Displaying publications 21 - 40 of 528 in total

Abstract:
Sort:
  1. García Mde L, Borrero R, Lanio ME, Tirado Y, Alvarez N, Puig A, et al.
    Biomed Res Int, 2014;2014:273129.
    PMID: 25548767 DOI: 10.1155/2014/273129
    A more effective vaccine against tuberculosis (TB) is urgently needed. Based on its high genetic homology with Mycobacterium tuberculosis (Mtb), the nonpathogenic mycobacteria, Mycobacterium smegmatis (Ms), could be an attractive source of potential antigens to be included in such a vaccine. We evaluated the capability of lipid-based preparations obtained from Ms to provide a protective response in Balb/c mice after challenge with Mtb H37Rv strain. The intratracheal model of progressive pulmonary TB was used to assess the level of protection in terms of bacterial load as well as the pathological changes in the lungs of immunized Balb/c mice following challenge with Mtb. Mice immunized with the lipid-based preparation from Ms either adjuvanted with Alum (LMs-AL) or nonadjuvanted (LMs) showed significant reductions in bacterial load (P < 0.01) compared to the negative control group (animals immunized with phosphate buffered saline (PBS)). Both lipid formulations showed the same level of protection as Bacille Calmette and Guerin (BCG). Regarding the pathologic changes in the lungs, mice immunized with both lipid formulations showed less pneumonic area when compared with the PBS group (P < 0.01) and showed similar results compared with the BCG group. These findings suggest the potential of LMs as a promising vaccine candidate against TB.
    Matched MeSH terms: Lipids/administration & dosage; Lipids/immunology
  2. Mat Luwi NE, Kadir R, Mohamud R, A Garcia-Santana ML, Acevedo R, Sarmiento ME, et al.
    Int J Mycobacteriol, 2020 8 31;9(3):261-267.
    PMID: 32862158 DOI: 10.4103/ijmy.ijmy_82_20
    Background: Tuberculosis (TB) is the leading cause of mortality due to infectious diseases. The development of new generation vaccines against TB is of paramount importance for the control of the disease. In previous studies, liposomes obtained from lipids of Mycobacterium smegmatis (LMs) demonstrated their immunogenicity and protective capacity against Mycobacterium tuberculosis in mice. To characterize the immunomodulatory capacity of this experimental vaccine candidate, in the current study, the stimulatory capacity of LMs was determined on bone marrow-derived dendritic cells (BMDCs) from mice.

    Methods: LMs were obtained and incubated with mature BMDCs. The internalization of LMs by BMDCs was studied by confocal microscopy, and the LMs immune-stimulatory capacity was determined by the expression of surface molecules (CD86 and MHCII) and the cytokine production (interleukin [IL]-12, interferon-Υ, tumor necrosis factor-α, and IL-10) 24 h after exposure to LMs.

    Results: The interaction of LMs with BMDCs and its internalization was demonstrated as well as the immune activation of BMDCs, characterized by the increased expression of CD86 and the production of IL-12. The LMs internalization and immune activation of BMDCs were blocked in the presence of cytochalasin, filipin III and chlorpromazine, which demonstrated that internalization of LMs by BMDCs is a key process for the LMs induced immune activation of BMDCs.

    Conclusions: The results obtained support the further evaluation of LMs as a mycobacterial vaccine, adjuvant, and in immunotherapy.

    Matched MeSH terms: Lipids/immunology
  3. Abu Sepian NR, Mat Yasin NH, Zainol N, Rushan NH, Ahmad AL
    Environ Technol, 2019 Apr;40(9):1110-1117.
    PMID: 29161985 DOI: 10.1080/09593330.2017.1408691
    The immobilisation of Chlorella vulgaris 211/11B entrapped in combinations of natural matrices to simplify the harvesting process was demonstrated in this study. Three combinations of matrices composed of calcium alginate (CA) and sodium alginate (SA), sodium carboxymethyl cellulose (CMC) and SA, and mixed matrices (SA, CA, and CMC) were investigated. The number of cells grown for each immobilised matrix to microalgae volume ratios (0.2:1-1:1) were explored and compared with using SA solely as a control. The optimum volume ratios obtained were 1:1 for SA, 0.3:1 for CA and SA, 1:1 for CMC and SA, and 0.3:1 for mixed matrices. The immobilised microalgae of mixed matrices exhibited the highest number of cells with 1.72 × 109 cells/mL at day 10 and 30.43% of oil extraction yield followed by CA and SA (24.29%), CMC and SA (13.00%), and SA (6.71%). Combining SA, CA, and CMC had formed a suitable structure which improved the growth of C. vulgaris and increased the lipid production compared to the immobilisation using single matrix. Besides, the fatty acids profile of the oil extracted indicates a high potential for biodiesel production.
    Matched MeSH terms: Lipids
  4. Ramli NZ, Chin KY, Zarkasi KA, Ahmad F
    PMID: 31817937 DOI: 10.3390/ijerph16244987
    Metabolic syndrome (MetS) is a group of conditions including central obesity, hyperglycemia, dyslipidemia, and hypertension that increases the risk for cardiometabolic diseases. Kelulut honey (KH) produced by stingless honey bees has stronger antioxidant properties compared to other honey types and may be a functional food against MetS. This study aimed to determine the efficacy of KH in preventing metabolic changes in rats with MetS induced by high-carbohydrate and high-fat (HCHF) diet. Male Wistar rats were randomly assigned to the control (C), HCHF diet-induced MetS (S), and MetS supplemented with KH (K) groups. The K group was given KH (1 g/kg/day) for eight weeks. Compared to the control, the S group had significant higher omental fat mass, serum triglyceride, systolic blood pressure, diastolic blood pressures, adipocyte area, and adipocyte perimeter (p < 0.05). KH supplementation significantly prevented these MetS-induced changes at week 16 (p < 0.05). Several compounds, including 4-hydroxyphenyl acetic acid, coumaric and caffeic acids, had been detected via liquid chromatography-mass spectrometry analysis that might contribute to the reversal of these changes. The beneficial effects of KH against MetS-induced rats provide the basis for future KH research to investigate its potential use in humans and its molecular mechanisms in alleviating the disease.
    Matched MeSH terms: Lipids/blood
  5. Ramli NZ, Chin KY, Zarkasi KA, Ahmad F
    Nutrients, 2018 Aug 02;10(8).
    PMID: 30072671 DOI: 10.3390/nu10081009
    Metabolic syndrome (MetS) is a cluster of diseases comprising of obesity, diabetes mellitus, dyslipidemia, and hypertension. There are numerous pre-clinical as well as human studies reporting the protective effects of honey against MetS. Honey is a nutritional food low in glycemic index. Honey intake reduces blood sugar levels and prevents excessive weight gain. It also improves lipid metabolism by reducing total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL) and increasing high-density lipoprotein (HDL), which leads to decreased risk of atherogenesis. In addition, honey enhances insulin sensitivity that further stabilizes blood glucose levels and protects the pancreas from overstimulation brought on by insulin resistance. Furthermore, antioxidative properties of honey help in reducing oxidative stress, which is one of the central mechanisms in MetS. Lastly, honey protects the vasculature from endothelial dysfunction and remodelling. Therefore, there is a strong potential for honey supplementation to be integrated into the management of MetS, both as preventive as well as adjunct therapeutic agents.
    Matched MeSH terms: Lipids/blood
  6. Widyawati T, Yusoff NA, Bello I, Asmawi MZ, Ahmad M
    Molecules, 2022 Oct 12;27(20).
    PMID: 36296407 DOI: 10.3390/molecules27206814
    (1) Background: An earlier study on the hypoglycemic activity of S. polyanthum (Wight.) leaf methanol extract identified squalene as the major chemical compound. The present study was conducted to assess the hypoglycemic effect of fractions and subfractions of the methanol extract of S. polyanthum compared to the squalene using a bioassay-guided in vivo study. (2) Methods: The methanol extract was fractionated using the liquid−liquid fractionation method. Streptozotocin-induced type 1 diabetic rat was used to study the hypoglycemic effect. (3) Results: The findings showed that chloroform fraction significantly (p < 0.05) lowered blood glucose levels of diabetic rats as compared to the control. Further fractionation of chloroform fraction yielded subfraction-1 and -2, whereby subfraction-1 exhibited a higher blood-glucose-lowering effect. The lipid profile test showed that the total cholesterol level of subfraction-1 and squalene-treated groups decreased significantly (p < 0.05). An immunohistochemistry study revealed that none of the treatments regenerated pancreatic β-cells. Gas chromatography−mass spectrophotometer analysis identified the presence of squalene in the active methanol extract, chloroform fraction, and subfraction-1. In silico analysis revealed a higher affinity of squalene against protein receptors that control lipid metabolism than metformin. (4) Conclusions: Data obtained from the present work suggested the crude methanol extract exerted the highest hypoglycemic effect compared to fraction, subfraction, and squalene, confirming synergistic effect may be responsible for the hypoglycemic activity of S. polyanthum.
    Matched MeSH terms: Lipids
  7. Foo LC, Roshidah I, Aimy MB
    Thromb. Haemost., 1991 Mar 4;65(3):317-9.
    PMID: 2048056 DOI: 10.1055/s-0038-1648142
    Platelet aggregation to collagen, and productions of 6-keto-prostaglandin-F1-alpha and thromboxane B2 during aggregation were measured after an overnight fast, involving both food and cigarettes, in 19 clinically healthy habitual smokers (10 or more cigarettes/day) and 23 non-smokers receiving the same diet. The subjects (all males; ages = 21-30 years) were residents of a school hostel. Mean platelet aggregation was significantly lower in smokers than non-smokers (23.2 ohms vs 31.5 ohms, p less than 0.005). Non-smokers had significantly higher mean concentration of 6-keto-prostaglandin-F1-alpha than smokers (109.8 pmol/l vs 92.3 pmol/l, p less than 0.05). The level of thromboxane B2 did not differ significantly between the two groups. These observations suggest that the role of smoking as a risk factor for ischaemic heart disease is unlikely to be related to a direct enhancement of aggregation. On the contrary, the observations seem to suggest that habitual smoking may directly reduce platelet aggregability.
    Matched MeSH terms: Lipids/blood
  8. Al-Shookri A, Khor GL, Chan YM, Loke SC, Al-Maskari M
    Diabet Med, 2012 Feb;29(2):236-44.
    PMID: 21824187 DOI: 10.1111/j.1464-5491.2011.03405.x
    In this randomized controlled trial we evaluated the effectiveness of medical nutritional therapy on Arab patients with Type 2 diabetes in Oman delivered by a dietitian.
    Matched MeSH terms: Lipids
  9. Al-Bulushi IM, Kasapis S, Dykes GA, Al-Waili H, Guizani N, Al-Oufi H
    J Food Sci Technol, 2013 Dec;50(6):1158-64.
    PMID: 24426029 DOI: 10.1007/s13197-011-0441-x
    The effect of frozen storage on the physiochemical, chemical and microbial characteristics of two types of fish sausages was studied. Fish sausages developed (DFS) with a spice-sugar formulation and commercial fish sausages (CFS) were stored at -20 °C for 3 months. Fresh DFS contained 12.22% lipids and had a 3.53 cfu/g total bacteria count (TBC) whereas, CFS contained 5.5% lipids and had a 4.81 cfu/g TBC. During storage, TBC decreased significantly (p  0.05) in CFS. A peroxide value (PV) was not detectable until week four and eight of storage in CFS and DFS, respectively. The salt-soluble proteins (SSP) level was stable in DFS but in CFS it declined significantly (p  0.05) in both sausage types. This study showed that the effect of storage at -20 °C on fish sausages characteristics varied between formulations and depended on the ingredients of fish sausages.
    Matched MeSH terms: Lipids
  10. Majid HA, Amiri M, Mohd Azmi N, Su TT, Jalaludin MY, Al-Sadat N
    Sci Rep, 2016 07 28;6:30544.
    PMID: 27465116 DOI: 10.1038/srep30544
    Insufficient physical activity and growing obesity levels among Malaysian adolescents are becoming a public health concern. Our study is to identify the trends of self-reported physical activity (PA) levels, blood lipid profiles, and body composition (BC) indices from a cohort of 820 adolescents. The self-reported PA was assessed using a validated Malay version of the PA Questionnaire for Older Children (PAQ-C). Fasting blood samples were collected to investigate their lipid profiles. Height, weight, waist and hip circumferences as well as body fat percentage were measured. The baseline and the first follow-up were conducted in 2012 and 2014, respectively. A downward trend in the PA level was seen in all categories with a significant reduction among all rural adolescents (P = 0.013) and more specifically, PA among girls residing in rural areas dropped significantly (P = 0.006). Either a significant reduction in high-density lipoprotein (HDL) or a significant increment in BC indices (i.e., body mass index [BMI], waist circumference [WC], hip circumference, and body fat percentage [BF %]) were seen in this group. Female adolescents experienced more body fat increment with the reduction of physical activity. If not intervened early, adolescents from rural areas may increase their risk of developing cardiovascular diseases earlier.
    Matched MeSH terms: Lipids/blood*
  11. Kumar S, Alagawadi KR
    Pharm Biol, 2013 May;51(5):607-13.
    PMID: 23363068 DOI: 10.3109/13880209.2012.757327
    Context: Alpinia galanga Willd (Zingiberaceae) (AG) is a rhizomatous herb widely cultivated in shady regions of Malaysia, India, Indochina and Indonesia. It is used in southern India as a domestic remedy for the treatment of rheumatoid arthritis, cough, asthma, obesity, diabetes, etc. It was reported to have anti-obesity, hypoglycemic, hypolipidemic and antioxidant properties.

    Objective: A flavonol glycoside, galangin, was isolated from AG rhizomes. Based on its in vitro pancreatic lipase inhibitory effect, the study was further aimed to clarify whether galangin prevented obesity induced in female rats by feeding cafeteria diet (CD) for 6 weeks.

    Materials and methods: The in vitro pancreatic lipase inhibitory effect of galangin was determined by measuring the release of oleic acid from triolein. For in vivo experiments, female albino rats were fed CD with or without 50 mg/kg galangin for 6 weeks. Body weight and food intake was measured at weekly intervals. On day 42, serum lipids levels were estimated and then the weight of liver and parametrial adipose tissue (PAT) was determined. The liver lipid peroxidation and triglyceride (TG) content was also estimated.

    Results: The IC50 value of galangin for pancreatic lipase was 48.20 mg/mL. Galangin produced inhibition of increased body weight, energy intake and PAT weight induced by CD. In addition, galangin produced a significant decrease in serum lipids, liver weight, lipid peroxidation and accumulation of hepatic TGs.

    Conclusion: Galangin present in AG rhizomes produces anti-obesity effects in CD-fed rats; this may be mediated through its pancreatic lipase inhibitory, hypolipidemic and antioxidant activities.
    Matched MeSH terms: Lipids/blood
  12. El-Sheikh MA, Hadibarata T, Yuniarto A, Sathishkumar P, Abdel-Salam EM, Alatar AA
    Chemosphere, 2020 Nov 04.
    PMID: 33220978 DOI: 10.1016/j.chemosphere.2020.128873
    Since a few centuries ago, organochlorine compounds (OCs) become one of the threatened contaminants in the world. Due to the lipophilic and hydrophobic properties, OCs always discover in fat or lipid layers through bioaccumulation and biomagnification. The OCs are able to retain in soil, sediment and water for long time as it is volatile, OCs will evaporate from soil and condense in water easily and frequently, which pollute the shelter of aquatic life and it affects the function of organs and damage system in human body. Photocatalysis that employs the usage of semiconductor nanophotocatalyst and solar energy can be the possible alternative for current conventional water remediation technologies. With the benefits of utilizing renewable energy, no production of harmful by-products and easy operation, degradation of organic pollutants in rural water bodies can be established. Besides, nanophotocatalyst that is synthesized with nanotechnology outnumbered conventional catalyst with larger surface area to volume ratio, thus higher photocatalytic activity is observed. In contrast, disadvantages particularly no residual effect in water distribution network, requirement of post-treatment and easily affected by various factors accompanied with photocatalysis method cannot be ignored. These various factors constrained the photocatalytic efficiency via nanocatalysts which causes the full capacity of solar photocatalysis has yet to be put into practice. Therefore, further modifications and research are still required in nanophotocatalysts' synthesis to overcome limitations such as large band gaps and photodecontamination.
    Matched MeSH terms: Lipids
  13. Qidwai A, Khan S, Md S, Fazil M, Baboota S, Narang JK, et al.
    Drug Deliv, 2016 May;23(4):1476-85.
    PMID: 26978275 DOI: 10.3109/10717544.2016.1165310
    Topical photodynamic therapy (PDT) is a promising alternative for malignant skin diseases such as basal-cell carcinoma (BCC), due to its simplicity, enhanced patient compliance, and localization of the residual photosensitivity to the site of application. However, insufficient photosensitizer penetration into the skin is the major issue of concern with topical PDT. Therefore, the aim of the present study was to enable penetration of photosensitizer to the different strata of the skin using a lipid nanocarrier system. We have attempted to develop a nanostructured lipid carrier (NLC) for the topical delivery of second-generation photosensitizer, 5-amino levulinic acid (5-ALA), whose hydrophilicity and charge characteristic limit its percutaneous absorption. The microemulsion technique was used for preparing 5-ALA-loaded NLC. The mean particle size, polydispersity index, and entrapment efficiency of the optimized NLC of 5-ALA were found to be 185.2 ± 1.20, 0.156 ± 0.02, and 76.8 ± 2.58%, respectively. The results of in vitro release and in vitro skin permeation studies showed controlled drug release and enhanced penetration into the skin, respectively. Confocal laser scanning microscopy and cell line studies respectively demonstrated that encapsulation of 5-ALA in NLC enhanced its ability to reach deeper skin layers and consequently, increased cytotoxicity.
    Matched MeSH terms: Lipids/administration & dosage; Lipids/chemistry*
  14. Lau SCD, Loh CK, Alias H
    Front Pediatr, 2021;9:660627.
    PMID: 33968859 DOI: 10.3389/fped.2021.660627
    Asparaginase-induced hypertriglyceridemia can have a spectrum of clinical presentations, from being asymptomatic to having life-threatening thrombosis or hyperviscosity syndrome. At present, there is no recommendation on routine lipid monitoring during asparaginase-containing treatment phase, nor a standardized guideline on its management. Two cases are presented here to illustrate the effects of concurrent infection on asparaginase-induced hypertriglyceridemia in patients with high-risk ALL and the use of SMOFlipid infusion as a treatment option in an acute situation.
    Matched MeSH terms: Lipids
  15. Nordin N, Yeap SK, Rahman HS, Zamberi NR, Mohamad NE, Abu N, et al.
    Molecules, 2020 Jun 09;25(11).
    PMID: 32526880 DOI: 10.3390/molecules25112670
    Cancer nano-therapy has been progressing rapidly with the introduction of many novel drug delivery systems. The previous study has reported on the in vitro cytotoxicity of citral-loaded nanostructured lipid carrier (NLC-Citral) on MDA-MB-231 cells and some preliminary in vivo antitumor effects on 4T1 breast cancer cells challenged mice. However, the in vivo apoptosis induction and anti-metastatic effects of NLC-Citral have yet to be reported. In this study, the in vitro cytotoxic, anti-migration, and anti-invasion effects of NLC-Citral were tested on 4T1 breast cancer cells. In addition, the in vivo antitumor effects of oral delivery of NLC-Citral was also evaluated on BALB/c mice induced with 4T1 cells. In vitro cytotoxicity results showed that NLC-Citral and citral gave similar IC50 values on 4T1 cells. However, wound healing, migration, and invasion assays reflected better in vitro anti-metastasis potential for NLC-Citral than citral alone. Results from the in vivo study indicated that both NLC-Citral and citral have anti-tumor and anti-metastasis effects, whereby the NLC-Citral showed better efficacy than citral in all experiments. Also, the delay of tumor progression was through the suppression of the c-myc gene expression and induction of apoptosis in the tumor. In addition, the inhibition of metastasis of 4T1 cells to lung and bone marrow by the NLC-Citral and citral treatments was correlated with the downregulation of metastasis-related genes expression including MMP-9, ICAM, iNOS, and NF-kB and the angiogenesis-related proteins including G-CSF alpha, Eotaxin, bFGF, VEGF, IL-1alpha, and M-CSF in the tumor. Moreover, NLC-Citral showed greater downregulation of MMP-9, iNOS, ICAM, Eotaxin, bFGF, VEGF, and M-CSF than citral treatment in the 4T1-challenged mice, which may contribute to the better anti-metastatic effect of the encapsulated citral. This study suggests that NLC is a potential and effective delivery system for citral to target triple-negative breast cancer.
    Matched MeSH terms: Lipids/chemistry*
  16. Nordin N, Yeap SK, Rahman HS, Zamberi NR, Abu N, Mohamad NE, et al.
    Sci Rep, 2019 02 07;9(1):1614.
    PMID: 30733560 DOI: 10.1038/s41598-018-38214-x
    Very recently, we postulated that the incorporation of citral into nanostructured lipid carrier (NLC-Citral) improves solubility and delivery of the citral without toxic effects in vivo. Thus, the objective of this study is to evaluate anti-cancer effects of NLC-Citral in MDA MB-231 cells in vitro through the Annexin V, cell cycle, JC-1 and fluorometric assays. Additionally, this study is aimed to effects of NLC-Citral in reducing the tumor weight and size in 4T1 induced murine breast cancer model. Results showed that NLC-Citral induced apoptosis and G2/M arrest in MDA MB-231 cells. Furthermore, a prominent anti-metastatic ability of NLC-Citral was demonstrated in vitro using scratch, migration and invasion assays. A significant reduction of migrated and invaded cells was observed in the NLC-Citral treated MDA MB-231 cells. To further evaluate the apoptotic and anti-metastatic mechanism of NLC-Citral at the molecular level, microarray-based gene expression and proteomic profiling were conducted. Based on the result obtained, NLC-Citral was found to regulate several important signaling pathways related to cancer development such as apoptosis, cell cycle, and metastasis signaling pathways. Additionally, gene expression analysis was validated through the targeted RNA sequencing and real-time polymerase chain reaction. In conclusion, the NLC-Citral inhibited the proliferation of breast cancer cells in vitro, majorly through the induction of apoptosis, anti-metastasis, anti-angiogenesis potentials, and reducing the tumor weight and size without altering the therapeutic effects of citral.
    Matched MeSH terms: Lipids/chemistry*
  17. Izham MNM, Hussin Y, Rahim NFC, Aziz MNM, Yeap SK, Rahman HS, et al.
    BMC Complement Med Ther, 2021 Oct 07;21(1):254.
    PMID: 34620132 DOI: 10.1186/s12906-021-03422-y
    BACKGROUND: Eucalyptol is an active compound of eucalyptus essential oil and was reported to have many medical attributes including cytotoxic effect on breast cancer cells. However, it has low solubility in aqueous solutions which limits its bioavailability and cytotoxic efficiency. In this study, nanostructured lipid carrier loaded with eucalyptol (NLC-Eu) was formulated and characterized and the cytotoxic effect of NLC-Eu towards breast cancer cell lines was determined. In addition, its toxicity in animal model, BALB/c mice was also incorporated into this study to validate the safety of NLC-Eu.

    METHODS: Eucalyptol, a monoterpene oxide active, was used to formulate the NLC-Eu by using high pressure homogenization technique. The physicochemical characterization of NLC-Eu was performed to assess its morphology, particle size, polydispersity index, and zeta potential. The in vitro cytotoxic effects of this encapsulated eucalyptol on human (MDA MB-231) and murine (4 T1) breast cancer cell lines were determined using the MTT assay. Additionally, acridine orange/propidium iodide assay was conducted on the NLC-Eu treated MDA MB-231 cells. The in vivo sub-chronic toxicity of the prepared NLC-Eu was investigated using an in vivo BALB/c mice model.

    RESULTS: As a result, the light, translucent, milky-colored NLC-Eu showed particle size of 71.800 ± 2.144 nm, poly-dispersity index of 0.258 ± 0.003, and zeta potential of - 2.927 ± 0.163 mV. Furthermore, the TEM results of NLC-Eu displayed irregular round to spherical morphology with narrow size distribution and relatively uniformed particles. The drug loading capacity and entrapment efficiency of NLC-Eu were 4.99 and 90.93%, respectively. Furthermore, NLC-Eu exhibited cytotoxic effects on both, human and mice, breast cancer cells with IC50 values of 10.00 ± 4.81 μg/mL and 17.70 ± 0.57 μg/mL, respectively at 72 h. NLC-Eu also induced apoptosis on the MDA MB-231 cells. In the sub-chronic toxicity study, all of the studied mice did not show any signs of toxicity, abnormality or mortality. Besides that, no significant changes were observed in the body weight, internal organ index, hepatic and renal histopathology, serum biochemistry, nitric oxide and malondialdehyde contents.

    CONCLUSIONS: This study suggests that the well-characterized NLC-Eu offers a safe and promising carrier system which has cytotoxic effect on breast cancer cell lines.

    Matched MeSH terms: Lipids
  18. Nordin N, Yeap SK, Zamberi NR, Abu N, Mohamad NE, Rahman HS, et al.
    PeerJ, 2018;6:e3916.
    PMID: 29312812 DOI: 10.7717/peerj.3916
    The nanoparticle as a cancer drug delivery vehicle is rapidly under investigation due to its promising applicability as a novel drug delivery system for anticancer agents. This study describes the development, characterization and toxicity studies of a nanostructured lipid carrier (NLC) system for citral. Citral was loaded into the NLC using high pressure homogenization methods. The characterizations of NLC-citral were then determined through various methods. Based on Transmission Electron Microscope (TEM) analysis, NLC-Citral showed a spherical shape with an average diameter size of 54.12 ± 0.30 nm and a polydipersity index of 0.224 ± 0.005. The zeta potential of NLC-Citral was -12.73 ± 0.34 mV with an entrapment efficiency of 98.9 ± 0.124%, and drug loading of 9.84 ± 0.041%. Safety profile of the formulation was examined via in vitro and in vivo routes to study its effects toward normal cells. NLC-Citral exhibited no toxic effects towards the proliferation of mice splenocytes. Moreover, no mortality and toxic signs were observed in the treated groups after 28 days of treatment. There were also no significant alterations in serum biochemical analysis for all treatments. Increase in immunomodulatory effects of treated NLC-Citral and Citral groups was verified from the increase in CD4/CD3 and CD8/CD3 T cell population in both NLC-citral and citral treated splenocytes. This study suggests that NLC is a promising drug delivery system for citral as it has the potential in sustaining drug release without inducing any toxicity.
    Matched MeSH terms: Lipids
  19. Azman NA, Skowyra M, Muhammad K, Gallego MG, Almajano MP
    Pharm Biol, 2017 Dec;55(1):912-919.
    PMID: 28152668 DOI: 10.1080/13880209.2017.1282528
    CONTEXT: Betula pendula Roth (Betulaceae) exhibits many pharmacological activities in humans including anticancer, antibacterial, and antiviral effects. However, the antioxidant activity of BP towards lipid degradation has not been fully determined.

    OBJECTIVE: The BP ethanol and methanol extracts were evaluated to determine antioxidant activity by an in vitro method and lyophilized extract of BP was added to beef patties to study oxidative stability.

    MATERIALS AND METHODS: Antioxidant activities of extracts of BP were determined by measuring scavenging radical activity against methoxy radical generated by Fenton reaction 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (TEAC) radical cation, the oxygen radical absorbance capacity (ORAC) and the ferric reducing antioxidant power (FRAP) assays. The lipid deterioration in beef patties containing 0.1% and 0.3% (w/w) of lyophilized extract of BP stored in 80:20 (v/v) O2:CO2 modified atmosphere (MAP) at 4 °C for 10 days was determined using thiobarbituric acid reacting substances (TBARS), % metmyoglobin and colour value.

    RESULTS: The BP methanol extract revealed the presence of catechin, myricetin, quercetin, naringenin, and p-coumaric acid. The BP ethanol (50% w/w) extract showed scavenging activity in TEAC, ORAC and FRAP assays with values of 1.45, 2.81, 1.52 mmol Trolox equivalents (TE)/g DW, respectively. Reductions in lipid oxidation were found in samples treated with lyophilized BP extract (0.1% and 0.3% w/w) as manifested by the changes of colour and metmyoglobin concentration. A preliminary study film with BP showed retard degradation of lipid in muscle food.

    CONCLUSION: The present results indicated that the BP extracts can be used as natural food antioxidants.

    Matched MeSH terms: Lipids/chemistry
  20. Unniachan S, Bash LD, Khovidhunkit W, Sri RZ, Vicaldo E, Recto C, et al.
    Int J Clin Pract, 2014 Aug;68(8):1010-9.
    PMID: 24666791 DOI: 10.1111/ijcp.12407
    Guidelines emphasise the importance of low-density lipoprotein cholesterol (LDL-C) goals for cardiovascular risk reduction. Given the importance of association between high-density lipoprotein (HDL-C) and triglycerides (TG) normal levels and cardiovascular risk, there is an additional need to further evaluate diverse dyslipidaemic populations.
    Matched MeSH terms: Lipids/blood*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links