a histological technique that allows detection of one or more proteins of interest within a cell using specific antibody binding, followed by microscopic visualization of a chromogenic substrate catalyzed by peroxidase and/or alkaline phosphatase. Here, we describe a method to localize Chikungunya virus (CHIKV) antigens in formalin-fixed and paraffin-embedded infected mouse brain.
    Matched MeSH terms: In Situ Hybridization, Fluorescence
  12. Salwati Shuib, Sharifah Noor Akmal, Zarina Abdul Latif, Nor Zarina Zainal Abidin, Zubaidah Zakaria
    Medicine & Health, 2006;1(1):45-52.
    MyJurnal
    In this report we demonstrate the role of fluorescence in situ hybridisation (FISH) and conventional cytogenetic methods in clinically and cytogenetically confirmed cases of microdeletion syndromes. A total of nine cases were referred to the Cytopathology and Cytogenetic Unit, Hospital Universiti Kebangsaan Malaysia (HUKM) from 2002 to 2004. They include three Prader-Willi syndrome, three DiGeorge syndrome, one Williams syndrome, one Miller-Dieker syndrome and one Kallmann syndrome. Blood samples from the patients were cultured and harvested following standard procedures. Twenty metaphases were analysed for each of the cases. FISH analysis was carried out for all the cases using commercial probes (Vysis, USA): SNRPN and D15S10 for Prader-Willi syndrome, LIS1 for Miller Dieker syndrome, ELN for Williams syndrome, KAL for Kallmann syndrome, TUPLE 1 and D22S75 for DiGeorge syndrome. Conventional cytogenetic analysis revealed normal karyotypes in all but one case with structural abnormality involving chromosomes 9 and 22. FISH analysis showed microdeletions in all of the nine cases studied. This study has accomplished two important findings ie. while the FISH method is mandatory in ruling out microdeletion syndromes, conventional cytogenetics acts as a screening tool in revealing other chromosomal abnormalities that may be involved with the disease.
    Matched MeSH terms: In Situ Hybridization, Fluorescence
  13. Chia, W.K., Zubaidah, Z., Reena Rahayu Md Zin, Rohaizak, M., Asmiati, A., Rafie, M.K., et al.
    Medicine & Health, 2012;7(1):47-56.
    MyJurnal
    Aneusomy is an early genetic event and a characteristic feature of many solid tumors. It is often associated with poor prognosis in cancer patients. The involvement of PAX8-PPARγ rearrangement in tumorigenesis of follicular thyroid lesions has been widely assessed. However, there were few reports on aneusomy of the PPARγ gene at the 3p25 locus in follicular thyroid lesions. It remains undetermined whether these abnormalities can be translated into improved diagnosis, classification, or outcome prediction. Herein, we report three cases of follicular thyroid neoplasms [two follicular thyroid carcinomas (FTCs) and one Hurthle cell adenoma (HCA)] with 3p25 aneusomy detected by fluorescence in situ hybridization (FISH). 3p25 trisomy was observed in one FTC and one HCA while 3p25 tetrasomy was observed in one FTC. Furthermore, all three lesions did not show overexpression of PPARγ protein. Hurthle cell neoplasms (HCN) are distinct clinically and histologically from other follicular thyroid neoplasms (FTN). However, the presence of the aneusomy in HCA and FTC indicates that there could be a biological continuum between the two and chromosomal gains might play an important role in the pathogenesis of these two types of neoplasms. Despite their differences, HCN and FTN may share the same early genetic event in tumour development.
    Matched MeSH terms: In Situ Hybridization, Fluorescence
  14. Reena Rahayu Md Zin, Sharifah Noor Akmal, Zubaidah Zakaria, Haut, Clarence Ko Ching, Siti Mariam Yusof, Julia Mohd Idris, et al.
    Medicine & Health, 2008;3(1):22-29.
    MyJurnal
    Turner syndrome is one of the most common chromosomal abnormalities affecting newborn females. More than half of patients with Turner syndrome have a 45X karyotype The rest of the patients may have structurally abnormal sex chromosomes or are mosaics with normal or abnormal sex chromosomes. Mosaicism with a second X sex chromosome is not usually of clinical significance. However, Turner syndrome patients having a second Y chromosome or Y chromosomal material are at risk of developing gonadoblastoma later in life. The aim of this study is to compare the results of conventional (karyotyping) and molecular cytogenetics (FISH), and discuss the advantages and limitations in the diagnosis of Turner syndrome. We also aim to compare the degree of mosaicism identified using conventional cytogenetics and FISH techniques. Conventional cytogenetics and FISH analyses were performed on eight peripheral blood samples of patients with Turner syndrome collected between 2004 and 2006. From this study, two out of eight patients with Turner syndrome were found to have the sex determining region on the Y chromosome (SRY) gene by FISH analysis. Our results showed that the rate of detection of mosaic cases in Turner syndrome was also increased to 88% after using the FISH technique. We concluded that FISH is more superior to conventional cytogenetics in the detection of the Y chromosomal material. FISH is also a quick and cost effective method in diagnosing Turner syndrome and assessing the degree of mosaicism.
    Matched MeSH terms: In Situ Hybridization, Fluorescence
  15. Siti-Aishah, M.A., Salwati, S., Idrus, M., Rahimah, R., Salmi, A., Leong, C.F., et al.
    Medicine & Health, 2008;3(1):69-74.
    MyJurnal
    Anaplastic large cell lymphoma (ALCL) is a rare tumour, accounting for approximately 3% of adult non-Hodgkin lymphomas.1 Primary systemic ALCL frequently involves both lymph nodes and extranodal sites. A 44-year-old woman presented with a firm, mobile mass in the left iliac fossa region. Ultrasound findings showed a well defined inhomogenous soft tissue mass, measuring 4x4x2.6cm in the deep subcutaneous region. Histopathological examination revealed that the mass was infiltrated by large lymphoid cells with marked nuclear atypia including kidney-shaped nuclei. These neoplastic cells expressed anaplastic lymphoma kinase (ALK) (both nuclear & cytoplasmic staining), CD30 and EMA but not for T-cell (CD45RO and CD3), and B-cell (CD20 & CD79α) markers. Fluorescence in situ hybridization (FISH) analysis showed a t(2;5)(p23;q35) chromosomal translocation. Subsequently the patient developed shortness of the breath and a thoracic computed tomography (CT) scan showed a mass encasing the right upper lobe bronchus. She also had bilateral axillary lymph nodes, measuring 1 cm in diameter (biopsy was not done). The mediastinum and endobronchial region did not show any abnormalities. She received 6 cycles of CHOP chemotherapy and remained disease free 2 years after diagnosis. ALCL, rarely present as a soft tissue tumour and this disease should be included as a differential diagnosis of any soft tissue mass.
    Matched MeSH terms: In Situ Hybridization, Fluorescence
  16. Eusni, R.M.T., Leong, C.F., Salwa, S.
    MyJurnal
    We reported a young patient with myelodysplastic syndrome (MDS) with eosinophilia, in which her chromosomal analysis revealed the presence of trisomy X and a marker chromosome at chromosome 11. The technique used to detect the chromosomal abnormalities is a multicoloured –fluorescent in situ hybridization technique (M-FISH). Our observation suggested that these underlying chromosomal abnormalities were probably responsible for her development of MDS with eosinophilia.
    Myelodysplastic syndrome (MDS) is a condition whereby there is ineffective production of haematopoietic stem cells and poor quality of cells produced. The cause can either be a primary bone marrow problem, de novo or therapy related. Most MDS cases are secondary rather than primary. Many chromosomal abnormalities have been found in cases of myelodysplastic syndrome. We described a case of MDS with eosinophilia in association with presence of trisomy X and a marker chromosome in chromosome 11.
    Matched MeSH terms: In Situ Hybridization, Fluorescence
  17. Kuan JW, Pathmanathan R, Chang KM, Tan SM
    Leuk. Res., 2009 Nov;33(11):1574-7.
    PMID: 19215983 DOI: 10.1016/j.leukres.2009.01.016
    Granulocytic sarcoma (GS) can occur de novo or in association with intramedullary myeloid disorders. With the advent of sophisticated molecular detection techniques to detect diagnostic genes such as bcr-abl, PML-RARA and CBFB/MYH11 in bone marrow or peripheral blood, many cases of the so called 'primary' GS are questionable. We report a case of primary GS where the tumor mass bcr-abl translocation was demonstrated by fluorescent in situ hybridization in which there was no evidence of chronic myeloid leukemia (CML). This is an important finding as it highlights the possibility that CML may present as a sole extramedullary form, and illustrates potential treatment by tyrosine kinase inhibitor.
    Matched MeSH terms: In Situ Hybridization, Fluorescence
  18. Palasubramaniam S, Muniandy S, Navaratnam P
    J Microbiol Methods, 2008 Jan;72(1):107-9.
    PMID: 18054098
    Multi-resistant Enterobacteriaceae pose a serious threat of hospital acquired infections and their rapid identification is important for better clinical outcome. This study describes the rapid identification of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae of the sulphydryl variable-type by fluorescent in-situ hybridization. The method which rapidly identifies the target genes within 1 h could be a potentially rapid bacterial diagnostic tool.
    Matched MeSH terms: In Situ Hybridization, Fluorescence/methods*
  19. Taheri S, Teo CH, Heslop-Harrison JS, Schwarzacher T, Tan YS, Wee WY, et al.
    Int J Mol Sci, 2022 Jun 30;23(13).
    PMID: 35806276 DOI: 10.3390/ijms23137269
    Boesenbergia rotunda (Zingiberaceae), is a high-value culinary and ethno-medicinal plant of Southeast Asia. The rhizomes of this herb have a high flavanone and chalcone content. Here we report the genome analysis of B. rotunda together with a complete genome sequence as a hybrid assembly. B. rotunda has an estimated genome size of 2.4 Gb which is assembled as 27,491 contigs with an N50 size of 12.386 Mb. The highly heterozygous genome encodes 71,072 protein-coding genes and has a 72% repeat content, with class I TEs occupying ~67% of the assembled genome. Fluorescence in situ hybridization of the 18 chromosome pairs at the metaphase showed six sites of 45S rDNA and two sites of 5S rDNA. An SSR analysis identified 238,441 gSSRs and 4604 EST-SSRs with 49 SSR markers common among related species. Genome-wide methylation percentages ranged from 73% CpG, 36% CHG and 34% CHH in the leaf to 53% CpG, 18% CHG and 25% CHH in the embryogenic callus. Panduratin A biosynthetic unigenes were most highly expressed in the watery callus. B rotunda has a relatively large genome with a high heterozygosity and TE content. This assembly and data (PRJNA71294) comprise a source for further research on the functional genomics of B. rotunda, the evolution of the ginger plant family and the potential genetic selection or improvement of gingers.
    Matched MeSH terms: In Situ Hybridization, Fluorescence
  20. Wong EH, Subramaniam G, Navaratnam P, Sekaran SD
    Indian J Med Microbiol, 2007 Oct;25(4):391-4.
    PMID: 18087092
    Fluorescent in situ hybridization (FISH) was carried out using two different oligonucleotide probes specific for Pseudomonas spp. and Acinetobacter spp. These probes were tested against different organisms and were found to be highly specific. Sensitivity testing showed that the probes were able to detect as low as 10 3 CFU/mL. In addition, FISH was carried out directly on positive blood culture samples and the detection of microorganisms took less than 2 h. We believe that FISH is a rapid method that can be used as a routine laboratory diagnostic technique for the detection of Acinetobacter spp. and Pseudomonas spp. in clinical samples.
    Matched MeSH terms: In Situ Hybridization, Fluorescence/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links