Displaying publications 21 - 40 of 79 in total

Abstract:
Sort:
  1. Cauchemez S, Epperson S, Biggerstaff M, Swerdlow D, Finelli L, Ferguson NM
    PLoS Med, 2013;10(3):e1001399.
    PMID: 23472057 DOI: 10.1371/journal.pmed.1001399
    BACKGROUND: Prior to emergence in human populations, zoonoses such as SARS cause occasional infections in human populations exposed to reservoir species. The risk of widespread epidemics in humans can be assessed by monitoring the reproduction number R (average number of persons infected by a human case). However, until now, estimating R required detailed outbreak investigations of human clusters, for which resources and expertise are not always available. Additionally, existing methods do not correct for important selection and under-ascertainment biases. Here, we present simple estimation methods that overcome many of these limitations.

    METHODS AND FINDINGS: Our approach is based on a parsimonious mathematical model of disease transmission and only requires data collected through routine surveillance and standard case investigations. We apply it to assess the transmissibility of swine-origin influenza A H3N2v-M virus in the US, Nipah virus in Malaysia and Bangladesh, and also present a non-zoonotic example (cholera in the Dominican Republic). Estimation is based on two simple summary statistics, the proportion infected by the natural reservoir among detected cases (G) and among the subset of the first detected cases in each cluster (F). If detection of a case does not affect detection of other cases from the same cluster, we find that R can be estimated by 1-G; otherwise R can be estimated by 1-F when the case detection rate is low. In more general cases, bounds on R can still be derived.

    CONCLUSIONS: We have developed a simple approach with limited data requirements that enables robust assessment of the risks posed by emerging zoonoses. We illustrate this by deriving transmissibility estimates for the H3N2v-M virus, an important step in evaluating the possible pandemic threat posed by this virus. Please see later in the article for the Editors' Summary.

    Matched MeSH terms: Influenza, Human/epidemiology*
  2. Cowling BJ, Caini S, Chotpitayasunondh T, Djauzi S, Gatchalian SR, Huang QS, et al.
    Vaccine, 2017 Feb 07;35(6):856-864.
    PMID: 28081970 DOI: 10.1016/j.vaccine.2016.12.064
    The fourth roundtable meeting of the Global Influenza Initiative (GII) was held in Hong Kong, China, in July 2015. An objective of this meeting was to gain a broader understanding of the epidemiology, surveillance, vaccination policies and programs, and obstacles to vaccination of influenza in the Asia-Pacific region through presentations of data from Australia, Hong Kong, India, Indonesia, Malaysia, New Zealand, the Philippines, Taiwan, Thailand, and Vietnam. As well as a need for improved levels of surveillance in some areas, a range of factors were identified that act as barriers to vaccination in some countries, including differences in climate and geography, logistical challenges, funding, lack of vaccine awareness and education, safety concerns, perceived lack of vaccine effectiveness, and lack of inclusion in national guidelines. From the presentations at the meeting, the GII discussed a number of recommendations for easing the burden of influenza and overcoming the current challenges in the Asia-Pacific region. These recommendations encompass the need to improve surveillance and availability of epidemiological data; the development and publication of national guidelines, where not currently available and/or that are in line with those proposed by the World Health Organization; the requirement for optimal timing of vaccination programs according to local or country-specific epidemiology; and calls for advocacy and government support of vaccination programs in order to improve availability and uptake and coverage. In conclusion, in addition to the varied epidemiology of seasonal influenza across this diverse region, there are a number of logistical and resourcing issues that present a challenge to the development of optimally effective vaccination strategies and that need to be overcome to improve access to and uptake of seasonal influenza vaccines. The GII has developed a number of recommendations to address these challenges and improve the control of influenza.
    Matched MeSH terms: Influenza, Human/epidemiology*
  3. Smith GJ, Fan XH, Wang J, Li KS, Qin K, Zhang JX, et al.
    Proc Natl Acad Sci U S A, 2006 Nov 07;103(45):16936-41.
    PMID: 17075062
    The development of highly pathogenic avian H5N1 influenza viruses in poultry in Eurasia accompanied with the increase in human infection in 2006 suggests that the virus has not been effectively contained and that the pandemic threat persists. Updated virological and epidemiological findings from our market surveillance in southern China demonstrate that H5N1 influenza viruses continued to be panzootic in different types of poultry. Genetic and antigenic analyses revealed the emergence and predominance of a previously uncharacterized H5N1 virus sublineage (Fujian-like) in poultry since late 2005. Viruses from this sublineage gradually replaced those multiple regional distinct sublineages and caused recent human infection in China. These viruses have already transmitted to Hong Kong, Laos, Malaysia, and Thailand, resulting in a new transmission and outbreak wave in Southeast Asia. Serological studies suggest that H5N1 seroconversion in market poultry is low and that vaccination may have facilitated the selection of the Fujian-like sublineage. The predominance of this virus over a large geographical region within a short period directly challenges current disease control measures.
    Matched MeSH terms: Influenza, Human/epidemiology
  4. Alfelali M, Barasheed O, Tashani M, Azeem MI, El Bashir H, Memish ZA, et al.
    Vaccine, 2015 May 21;33(22):2562-9.
    PMID: 25887084 DOI: 10.1016/j.vaccine.2015.04.006
    Influenza is an important health hazard among Hajj pilgrims. For the last ten years, pilgrims are being recommended to take influenza vaccine before attending Hajj. Vaccination coverage has increased in recent years, but whether there has been any change in the prevalence of influenza-like illness (ILI) is not known. In this analysis, we examined the changes in the rate of ILI against seasonal influenza vaccine uptake among Hajj pilgrims over the last decade.
    Matched MeSH terms: Influenza, Human/epidemiology*
  5. Muhammad Ismail HI, Tan KK, Lee YL, Pau WS, Razali KA, Mohamed T, et al.
    Emerg Infect Dis, 2011 Apr;17(4):708-10.
    PMID: 21470467 DOI: 10.3201/eid1704.101212
    To determine effects of pandemic (H1N1) 2009 on children in the tropics, we examined characteristics of children hospitalized for this disease in Malaysia. Of 1,362 children, 51 (3.7%) died, 46 of whom were in an intensive care unit. Although disease was usually mild, ≥ 1 concurrent conditions were associated with higher death rates.
    Matched MeSH terms: Influenza, Human/epidemiology*
  6. Matsuzaki Y, Sato K, Sugawara K, Takashita E, Muraki Y, Morishita T, et al.
    J Clin Microbiol, 2005 Feb;43(2):993-5.
    PMID: 15695727
    An influenza C virus was isolated from a Japanese traveler who had visited Malaysia in April 1999. Phylogenetic analysis indicated that the genome composition of this virus was distinct from that of any other strain isolated in Japan. The possibility that a genetically unique influenza C virus was introduced into Japan by a traveler is shown.
    Matched MeSH terms: Influenza, Human/epidemiology
  7. Lam TT, Tang JW, Lai FY, Zaraket H, Dbaibo G, Bialasiewicz S, et al.
    J Infect, 2019 10;79(4):373-382.
    PMID: 31323249 DOI: 10.1016/j.jinf.2019.07.008
    OBJECTIVES: To improve our understanding of the global epidemiology of common respiratory viruses by analysing their contemporaneous incidence at multiple sites.

    METHODS: 2010-2015 incidence data for influenza A (IAV), influenza B (IBV), respiratory syncytial (RSV) and parainfluenza (PIV) virus infections were collected from 18 sites (14 countries), consisting of local (n = 6), regional (n = 9) and national (n = 3) laboratories using molecular diagnostic methods. Each site submitted monthly virus incidence data, together with details of their patient populations tested and diagnostic assays used.

    RESULTS: For the Northern Hemisphere temperate countries, the IAV, IBV and RSV incidence peaks were 2-6 months out of phase with those in the Southern Hemisphere, with IAV having a sharp out-of-phase difference at 6 months, whereas IBV and RSV showed more variable out-of-phase differences of 2-6 months. The tropical sites Singapore and Kuala Lumpur showed fluctuating incidence of these viruses throughout the year, whereas subtropical sites such as Hong Kong, Brisbane and Sydney showed distinctive biannual peaks for IAV but not for RSV and PIV.

    CONCLUSIONS: There was a notable pattern of synchrony of IAV, IBV and RSV incidence peaks globally, and within countries with multiple sampling sites (Canada, UK, Australia), despite significant distances between these sites.

    Matched MeSH terms: Influenza, Human/epidemiology*
  8. Mehrbod P, Omar AR, Hair-Bejo M, Haghani A, Ideris A
    Biomed Res Int, 2014;2014:872370.
    PMID: 25478576 DOI: 10.1155/2014/872370
    The influenza virus (IV) is known to be a resistant virus with frequent mutations, causing severe respiratory diseases in the upper respiratory system. Public health concerns about clinical efficacy of all conventional drugs are ambiguous; therefore, finding additional therapeutic agents is critical to prevent and control influenza outbreaks. Influenza is associated with the induction of proinflammatory cytokines. Scientists have reported that anti-inflammatory drugs, with pleiotropic effects, reduce the burden of severe influenza diseases. Therefore, statins, which are cardioprotective drugs with anti-inflammatory and immunomodulatory effects, may help patients suffering from influenza virus (IV). This review delineates the potential use of statins as an alternative therapy in treating influenza related illness.
    Matched MeSH terms: Influenza, Human/epidemiology
  9. Camilloni B, Neri M, Lepri E, Basileo M, Sigismondi N, Puzelli S, et al.
    Vaccine, 2010 Nov 3;28(47):7536-41.
    PMID: 20846530 DOI: 10.1016/j.vaccine.2010.08.064
    The study evaluated the immunogenicity and efficacy of a trivalent subunit MF59-adjuvanted influenza vaccine (A/Wisconsin/67/05 (H3N2), A/Solomon Islands/3/06 (H1N1) and B/Malaysia/2506/04) in preventing serologically diagnosed infections in a group of 67 institutionalized elderly volunteers during 2007/2008 winter, characterized by co-circulation of drifted A/H3N2, A/H1N1 and B influenza viruses. Influenza vaccination induced a significant increase in the amounts of hemagglutination inhibiting antibodies, both against the vaccine and the epidemic drifted strains. However, vaccination did not prevent the circulation of the new drifted influenza B virus (B/Florida/4/06-like), belonging to the B/Yamagata/16/88-lineage, antigenically and genetically distinct from B/Victoria/2/87-lineage viruses from which the vaccine B strain was derived.
    Matched MeSH terms: Influenza, Human/epidemiology*
  10. Isahak I, Mahayiddin AA, Ismail R
    PMID: 18041300
    The aims of the study were to determine the attack rate of influenza-like illness among inhabitants of five old folk homes nationwide using influenza vaccine as a probe and the effectiveness of influenza vaccination in prevention of influenza-like illness. We conducted a nonrandomized, single-blind placebo control study from June 2003 to February 2004. VAXIGRIP(R) 2003 Southern hemisphere formulation was used. Among 527 subjects, the attack rates of influenza-like illness in the influenza vaccine group were 6.4, 4.6 and 2.4% during the first, second and third 2-month periods, respectively. The attack rates of influenza-like illness in the placebo group were 17.7, 13.8 and 10.1%. Influenza vaccination reduced the risk of contracting influenza-like illness by between 14, and 45%. The vaccine effectiveness in reducing the occurrence of influenza-like illness ranged from 55 to 76%, during the 6-month study followup. The presence of cerebrovascular diseases significantly increased the risk of influenza-like illness (p < 0.005). Vaccine recipients had fewer episodes of fever, cough, muscle aches, runny nose (p < 0.001) and experience fewer sick days due to respiratory illness. Subjects who received influenza vaccination had clinically and statistically significant reductions in the attack rate of influenza-like illness. Our data support influenza vaccination of persons with chronic diseases and >50 year olds living in institutions.
    Matched MeSH terms: Influenza, Human/epidemiology
  11. Xu X, Smith CB, Mungall BA, Lindstrom SE, Hall HE, Subbarao K, et al.
    J Infect Dis, 2002 Nov 15;186(10):1490-3.
    PMID: 12404167
    Reassortant influenza A viruses bearing the H1 subtype of hemagglutinin (HA) and the N2 subtype of neuraminidase (NA) were isolated from humans in the United States, Canada, Singapore, Malaysia, India, Oman, Egypt, and several countries in Europe during the 2001-2002 influenza season. The HAs of these H1N2 viruses were similar to that of the A/New Caledonia/20/99(H1N1) vaccine strain both antigenically and genetically, and the NAs were antigenically and genetically related to those of recent human H3N2 reference strains, such as A/Moscow/10/99(H3N2). All 6 internal genes of the H1N2 reassortants examined originated from an H3N2 virus. This article documents the first widespread circulation of H1N2 reassortants on 4 continents. The current influenza vaccine is expected to provide good protection against H1N2 viruses, because it contains the A/New Caledonia/20/99(H1N1) and A/Moscow/10/99(H3N2)-like viruses, which have H1 and N2 antigens that are similar to those of recent H1N2 viruses.
    Matched MeSH terms: Influenza, Human/epidemiology
  12. Saha S, Chadha M, Al Mamun A, Rahman M, Sturm-Ramirez K, Chittaganpitch M, et al.
    Bull World Health Organ, 2014 May 01;92(5):318-30.
    PMID: 24839321 DOI: 10.2471/BLT.13.124412
    OBJECTIVE: To characterize influenza seasonality and identify the best time of the year for vaccination against influenza in tropical and subtropical countries of southern and south-eastern Asia that lie north of the equator.

    METHODS: Weekly influenza surveillance data for 2006 to 2011 were obtained from Bangladesh, Cambodia, India, Indonesia, the Lao People's Democratic Republic, Malaysia, the Philippines, Singapore, Thailand and Viet Nam. Weekly rates of influenza activity were based on the percentage of all nasopharyngeal samples collected during the year that tested positive for influenza virus or viral nucleic acid on any given week. Monthly positivity rates were then calculated to define annual peaks of influenza activity in each country and across countries.

    FINDINGS: Influenza activity peaked between June/July and October in seven countries, three of which showed a second peak in December to February. Countries closer to the equator had year-round circulation without discrete peaks. Viral types and subtypes varied from year to year but not across countries in a given year. The cumulative proportion of specimens that tested positive from June to November was > 60% in Bangladesh, Cambodia, India, the Lao People's Democratic Republic, the Philippines, Thailand and Viet Nam. Thus, these tropical and subtropical countries exhibited earlier influenza activity peaks than temperate climate countries north of the equator.

    CONCLUSION: Most southern and south-eastern Asian countries lying north of the equator should consider vaccinating against influenza from April to June; countries near the equator without a distinct peak in influenza activity can base vaccination timing on local factors.

    Matched MeSH terms: Influenza, Human/epidemiology*
  13. Lee CK
    Med J Malaysia, 2010 Mar;65(1):1-2.
    PMID: 21265237
    In a short period of two months, the novel influenza A/H1N1 virus has circumnavigated the entire planet leaving behind in its wake approximately 3000 reported deaths worldwide. Fortunately, in many areas around the world, September 2009 brought a lull in the number of new H1N1 infections. This brought welcomed relief in many countries that had earlier experienced high respiratory disease activity in their communities. However, based on previous influenza pandemics, this reprieve may well be short-lived. As the Northern hemisphere approaches its winter months, many experts are now predicting a second wave of influenza A/H1N1 infections. This prediction maybe well placed as all 3 influenza pandemics in the last century reported second or even subsequent waves of new infections, all of which appeared to be more severe than the primary event (ref). The timing of these second waves have varied from 6 months to 3 years and invariably seemed to be linked to the winter months. It is unclear precisely what changes caused the increased severity seen during the second waves; one possibility is the progressive adaptation of the novel influenza virus to its new human host . Molecular analysis, for example, suggests that the 1918 Spanish influenza virus that emerged during the second wave had undergone changes in the hemagglutinin binding site that increased the binding specificity for human receptors. This is thought to have increased the replicative capacity and hence, the pathogenicity of the virus. It is also evident that as the H1N1 2009 pandemic virus continues to spread, opportunities for adaptation that increases virulence will also increase. Nonetheless, the changes needed for such adaptation and for increased virulence are unpredictable and by no means inevitable
    Matched MeSH terms: Influenza, Human/epidemiology*
  14. Zhang J, Lei F
    Integr Zool, 2010 Sep;5(3):264-71.
    PMID: 21392344 DOI: 10.1111/j.1749-4877.2010.00212.x
    In the present study, we used nucleotide and protein sequences of avian influenza virus H5N1, which were obtained in Asia and Africa, analyzed HA proteins using ClustalX1.83 and MEGA4.0, and built a genetic evolutionary tree of HA nucleotides. The analysis revealed that the receptor specificity amino acid of A/HK/213/2003, A/Turkey/65596/2006 and etc mutated into QNG, which could bind with á-2, 3 galactose and á-2, 6 galactose. A mutation might thus take place and lead to an outbreak of human infections of avian influenza virus. The mutations of HA protein amino acids from 2004 to 2009 coincided with human infections provided by the World Health Organization, indicating a "low-high-highest-high-low" pattern. We also found out that virus strains in Asia are from different origins: strains from Southeast Asia and East Asia are of the same origin, whereas those from West Asia, South Asia and Africa descend from one ancestor. The composition of the phylogenetic tree and mutations of key site amino acids in HA proteins reflected the fact that the majority of strains are regional and long term, and virus diffusions exist between China, Laos, Malaysia, Indonesia, Azerbaijan, Turkey and Iraq. We would advise that pertinent vaccines be developed and due attention be paid to the spread of viruses between neighboring countries and the dangers of virus mutation and evolution.
    Matched MeSH terms: Influenza, Human/epidemiology*
  15. Win MK, Chow A, Chen M, Lau YF, Ooi EE, Leo YS
    Ann Acad Med Singap, 2010 Jun;39(6):448-52.
    PMID: 20625620
    INTRODUCTION: Outbreaks of acute respiratory illness occur commonly in long-term care facilities (LTCF), due to the close proximity of residents. Most influenza outbreak reports have been from temperate countries. This study reports an outbreak of influenza B among a highly immunised resident population in a welfare home in tropical Singapore, and discusses vaccine efficacy and the role of acute respiratory illness surveillance for outbreak prevention and control.

    MATERIALS AND METHODS: During the period from 16 to 21 March 2007, outbreak investigations and active case finding were carried out among residents and nursing staff at the welfare home. Interviews and medical notes review were conducted to obtain epidemiological and clinical data. Hospitalised patients were tested for respiratory pathogens. Further genetic studies were also carried out on positive respiratory samples.

    RESULTS: The overall clinical attack rate was 9.4% (17/180) in residents and 6.7% (2/30) in staff. All infected residents and staff had received influenza immunisation. Fifteen residents were hospitalised, with 2 developing severe complications. Genetic sequencing revealed that the outbreak strain had an 8.2% amino acid difference from B/Malaysia/2506/2004, the 2006 southern hemisphere influenza vaccine strain, which the residents and staff had earlier received.

    CONCLUSIONS: A mismatch between the vaccine and circulating influenza virus strains can result in an outbreak in a highly immunised LTCF resident population. Active surveillance for acute respiratory illness in LTCFs could be implemented for rapid detection of antigenic drift. Enhanced infection control and other preventive measures can then be deployed in a timely manner to mitigate the effect of any outbreaks.

    Matched MeSH terms: Influenza, Human/epidemiology*
  16. Mohamad Isa MF, Tan JM, Abdul Aziz MF, Leong CL
    Med J Malaysia, 2018 12;73(6):405-406.
    PMID: 30647214
    Influenza outbreaks in tropical countries are rarely reported. This article reports four cases of influenza within a psychiatric ward of a tertiary hospital in Malaysia. These were patients with severe mental illness who were involuntarily admitted and did not show the classical triad of influenza-like-illness (ILI) at the beginning. However, severe respiratory complications developed requiring intubation. Referral and cooperation with the infectious disease team was initiated to help manage the outbreak while continuing psychiatric treatment. Incidences of influenza among hospitalised psychiatric patients should be treated seriously with immediate multidisciplinary approach to prevent severe unwanted complications.
    Matched MeSH terms: Influenza, Human/epidemiology*
  17. Skowronski DM, De Serres G, Dickinson J, Petric M, Mak A, Fonseca K, et al.
    J Infect Dis, 2009 Jan 15;199(2):168-79.
    PMID: 19086914 DOI: 10.1086/595862
    Trivalent inactivated influenza vaccine (TIV) is reformulated annually to contain representative strains of 2 influenza A subtypes (H1N1 and H3N2) and 1 B lineage (Yamagata or Victoria). We describe a sentinel surveillance approach to link influenza variant detection with component-specific vaccine effectiveness (VE) estimation.
    Matched MeSH terms: Influenza, Human/epidemiology*
  18. Koh MT, Eg KP, Loh SS
    Singapore Med J, 2016 Feb;57(2):81-6.
    PMID: 26768169 DOI: 10.11622/smedj.2015146
    The pandemic caused by the H1N1 influenza virus in 2009 resulted in extensive morbidity and mortality worldwide. As the virus was a novel virus, there was limited data available on the clinical effects of the virus on children in Malaysia. Herein, we describe the clinical characteristics of children hospitalised with H1N1 influenza in a tertiary care centre; we also attempted to identify the risk factors associated with disease severity.
    Matched MeSH terms: Influenza, Human/epidemiology*
  19. Baral SD, Rucinski KB, Twahirwa Rwema JO, Rao A, Prata Menezes N, Diouf D, et al.
    JMIR Public Health Surveill, 2021 Mar 02;7(3):e24696.
    PMID: 33522974 DOI: 10.2196/24696
    BACKGROUND: SARS-CoV-2 and influenza are lipid-enveloped viruses with differential morbidity and mortality but shared modes of transmission.

    OBJECTIVE: With a descriptive epidemiological framing, we assessed whether recent historical patterns of regional influenza burden are reflected in the observed heterogeneity in COVID-19 cases across regions of the world.

    METHODS: Weekly surveillance data reported by the World Health Organization from January 2017 to December 2019 for influenza and from January 1, 2020 through October 31, 2020, for COVID-19 were used to assess seasonal and temporal trends for influenza and COVID-19 cases across the seven World Bank regions.

    RESULTS: In regions with more pronounced influenza seasonality, COVID-19 epidemics have largely followed trends similar to those seen for influenza from 2017 to 2019. COVID-19 epidemics in countries across Europe, Central Asia, and North America have been marked by a first peak during the spring, followed by significant reductions in COVID-19 cases in the summer months and a second wave in the fall. In Latin America and the Caribbean, COVID-19 epidemics in several countries peaked in the summer, corresponding to months with the highest influenza activity in the region. Countries from regions with less pronounced influenza activity, including South Asia and sub-Saharan Africa, showed more heterogeneity in COVID-19 epidemics seen to date. However, similarities in COVID-19 and influenza trends were evident within select countries irrespective of region.

    CONCLUSIONS: Ecological consistency in COVID-19 trends seen to date with influenza trends suggests the potential for shared individual, structural, and environmental determinants of transmission. Using a descriptive epidemiological framework to assess shared regional trends for rapidly emerging respiratory pathogens with better studied respiratory infections may provide further insights into the differential impacts of nonpharmacologic interventions and intersections with environmental conditions. Ultimately, forecasting trends and informing interventions for novel respiratory pathogens like COVID-19 should leverage epidemiologic patterns in the relative burden of past respiratory pathogens as prior information.

    Matched MeSH terms: Influenza, Human/epidemiology*
  20. Wan-Arfah N, Norsa'adah B, Naing NN, Zaliha I, Azriani AR, Nik-Rosmawati NH, et al.
    PMID: 23413714
    Assessment of schoolchildren's knowledge, attitudes, and practices towards influenza A (H1N1) is crucial as schools play a major role in spreading the infection. The aims of this study were to determine the level of knowledge, attitudes, and practices on influenza A (H1N1) and the factors associated with practices of preventive behavior.A cross sectional study was conducted from July until December 2010. Two public secondary schools for two districts in Kelantan, Malaysia were randomly selected. Data were collected using a self-administered questionnaire. The questionnaire consisted of five constructs: sociodemographic, risk factors of containing influenza A (H1N1) infection, knowledge, attitudes, and practices. The questionnaire had been te,sted for its construct validity and reliability. General linear regression was applied in the data analysis. A sample of 436 secondary school students were recruited in this study involved Malay students aged 16 years old. The total knowledge, attitudes and practices scores for the overall respondents were 69.4, 82.2, and 73.8%, respectively. The significant influencing factors for the practices of preventive behavior were attended talk on H1N1 and attitudes score.This study suggested that health education is important for promoting the health of adolescents and contributing to the overall health of the public so that they will take precautions against the H1N1 infection.
    Matched MeSH terms: Influenza, Human/epidemiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links