Displaying publications 21 - 40 of 415 in total

Abstract:
Sort:
  1. Asghar A, Abdul Raman AA, Daud WM
    ScientificWorldJournal, 2014;2014:869120.
    PMID: 25258741 DOI: 10.1155/2014/869120
    In the present study, a comparison of central composite design (CCD) and Taguchi method was established for Fenton oxidation. [Dye]ini, Dye:Fe(+2), H2O2:Fe(+2), and pH were identified control variables while COD and decolorization efficiency were selected responses. L 9 orthogonal array and face-centered CCD were used for the experimental design. Maximum 99% decolorization and 80% COD removal efficiency were obtained under optimum conditions. R squared values of 0.97 and 0.95 for CCD and Taguchi method, respectively, indicate that both models are statistically significant and are in well agreement with each other. Furthermore, Prob > F less than 0.0500 and ANOVA results indicate the good fitting of selected model with experimental results. Nevertheless, possibility of ranking of input variables in terms of percent contribution to the response value has made Taguchi method a suitable approach for scrutinizing the operating parameters. For present case, pH with percent contribution of 87.62% and 66.2% was ranked as the most contributing and significant factor. This finding of Taguchi method was also verified by 3D contour plots of CCD. Therefore, from this comparative study, it is concluded that Taguchi method with 9 experimental runs and simple interaction plots is a suitable alternative to CCD for several chemical engineering applications.
    Matched MeSH terms: Iron/chemistry*
  2. Hasan DB, Abdul Raman AA, Daud WM
    ScientificWorldJournal, 2014;2014:252491.
    PMID: 24592152 DOI: 10.1155/2014/252491
    The mineralisation kinetics of petroleum refinery effluent (PRE) by Fenton oxidation were evaluated. Within the ambit of the experimental data generated, first-order kinetic model (FKM), generalised lumped kinetic model (GLKM), and generalized kinetic model (GKM) were tested. The obtained apparent kinetic rate constants for the initial oxidation step (k'2), their final oxidation step (k'1), and the direct conversion to endproducts step (k3') were 10.12, 3.78, and 0.24 min(-1) for GKM; 0.98, 0.98, and nil min(-1) for GLKM; and nil, nil, and >0.005 min(-1) for FKM. The findings showed that GKM is superior in estimating the mineralization kinetics.
    Matched MeSH terms: Iron/chemistry*
  3. Basri S, Kamarudin SK, Daud WR, Yaakob Z, Kadhum AA
    ScientificWorldJournal, 2014;2014:547604.
    PMID: 24883406 DOI: 10.1155/2014/547604
    PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2-5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g(-1) catalyst.
    Matched MeSH terms: Iron/chemistry
  4. Azlan A, Khoo HE, Idris MA, Ismail A, Razman MR
    ScientificWorldJournal, 2012;2012:403574.
    PMID: 22649292 DOI: 10.1100/2012/403574
    The drinking and mineral water samples obtained from different geographical locations had concentrations of the selected minerals lower than the standard limits, except for manganese, arsenic, and fluoride. The concentrations of manganese and arsenic in two mineral water samples were slightly higher than the standard international recommended limits. One mineral water sample had a fluoride concentration higher than the standard limits, whereas manganese was not detected in nine drinking and mineral water samples. Most of the selected minerals found in the tap water samples were below the international standard limits, except for iron and manganese. The concentrations of iron and manganese in the tap water samples were higher than the standard limits, which were obtained from one and three of the studied locations, respectively. The potable water obtained from various manufacturers and locations in Peninsular Malaysia is safe for consumption, as the minerals concentrations were below the standard limits prescribed by the Malaysian Food Regulations of 1985. The data obtained may also provide important information related to daily intake of these minerals from drinking water.
    Matched MeSH terms: Iron/analysis
  5. Gikonyo EW, Zaharah AR, Hanafi MM, Anuar AR
    ScientificWorldJournal, 2011;11:1421-41.
    PMID: 21805012 DOI: 10.1100/tsw.2011.131
    Soil phosphorus (P) release capability could be assessed through the degree of P saturation (DPS). Our main objective was to determine DPS and, hence, P threshold DPS values of an Ultisol treated with triple superphosphate (TSP), Gafsa phosphate rocks (GPR), or Christmas Island phosphate rocks (CIPR), plus or minus manure. P release was determined by the iron oxide-impregnated paper strip (strip P), while DPS was determined from ammonium oxalate-extractable aluminum (Al), iron (Fe), and P. Soils were sampled from a closed incubation study involving soils treated with TSP, GPR, and CIPR at 0-400 mg P kg-1, and a field study where soils were fertilized with the same P sources at 100-300 kg P ha-1 plus or minus manure. The DPS was significantly influenced by P source x P rate, P source x manure (incubated soils), and by P source x P rate x time (field-sampled soils). Incubated soil results indicated that both initial P and total strip P were related to DPS by exponential functions: initial strip P = 1.38exp0.18DPS, R2 = 0.82** and total strip P = 8.01exp0.13DPS, R2 = 0.65**. Initial strip P was linearly related to total P; total P = 2.45, initial P + 8.41, R2 = 0.85**. The threshold DPS value established was about 22% (incubated soil). Field soils had lower DPS values <12% and strip P was related to initial DPS and average DPS in exponential functions: strip P = 2.6exp0.44DPS, R2 = 0.77** and strip P = 1.1DPS2 ¨C 2.4DPS + 6.2, R2 = 0.58**, respectively. The threshold values were both approximately equal to 8% and P release was 11-14 mg P kg-1. Results are evident that DPS can be used to predict P release, but the threshold values are environmentally sensitive; hence, recommendations should be based on field trials.
    Matched MeSH terms: Iron/analysis
  6. Shah M, Ayob MTM, Rosdan R, Yaakob N, Embong Z, Othman NK
    ScientificWorldJournal, 2020;2020:3989563.
    PMID: 32774180 DOI: 10.1155/2020/3989563
    H2S gas when exposed to metal can be responsible for both general and localized corrosion, which depend on several parameters such as H2S concentration and the corrosion product layer formed. Therefore, the formation of passive film on 316L steel when exposed to H2S environment was investigated using several analysis methods such as FESEM and STEM/EDS analyses, which identified a sulfur species underneath the porous structure of the passive film. X-ray photoelectron spectroscopy analysis demonstrated that the first layer of CrO3 and Cr2O3 was dissolved, accelerated by the presence of H2S-Cl-. An FeS2 layer was formed by incorporation of Fe and sulfide; then, passivation by Mo took place by forming a MoO2 layer. NiO, Ni(OH)2, and NiS barriers are formed as final protection for 316L steel. Therefore, Ni and Mo play an important role as a dual barrier to maintain the stability of 316L steel in high pH2S environments. For safety concern, this paper is aimed to point out a few challenges dealing with high partial pressure of H2S and limitation of 316L steel under highly sour condition for the oil and gas production system.
    Matched MeSH terms: Iron
  7. Shuhaimi-Othman M, Nadzifah Y, Nur-Amalina R, Umirah NS
    ScientificWorldJournal, 2012;2012:861576.
    PMID: 22919358 DOI: 10.1100/2012/861576
    Freshwater quality criteria for iron (Fe), lead (Pb), nickel (Ni), and zinc (Zn) were developed with particular reference to aquatic biota in Malaysia, and based on USEPA's guidelines. Acute toxicity tests were performed on eight different freshwater domestic species in Malaysia which were Macrobrachium lanchesteri (prawn), two fish: Poecilia reticulata and Rasbora sumatrana, Melanoides tuberculata (snail), Stenocypris major (ostracod), Chironomus javanus (midge larvae), Nais elinguis (annelid), and Duttaphrynus melanostictus (tadpole) to determine 96 h LC(50) values for Fe, Pb, Ni, and Zn. The final acute value (FAV) for Fe, Pb, Ni, and Zn were 74.5, 17.0, 165, and 304.9 μg L(-1), respectively. Using an estimated acute-to-chronic ratio (ACR) of 8.3, the value for final chronic value (FCV) was derived. Based on FAV and FCV, a criterion maximum concentration (CMC) and a criterion continuous concentration (CCC) for Fe, Pb, Ni, and Zn that are 37.2, 8.5, 82.5, and 152.4 μg L(-1) and 9.0, 2.0, 19.9, and 36.7 μg L(-1), respectively, were derived. The results of this study provide useful data for deriving national or local water quality criteria for Fe, Pb, Ni, and Zn based on aquatic biota in Malaysia. Based on LC(50) values, this study indicated that N. elinguis, M. lanchesteri, N. elinguis, and R. sumatrana were the most sensitive to Fe, Pb, Ni, and Zn, respectively.
    Matched MeSH terms: Iron/analysis*
  8. Eshwar S, K R, Jain V, Manvi S, Kohli S, Bhatia S
    Open Dent J, 2016;10:207-13.
    PMID: 27386006 DOI: 10.2174/1874210601610010207
    INTRODUCTION: Mouthrinses have been in use for centuries as breath fresheners, medicaments, and antiseptics. Dill is said to be a good source of calcium, manganese and iron. It contains flavonoids known for their antioxidant, anti-inflammatory, and antiviral properties. Dill can help with microbial infections in the mouth; and its anti-oxidants minimize damage caused by free radicals to the gums and teeth. Being a good source of calcium, dill also helps with bone and dental health.

    AIMS AND OBJECTIVES: To compare the effectiveness of commercially available 0.2% chlorhexidine gluconate mouthrinse and dill seed oil mouthrinse on plaque levels and gingivitis.

    MATERIAL AND METHODS: A randomized controlled, double blind parallel arm study was conducted over 90 days on 90 subjects. The subjects were randomly divided into 2 groups and baseline data was collected using Loe and Silness gingival index and Quigley Hein plaque index and oral prophylaxis was performed on all the subjects. The mouthrinses included in the present study were dill seed oil and Hexodent (0.2% chlorhexidine gluconate). Intervention regarding the mouthrinsing was given to the subjects and were followed up for 45 days and 90 days, after this post intervention changes were assessed using the respective indices.

    RESULTS: It was observed that there is no significant difference in gingival & plaque scores among two mouthrinses from baseline to 45 days and 90 days. It was observed that there is statistical difference in gingival and plaque scores when compared with baseline to 45 days (p<0.001), baseline to 90 days (p<0.001) and 45 days to 90 days (p<0.001) when intergroup comparisons were done.

    CONCLUSION: It was concluded that dill seed oil and Hexodent (0.2% chlorhexidine gluconate) mouthrinse have similar antiplaque and antigingival effectiveness.

    Matched MeSH terms: Iron
  9. Tumian NR, Wong M, Wong CL
    J Obstet Gynaecol Res, 2015 Jun;41(6):967-70.
    PMID: 25510540 DOI: 10.1111/jog.12648
    α°-thalassemia is a well-known cause of hydrops fetalis in South-East Asia and can be detected in utero. We report a very rare case of thyrotoxic cardiomyopathy associated with hyperplacentosis secondary to α°-thalassemia-associated hydrops fetalis. A 22-year-old primigravida with microcytic anemia presented at 27 weeks' gestation with pre-eclampsia, hyperthyroidism and cardiac failure. Serum β-human chorionic gonadotrophin was markedly elevated and abdominal ultrasound revealed severe hydropic features and enlarged placenta. Serum β-human chorionic gonadotrophin, cardiac function and thyroid function tests normalized after she delivered a macerated stillbirth. Histopathology of the placenta showed hyperplacentosis. Blood DNA analysis revealed that both patient and husband have the α°-thalassemia trait. This case illustrates a very atypical presentation of α°-thalassemia-associated hydrops fetalis and the importance of early prenatal diagnosis of α-thalassemia in women of relevant ethnic origin with microcytic anemia so that appropriate genetic counseling can be provided to reduce maternal morbidity and the incidence of hydrops fetalis.
    Matched MeSH terms: Anemia, Iron-Deficiency
  10. Zamanpoor M, Rosli R, Yazid MN, Husain Z, Nordin N, Thilakavathy K
    J Matern Fetal Neonatal Med, 2013 Jul;26(10):960-6.
    PMID: 23339569 DOI: 10.3109/14767058.2013.766710
    OBJECTIVE: To quantify circulating fetal DNA (fDNA) levels in the second and third trimesters of normal healthy pregnant individuals and pregnant women with the following clinical conditions: gestational diabetes mellitus (GDM), iron deficiency anemia and gestational hypertension (GHT).
    METHODS: The SRY gene located on the Y chromosome was used as a unique fetal marker. The fDNA was extracted from maternal plasma and the SRY gene concentrations were measured by quantitative real-time polymerase chain reaction (PCR) amplification using TaqMan dual labeled probe system.
    RESULTS: No significant differences were observed in the mean fDNA concentration between normal and GDM pregnancy samples (p > 0.05) and also between normal and anemic pregnancy samples (p > 0.05) in both trimesters, but significant differences were observed between the third trimester normal and GHT pregnancy samples (p = 0.001). GDM and iron deficiency anemia do not affect the levels of fDNA in maternal plasma while GHT significantly elevates the levels of fDNA in maternal plasma.
    CONCLUSIONS: Increased amount of circulating fDNA in maternal plasma could be used for early identification of adverse pregnancies. GDM and anemia do not affect the levels of fDNA in maternal plasma while GHT significantly elevates the levels of fDNA in maternal plasma. Hence, the elevated fDNA values could be used as a potential screening marker in pregnancies complicated with GHT but not with GDM and iron deficiency anemia.
    Matched MeSH terms: Anemia, Iron-Deficiency/blood*; Anemia, Iron-Deficiency/genetics
  11. Yusoff H, Daud WN, Ahmad Z
    PMID: 23082570
    A higher occurrence of iron deficiency anemia is present in rural Malaysia than urban Malaysia due to a lower socio-economic status of rural residents. This study was conducted in Tanah Merah, a rural district of Kelantan, Malaysia. Our objective was to investigate the impact of nutrition education alone, daily iron, folate and vitamin C supplementation or both on knowledge, attitudes and hemoglobin status of adolescent students. Two hundred eighty fourth year secondary students were each assigned by school to 1 of 4 different treatment groups. Each intervention was carried out for 3 months followed by 3 months without treatment. A validated self-reported knowledge and attitude questionnaire was administered; hemoglobin levels were measured before and after intervention. At baseline, no significant difference in hemoglobin was noted among the 4 groups (p = 0.06). The changes in hemoglobin levels at 3 months were 11, 4.6, 3.9 and -3.7% for the supplementation, nutrition education, combination and control groups, respectively. The changes at 6 months were 1.0, 6.8, 3.7 and -14.8%, respectively. Significant improvements in knowledge and attitude were evidenced in both the nutritional education and combination groups. The supplementation and control groups had no improvement in knowledge or attitudes. This study suggests nutritional education increases knowledge, attitudes and hemoglobin levels among Malaysian secondary school adolescents.
    Matched MeSH terms: Iron/administration & dosage; Anemia, Iron-Deficiency/epidemiology; Anemia, Iron-Deficiency/prevention & control*
  12. Norashikin J, Roshan TM, Rosline H, Zaidah AW, Suhair AA, Rapiaah M
    PMID: 17125001
    Iron deficiency is the commonest cause of anemia worldwide and healthy blood donors are estimated to lose about 236 mg of iron with each donation. The objective of this study was to determine the serum ferritin levels among first time and regular male blood donors, and also to correlate the serum ferritin levels with the number of donations and hemoglobin levels. Hemoglobin levels and serum ferritin were measured in three groups of donors divided into first time donors; (n = 92), donors with 2-4 donations (n = 41), and regular donors (n = 78). The mean hemoglobins in the first time donors, second group and regular blood donor group were 14.95 +/- 1.08, 15.12 +/- 1.44 and 15.56 +/- 1.48, respectively. The serum ferritin level were found to be significantly lower among the regular donors (62.0 +/- 39.78 ng/ml) compared to first time donors (90.7 +/- 66.63) and second group donors (114.12 +/- 66.97). The serum ferritin levels gradually decrease according to the number of donations and there was a significant correlation between frequency of donations and the serum ferritin level (r2 = 0.082). Significant correlation between the number of donations and hemoglobin level r2 = 0.061) was noted. However, there was no significant correlation between hemoglobin and serum ferritin levels (r2 = 0.015). Eleven percent of regular donors had depleted iron stores. This was not noted in donors who donated less than 5 times within 2 years.
    Matched MeSH terms: Iron/blood*; Iron/deficiency*; Iron/therapeutic use; Anemia, Iron-Deficiency/diagnosis; Anemia, Iron-Deficiency/drug therapy; Anemia, Iron-Deficiency/epidemiology
  13. Hassan R, Abdullah WZ, Nik Hussain NH
    PMID: 16438162
    The purpose of this study was to detect the frequency of iron deficiency anemia in women attending their first antenatal clinic at a Maternal and Child Health Clinic in Kubang Kerian, a district of Kelantan that is located on the East coast of Malaysia. A cross-sectional study was done over a two-month period and fifty-two Malay women were enrolled in this study. Red blood cell indices and serum ferritin were used as a screening tool for anemia and iron status. Eighteen patients (34.6%) were anemic. The majority were classified as having mild anemia (90%). Four of them had hypochromic microcytic anemia. Of 52 women, 7 had iron deficient erythropoiesis and 11 (61.1%) had iron deficient anemia. The prevalence of iron deficiency anemia in pregnant women was 21.2%, which is similar to other developing countries. The serum ferritin level was significantly associated with the hemoglobin level (p=0.003). Other red blood cell indices were not useful in predicting iron deficient erythropoiesis. It is important to detect iron deficient erythropoiesis during the first antenatal check-up, as it is an early manifestation of iron deficiency anemia. In conclusion, screening for iron deficient is recommended during first antenatal visit because iron deficiency anemia is still the leading cause of nutritional deficiency in pregnant women. This will initiate an early therapeutic intervention so as to reduce public health problem.
    Study site: Hopital Universiti Sains Malaysia (HUSM) and the Maternal and Child Health Clinic, Kubang Kerian, Kelantan, Malaysia
    Matched MeSH terms: Anemia, Iron-Deficiency/blood; Anemia, Iron-Deficiency/diagnosis; Anemia, Iron-Deficiency/epidemiology*
  14. Riahi S, Mei IL, Idris FB, George E, Noor SM
    PMID: 26863862
    Pre-donation screening declarations and hemoglobin (Hb) testing are measures used to determine the quality of donated blood. The copper sulphate (CuSo4) method used to screen for blood abnormalities can give inaccurate results if strict quality control is not applied. Blood donors who are carriers of thalassemia and those with mild iron deficiency anemia (IDA) are usually asymptomatic and frequently missed at blood donation. The aim of this study was to evaluate the red blood cell (RBC) indices related disorders among blood donors who were deemed qualified to donate blood after screening with CuSo4 method. One hundred fifty-eight volunteer blood donors at the Universiti Putra Malaysia (UPM), who had passed the CuSo4 screening method, were recruited for this study. Their bloods specimens were examined with a complete blood count. Subjects with a low mean corpuscular hemoglobin (MCH) level were examined further by checking a serum ferritin level, Hb quantification, and molecular analysis to examine for common RBC disorders. Fourteen point six percent of subjects had a low Hb level, two (1.3%) had IDA and four (2.5%) had thalassemia or some other hemoglobinopathy. Using a MCH level < 27 pg as a cut-off point, 58 subjects (36.7%) had suspected IDA, thalassemia or some other hemoglobinopathy. Eight point nine percent of subjects with a normal Hb level had thalassemia, and 3.8% had IDA. Malaysia has a high prevalence of thalassemia and other hemoglobinopathies. Pre-donation accurate screening is crucial to protect the quality of blood transfusion products. Public education regarding RBC disorders especially among blood donors is important.
    Matched MeSH terms: Anemia, Iron-Deficiency/blood; Anemia, Iron-Deficiency/etiology; Anemia, Iron-Deficiency/epidemiology*
  15. Loh TT, Chang LL
    PMID: 7403941
    Non-haemoglobin liver iron was estimated in 275 presumably normal individuals from Kuala Lumpur and Singapore at necropsy. Liver Iron concentrations were highest during the first two years after birth but declined sharply during childhood. They then rose gradually and reached a value of 20 mg/100gm in adult males. Liver iron concentrations of childbearing women remained low and it was only after menopause that values in women rose to those of males. Liver iron stores increased with age to a plateau of about 300 mg in adults, suggesting that this value may represent the adult size for liver iron store. Among the three major ethnic groups in Malaysia and Singapore, Chinese, being in a better socio-eonomic class, had larger liver iron stores. The median liver iron concentrations of Malaysians and Singaporeans, on the whole, were lower than those reported from western populations and as many as 35 per cent of the women were in a subclinical state of iron deficiency.
    Matched MeSH terms: Iron/analysis*
  16. Venny, Gan S, Ng HK
    Sci Total Environ, 2012 Mar 1;419:240-9.
    PMID: 22285087 DOI: 10.1016/j.scitotenv.2011.12.053
    This work focuses on the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil using modified Fenton (MF) treatment coupled with a novel chelating agent (CA), a more effective technique among currently available technologies. The performance of MF treatment to promote PAH oxidation in artificially contaminated soil was investigated in a packed column with a hydrogen peroxide (H(2)O(2)) delivery system simulating in-situ soil flushing which is more representative of field conditions. The effectiveness of process parameters H(2)O(2)/soil, Fe(3+)/soil, CA/soil weight ratios and reaction time were studied using a 2(4) three level factorial design experiments. An optimised operating condition of the MF treatment was observed at H(2)O(2)/soil 0.05, Fe(3+)/soil 0.025, CA/soil 0.04 and 3h reaction time with 79.42% and 68.08% PAH removals attainable for the upper and lower parts of the soil column respectively. The effects of natural attenuation and biostimulation process as post-treatment in the remediation of the PAH-contaminated soil were also studied. In all cases, 3-aromatic ring PAH (phenanthrene) was more readily degraded than 4-aromatic ring PAH (fluoranthene) regardless of the bioremediation approach. The results revealed that both natural attenuation and biostimulation could offer remarkable enhancement of up to 6.34% and 9.38% in PAH removals respectively after 8 weeks of incubation period. Overall, the results demonstrated that combined inorganic CA-enhanced MF treatment and bioremediation serves as a suitable strategy to enhance soil quality particularly to remediate soils heavily contaminated with mixtures of PAHs.
    Matched MeSH terms: Biodegradation, Environmental; Iron/chemistry
  17. Zaied BK, Rashid M, Nasrullah M, Zularisam AW, Pant D, Singh L
    Sci Total Environ, 2020 Jul 15;726:138095.
    PMID: 32481207 DOI: 10.1016/j.scitotenv.2020.138095
    The pharmaceuticals are emergent contaminants, which can create potential threats for human health and the environment. All the pharmaceutical contaminants are becoming enormous in the environment as conventional wastewater treatment cannot be effectively implemented due to toxic and intractable action of pharmaceuticals. For this reason, the existence of pharmaceutical contaminants has brought great awareness, causing significant concern on their transformation, occurrence, risk, and fate in the environments. Electrocoagulation (EC) treatment process is effectively applied for the removal of contaminants, radionuclides, pesticides, and also harmful microorganisms. During the EC process, an electric current is employed directly, and both electrodes are dissoluted partially in the reactor under the special conditions. This electrode dissolution produces the increased concentration of cation, which is finally precipitated as hydroxides and oxides. Different anode materials usage like aluminum, stainless steel, iron, etc. are found more effective in EC operation for efficient removal of pharmaceutical contaminants. Due to the simple procedure and less costly material, EC method is extensively recognized for pharmaceutical wastewater treatment over further conventional treatment methods. The EC process has more usefulness to destabilize the pharmaceutical contaminants with the neutralization of charge and after that coagulating those contaminants to produce flocs. Thus, the review places particular emphasis on the application of EC process to remove pharmaceutical contaminants. First, the operational parameters influencing EC efficiency with the electroanalysis techniques are described. Second, in this review emerging challenges, current developments and techno-economic concerns of EC are highlighted. Finally, future recommendations and prospective on EC are envisioned.
    Matched MeSH terms: Iron
  18. Peng Y, Fornara DA, Wu Q, Heděnec P, Yuan J, Yuan C, et al.
    Sci Total Environ, 2023 Jan 20;857(Pt 3):159686.
    PMID: 36302428 DOI: 10.1016/j.scitotenv.2022.159686
    Plant litter decomposition is not only the major source of soil carbon and macronutrients, but also an important process for the biogeochemical cycling of trace elements such as iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu). The concentrations of plant litter trace elements can influence litter decomposition and element cycling across the plant and soil systems. Yet, a global perspective of the patterns and driving factors of trace elements in plant litter is missing. To bridge this knowledge gap, we quantitatively assessed the concentrations of four common trace elements, namely Fe, Mn, Zn, and Cu, of freshly fallen plant litter with 1411 observations extracted from 175 publications across the globe. Results showed that (1) the median of the average concentrations of litter Fe, Mn, Zn, and Cu were 0.200, 0.555, 0.032, and 0.006 g/kg, respectively, across litter types; (2) litter concentrations of Fe, Zn, and Cu were generally stable regardless of variations in multiple biotic and abiotic factors (e.g., plant taxonomy, climate, and soil properties); and (3) litter Mn concentration was more sensitive to environmental conditions and influenced by multiple factors, but mycorrhizal association and soil pH and nitrogen concentration were the most important ones. Overall, our study provides a clear global picture of plant litter Fe, Mn, Zn, and Cu concentrations and their driving factors, which is important for improving our understanding on their biogeochemical cycling along with litter decomposition processes.
    Matched MeSH terms: Iron/analysis
  19. Tan, Chin Xuan, Azrina Azlan
    MyJurnal
    Canarium odontophyllum Miq. fruit, popularly recognized as dabai fruit in Sarawak, is a
    seasonal fruit found in the tropical rainforest of East Malaysia. A dabai fruit can be divided into
    several anatomical parts, and different parts of the fruit have different valuable phytochemicals. Due
    to the lack of promotion, dabai fruit is viewed as nutritionally inferior fruit by the public. On the
    contrary, the fruit is rich in nutrients such as protein, fat, carbohydrates, sodium, calcium and iron.
    Many phytochemicals have been detected from different parts of dabai fruit, and these molecules have
    been linked to beneficial properties such as hypolipidemic, anti-atherosclerotic, anti-cholinesterase,
    antimicrobial and potentially anti-diabetic. The aim of this article is to review research studies on this
    fruit in order to provide adequate baseline information for commercial exploitation as well as for
    future studies.
    Matched MeSH terms: Iron
  20. Muhammad Aiman, Mohammad Rahimi, Siti Zaharah Sakimin, Mohd Fauzi, Ramlan
    MyJurnal
    Ficus carica L. or fig is the oldest fruit tree that being cultivated by man. Grouped under genus Ficus, this species is grown widely in Mediterranean region and now being cultivated in an area with temperate or sub-temperate climate. Fig planting in Malaysia is still new, which was brought by a man as a hobby at first. Fig is a unique fruit tree as some variety can produce fruits without pollination. Contain lots of carbohydrates, essential amino acids, vitamins and minerals such potassium, fibre, calcium, iron compared to other fruits, fig have become an important source of diet to people especially in Mediterranean region since ancient time.
    Matched MeSH terms: Iron
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links