Displaying publications 21 - 36 of 36 in total

Abstract:
Sort:
  1. Jeevanandam J, Chan YS, Danquah MK
    Biochimie, 2016 Sep-Oct;128-129:99-112.
    PMID: 27436182 DOI: 10.1016/j.biochi.2016.07.008
    Nano-formulations of medicinal drugs have attracted the interest of many researchers for drug delivery applications. These nano-formulations enhance the properties of conventional drugs and are specific to the targeted delivery site. Dendrimers, polymeric nanoparticles, liposomes, nano-emulsions and micelles are some of the nano-formulations that are gaining prominence in pharmaceutical industry for enhanced drug formulation. Wide varieties of synthesis methods are available for the preparation of nano-formulations to deliver drugs in biological system. The choice of synthesis methods depend on the size and shape of particulate formulation, biochemical properties of drug, and the targeted site. This article discusses recent developments in nano-formulation and the progressive impact on pharmaceutical research and industries. Additionally, process challenges relating to consistent generation of nano-formulations for drug delivery are discussed.
    Matched MeSH terms: Liposomes/chemistry
  2. Reginald K, Chew FT
    Sci Rep, 2019 02 07;9(1):1556.
    PMID: 30733527 DOI: 10.1038/s41598-018-38313-9
    Der p 2 is a major dust mite allergen and >80% of mite allergic individuals have specific IgE to this allergen. Although it is well characterized in terms of allergenicity, there is still some ambiguity in terms of its biological function. Three-dimensional structural analysis of Der p 2 and its close homologues indicate the presence of a hydrophobic cavity which can potentially bind to lipid molecules. In this study, we aimed to identify the potential ligand of Der p 2. Using a liposome pulldown assay, we show that recombinant Der p 2 binds to liposomes prepared with exogenous cholesterol in a dose dependent fashion. Next, an ELISA based assay using immobilized lipids was used to study binding specificities of other lipid molecules. Cholesterol was the preferred ligand of Der p 2 among 11 different lipids tested. Two homologues of Der p 2, Der f 2 and Der f 22 also bound to cholesterol. Further, using liquid chromatography-mass spectrometry (LC-MS), we confirmed that cholesterol is the natural ligand of Der p 2. Three amino acid residues of Der p 2, V104, V106 and V110 are possible cholesterol binding sites, as alanine mutations of these residues showed a significant decrease in binding (p 
    Matched MeSH terms: Liposomes/chemistry
  3. Okuda K, Fu HY, Matsuzaki T, Araki R, Tsuchida S, Thanikachalam PV, et al.
    PLoS One, 2016;11(8):e0160944.
    PMID: 27501378 DOI: 10.1371/journal.pone.0160944
    Immunosuppressive agents are used for the treatment of immune-mediated myocarditis; however, the need to develop a more effective therapeutic approach remains. Nano-sized liposomes may accumulate in and selectively deliver drugs to an inflammatory lesion with enhanced vascular permeability. The aims of this study were to investigate the distribution of liposomal FK506, an immunosuppressive drug encapsulated within liposomes, and the drug's effects on cardiac function in a rat experimental autoimmune myocarditis (EAM) model. We prepared polyethylene glycol-modified liposomal FK506 (mean diameter: 109.5 ± 4.4 nm). We induced EAM by immunization with porcine myosin and assessed the tissue distribution of the nano-sized beads and liposomal FK506 in this model. After liposomal or free FK506 was administered on days 14 and 17 after immunization, the cytokine expression in the rat hearts along with the histological findings and hemodynamic parameters were determined on day 21. Ex vivo fluorescent imaging revealed that intravenously administered fluorescent-labeled nano-sized beads had accumulated in myocarditic but not normal hearts on day 14 after immunization and thereafter. Compared to the administration of free FK506, FK506 levels were increased in both the plasma and hearts of EAM rats when liposomal FK506 was administered. The administration of liposomal FK506 markedly suppressed the expression of cytokines, such as interferon-γ and tumor necrosis factor-α, and reduced inflammation and fibrosis in the myocardium on day 21 compared to free FK506. The administration of liposomal FK506 also markedly ameliorated cardiac dysfunction on day 21 compared to free FK506. Nano-sized liposomes may be a promising drug delivery system for targeting myocarditic hearts with cardioprotective agents.
    Matched MeSH terms: Liposomes/chemistry
  4. Chiong HS, Yong YK, Ahmad Z, Sulaiman MR, Zakaria ZA, Yuen KH, et al.
    Int J Nanomedicine, 2013;8:1245-55.
    PMID: 23569374 DOI: 10.2147/IJN.S42801
    Liposomal drug delivery systems, a promising lipid-based nanoparticle technology, have been known to play significant roles in improving the safety and efficacy of an encapsulated drug.
    Matched MeSH terms: Liposomes/chemistry
  5. Moo KS, Radhakrishnan S, Teoh M, Narayanan P, Bukhari NI, Segarra I
    Yao Xue Xue Bao, 2010 Jul;45(7):901-8.
    PMID: 20931790
    Imatinib is an efficacious anticancer drug with a spectrum of potential antitumour applications limited by poor biodistribution at therapeutic concentrations to the tissues of interest. We assess the pharmacokinetic and tissue distribution profile of imatinib in a liposome formulation. Its single dose (6.25 mg x kg(-1)) in a liposome formulation was administered iv to male mice. Imatinib concentration was measured in plasma, spleen, liver, kidney and brain using a HPLC assay. Non-compartmental pharmacokinetic approach was used to assess the disposition parameters. The plasma disposition profile was biphasic with a plateau-like second phase. The AUC(0-->infinity) was 11.24 microg x h x mL(-1), the elimination rate constant (k(el)) was 0.348 h(-1) and the elimination half life (t(1/2)) was 2.0 h. The mean residence time (MRT) was 2.59 h, V(SS) was 1.44 L x kg(-1) and clearance was 0.56 L x h x kg(-1). Liver achieved the highest tissue exposure: CMAX = 18.72 microg x mL(-1); AUC(0-->infinity)= 58.18 microg x h x mL(-1) and longest t(1/2) (4.29 h) and MRT (5.31 h). Kidney and spleen AUC(0-->infinity) were 47.98 microg x h x mL(-1) and 23.46 microg x h x mL(-1), respectively. Half-life was 1.83 h for the kidney and 3.37 h for the spleen. Imatinib penetrated into the brain reaching approximately 1 microg x g(-1). Upon correction by organ blood flow the spleen showed the largest uptake efficiency. Liposomal imatinib presented extensive biodistribution. The drug uptake kinetics showed mechanism differences amongst the tissues. These findings encourage the development of novel imatinib formulations to treat other cancers.
    Matched MeSH terms: Liposomes/chemistry*
  6. Wu Y, Mou B, Song S, Tan CP, Lai OM, Shen C, et al.
    Food Res Int, 2020 10;136:109301.
    PMID: 32846513 DOI: 10.1016/j.foodres.2020.109301
    Present study prepared curcumin liposomes with high encapsulation efficiency (>70%) using bovine milk and krill phospholipids; and investigated the effects of phospholipids composition on storage stability, in-vitro bioavailability, antioxidative and anti-hyperglycemic properties of the curcumin liposomes. Curcumin liposomes prepared from bovine milk phospholipids have smaller particle sizes (163.1 ± 6.42 nm) and greater negative zeta potentials (-26.7 mv) as compared to that prepared from krill phospholipids (particle size: 212.2 ± 4.1 nm, zeta potential: -15.23 mv). In addition, curcumin liposomes from bovine milk phospholipids demonstrated better stability under harsh storage conditions (alkaline conditions, oxygen, high temperature and relative humidity). Nevertheless, curcumin-loaded liposomes prepared from bovine milk phospholipids have inferior bioavailability compared to that prepared from krill phospholipids. No significant differences can be observed in terms of anti-oxidative and anti-hyperglycemic properties of liposomes prepared from both bovine milk and krill phospholipids. Findings from present study will open up new opportunities for development of stable curcumin liposomes with good functional properties (high digestibility, bioavailability and pharmacological effects).
    Matched MeSH terms: Liposomes/chemistry*
  7. Eh Suk VR, Chung I, Misran M
    Curr Drug Deliv, 2020;17(4):292-302.
    PMID: 32039684 DOI: 10.2174/1567201817666200210122933
    BACKGROUND: Liposomes are mostly known to be prepared from phospholipids and lipids and have a remarkable capacity to encapsulate both lipophobic and lipophilic molecules. However, there is little research on developing fatty acid liposomes for chemotherapy.

    OBJECTIVE: We have successfully prepared mixed fatty acid liposomes from two monounsaturated fatty acids, namely oleic acid and erucic acid, which stabilised by DOPEPEG2000. The Critical Vesicular Concentration (CVC) of liposomes was found to be within 0.09 to 0.21 mmol dm-3, with an average particle size of 400 nm.

    METHODS: Encapsulation of various anticancer drugs such as folinic acid, methotrexate, doxorubicin, or irinotecan resulted in Encapsulation Efficiency (%EE) of up to 90%. Using a 3-(4, 5-dimethylthiazol-2- yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the median Inhibitory Concentration (IC50) values of mixed oleic acid-erucic acid encapsulating hydrophilic drugs was remarkably reduced at the end of 24 hours of incubation with the human lung carcinoma cell line A549.

    RESULTS: The results suggest that mixed oleic acid-erucic acid liposomes are a potential new approach to further develop as an alternative vehicle of various drugs for cancer treatment.

    Matched MeSH terms: Liposomes/chemistry*
  8. Sonali, Singh RP, Sharma G, Kumari L, Koch B, Singh S, et al.
    Colloids Surf B Biointerfaces, 2016 Nov 01;147:129-141.
    PMID: 27497076 DOI: 10.1016/j.colsurfb.2016.07.058
    The aim of this work was to formulate RGD-TPGS decorated theranostic liposomes, which contain both docetaxel (DTX) and quantum dots (QDs) for brain cancer imaging and therapy. RGD conjugated TPGS (RGD-TPGS) was synthesized and conjugation was confirmed by Fourier transform infrared (FTIR) spectroscopy and electrospray ionisation (ESI) mass spectroscopy (ESI-MS). The theranostic liposomes were prepared by the solvent injection method and characterized for their particle size, polydispersity, zeta-potential, surface morphology, drug encapsulation efficiency, and in-vitro release study. Biocompatibility and safety of theranostic liposomes were studied by reactive oxygen species (ROS) generation study and histopathology of brain. In-vivo study was performed for determination of brain theranostic effects in comparison with marketed formulation (Docel™) and free QDs. The particle sizes of the non-targeted and targeted theranostic liposomes were found in between 100 and 200nm. About 70% of drug encapsulation efficiency was achieved with liposomes. The drug release from RGD-TPGS decorated liposomes was sustained for more than 72h with 80% of drug release. The in-vivo results demonstrated that RGD-TPGS decorated theranostic liposomes were 6.47- and 6.98-fold more effective than Docel™ after 2h and 4h treatments, respectively. Further, RGD-TPGS decorated theranostic liposomes has reduced ROS generation effectively, and did not show any signs of brain damage or edema in brain histopathology. The results of this study have indicated that RGD-TPGS decorated theranostic liposomes are promising carrier for brain theranostics.
    Matched MeSH terms: Liposomes/chemistry*
  9. Chellappan DK, Hansbro PM, Dua K, Hsu A, Gupta G, Ng ZY, et al.
    Pharm Nanotechnol, 2017;5(4):250-254.
    PMID: 28786351 DOI: 10.2174/2211738505666170808094635
    BACKGROUND: Vesicular systems like nanotechnology and liposomes are gaining tremendous attention lately in the field of respiratory diseases. These formulations enhance bioavailability of the drug candidate, which could be achieved through a novel drug delivery mechanism. Moreover, the therapeutic potential achieved through these systems is highly controllable over long durations of time providing better efficacy and patient compliance.

    OBJECTIVE: The objective of this paper is to review the recent literature on vesicular drug delivery systems containing curcumin.

    METHODS: We have collated and summarized various recent attempts made to develop different controlled release drug delivery systems containing curcumin which would be of great interest for herbal, formulation and biological scientists. There are several vesicular nanotechnological techniques involving curcumin which have been studied recently, targeting pulmonary diseases.

    RESULTS: Different vesicular systems containing curcumin are being studied for their therapeutic potential in different respiratory diseases. There has been a renewed interest in formulations containing curcumin recently, primarily owing to the broad spectrum therapeutic potential of this miracle substance. Various types of formulations, containing curcumin, targeting different bodily systems have recently emerged and, nevertheless, the search for newer frontiers with this drug goes on.

    CONCLUSION: This mini review, in this direction, tries to highlight the key research interventions employing vesicular systems of drug delivery with curcumin.

    Matched MeSH terms: Liposomes/chemistry
  10. Hussain Z, Thu HE, Ng SF, Khan S, Katas H
    Colloids Surf B Biointerfaces, 2017 Feb 01;150:223-241.
    PMID: 27918967 DOI: 10.1016/j.colsurfb.2016.11.036
    Wound healing is a multifarious and vibrant process of replacing devitalized and damaged cellular structures, leading to restoration of the skin's barrier function, re-establishment of tissue integrity, and maintenance of the internal homeostasis. Curcumin (CUR) and its analogs have gained widespread recognition due to their remarkable anti-inflammatory, anti-infective, anticancer, immunomodulatory, antioxidant, and wound healing activities. However, their pharmaceutical significance is limited due to inherent hydrophobic nature, poor water solubility, low bioavailability, chemical instability, rapid metabolism and short half-life. Owing to their pharmaceutical limitations, newer strategies have been attempted in recent years aiming to mitigate problems related to the effective delivery of curcumanoids and to improve their wound healing potential. These advanced strategies include nanovesicles, polymeric micelles, conventional liposomes and hyalurosomes, nanocomposite hydrogels, electrospun nanofibers, nanohybrid scaffolds, nanoconjugates, nanostructured lipid carriers (NLCs), nanoemulsion, nanodispersion, and polymeric nanoparticles (NPs). The superior wound healing activities achieved after nanoencapsulation of the CUR are attributed to its target-specific delivery, longer retention at the target site, avoiding premature degradation of the encapsulated cargo and the therapeutic superiority of the advanced delivery systems over the conventional delivery. We have critically reviewed the literature and summarize the convincing evidence which explore the pharmaceutical significance and therapeutic feasibility of the advanced delivery systems in improving wound healing activities of the CUR and its analogs.
    Matched MeSH terms: Liposomes/chemistry
  11. Karthivashan G, Masarudin MJ, Kura AU, Abas F, Fakurazi S
    Int J Nanomedicine, 2016;11:3417-34.
    PMID: 27555765 DOI: 10.2147/IJN.S112045
    This study involves adaptation of bulk or sequential technique to load multiple flavonoids in a single phytosome, which can be termed as "flavonosome". Three widely established and therapeutically valuable flavonoids, such as quercetin (Q), kaempferol (K), and apigenin (A), were quantified in the ethyl acetate fraction of Moringa oleifera leaves extract and were commercially obtained and incorporated in a single flavonosome (QKA-phosphatidylcholine) through four different methods of synthesis - bulk (M1) and serialized (M2) co-sonication and bulk (M3) and sequential (M4) co-loading. The study also established an optimal formulation method based on screening the synthesized flavonosomes with respect to their size, charge, polydispersity index, morphology, drug-carrier interaction, antioxidant potential through in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics, and cytotoxicity evaluation against human hepatoma cell line (HepaRG). Furthermore, entrapment and loading efficiency of flavonoids in the optimal flavonosome have been identified. Among the four synthesis methods, sequential loading technique has been optimized as the best method for the synthesis of QKA-phosphatidylcholine flavonosome, which revealed an average diameter of 375.93±33.61 nm, with a zeta potential of -39.07±3.55 mV, and the entrapment efficiency was >98% for all the flavonoids, whereas the drug-loading capacity of Q, K, and A was 31.63%±0.17%, 34.51%±2.07%, and 31.79%±0.01%, respectively. The in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics of the flavonoids indirectly depicts the release kinetic behavior of the flavonoids from the carrier. The QKA-loaded flavonosome had no indication of toxicity toward human hepatoma cell line as shown by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide result, wherein even at the higher concentration of 200 µg/mL, the flavonosomes exert >85% of cell viability. These results suggest that sequential loading technique may be a promising nanodrug delivery system for loading multiflavonoids in a single entity with sustained activity as an antioxidant, hepatoprotective, and hepatosupplement candidate.
    Matched MeSH terms: Liposomes/chemistry*
  12. Noor NM, Khan AA, Hasham R, Talib A, Sarmidi MR, Aziz R, et al.
    IET Nanobiotechnol, 2016 Aug;10(4):195-9.
    PMID: 27463789 DOI: 10.1049/iet-nbt.2015.0041
    Virgin coconut oil (VCO) is the finest grade of coconut oil, rich in phenolic content, antioxidant activity and contains medium chain triglycerides (MCTs). In this work formulation, characterisation and penetration of VCO-solid lipid particles (VCO-SLP) have been studied. VCO-SLP were prepared using ultrasonication of molten stearic acid and VCO in an aqueous solution. The electron microscopy imaging revealed that VCO-SLP were solid and spherical in shape. Ultrasonication was performed at several power intensities which resulted in particle sizes of VCO-SLP ranged from 0.608 ± 0.002 µm to 44.265 ± 1.870 µm. The particle size was directly proportional to the applied power intensity of ultrasonication. The zeta potential values of the particles were from -43.2 ± 0.28 mV to -47.5 ± 0.42 mV showing good stability. The cumulative permeation for the smallest sized VCO-SLP (0.608 µm) was 3.83 ± 0.01 µg/cm(2) whereas for larger carriers it was reduced (3.59 ± 0.02 µg/cm(2)). It is concluded that SLP have the potential to be exploited as a micro/nano scale cosmeceutical carrying vehicle for improved dermal delivery of VCO.
    Matched MeSH terms: Liposomes/chemistry*
  13. Ravichandiran V, Masilamani K, Senthilnathan B, Maheshwaran A, Wong TW, Roy P
    Curr Drug Deliv, 2017;14(8):1053-1059.
    PMID: 27572089 DOI: 10.2174/1567201813666160829100453
    BACKGROUND: Curcumin is a yellow polyphenolic chemopreventive agent isolated from the rhizomes of Curcuma longa. It is approved as Generally Regarded as Safe by US FDA. Nonetheless, its clinical success is limited due to its poor aqueous solubility, fast metabolism and short biological half-life attributes.

    OBJECTIVE: Quercetin-decorated liposomes of curcumin (QCunp) are perceived to be able to overcome these biopharmaceutical drawbacks.

    METHODS: Curcumin liposomes with/without quercetin were prepared by lipid hydration technique. The liposomes were characterized for their particle size, zeta potential, surface morphology, drug loading and release characteristics. The toxicity of the liposomes were evaluated in-vitro and their invivo efficacy were tested against Dalton's ascites lymphoma in mice.

    RESULTS: Liposomes designed showed particle size of 261.8 ± 2.1 nm with a negative zeta potential of -22.6±1.6 mV. Quercetin decorated liposomes were more effective in increasing the life span and body weight of lymphoma inflicted mice compared to those without quercetin. Similarly, the presence of quercetin also contributed to enhanced cytotoxicity of the liposomal formulation towards HT-29 cells and HCT-15 cells.

    CONCLUSION: Newer liposomal design exhibited promising potential to emerge as alternative anticancer therapeutics.

    Matched MeSH terms: Liposomes/chemistry*
  14. Yang CL, Chao YJ, Wang HC, Hou YC, Chen CG, Chang CC, et al.
    Nanomedicine, 2021 10;37:102450.
    PMID: 34332115 DOI: 10.1016/j.nano.2021.102450
    Epigenetic inhibitors have shown anticancer effects. Combination chemotherapy with epigenetic inhibitors has shown high effectiveness in gastric cancer clinical trials, but severe side effect and local progression are the causes of treatment failure. Therefore, we sought to develop an acidity-sensitive drug delivery system to release drugs locally to diminish unfavorable outcome of gastric cancer. In this study, we showed that, as compared with single agents, combination treatment with the demethylating agent 5'-aza-2'-deoxycytidine and HDAC inhibitors Trichostatin A or LBH589 decreased cell survival, blocked cell cycle by reducing number of S-phase cells and expression of cyclins, increased cell apoptosis by inducing expression of Bim and cleaved Caspase 3, and reexpressed tumor suppressor genes more effectively in MGCC3I cells. As a carrier, reconstituted apolipoprotein B lipoparticles (rABLs) could release drugs in acidic environments. Orally administrated embedded drugs not only showed inhibitory effects on gastric tumor growth in a syngeneic orthotopic mouse model, but also reduced the hepatic and renal toxicity. In conclusion, we have established rABL-based nanoparticles embedded epigenetic inhibitors for local treatment of gastric cancer, which have good therapeutic effects but do not cause severe side effects.
    Matched MeSH terms: Liposomes/chemistry
  15. Tan DM, Fu JY, Wong FS, Er HM, Chen YS, Nesaretnam K
    Nanomedicine (Lond), 2017 Oct;12(20):2487-2502.
    PMID: 28972460 DOI: 10.2217/nnm-2017-0182
    AIM: To develop 6-O-palmitoyl-ascorbic acid-based niosomes targeted to transferrin receptor for intravenous administration of tocotrienols (T3) in breast cancer.

    MATERIALS & METHODS: Niosomes were prepared using film hydration and ultrasonication methods. Transferrin was coupled to the surface of niosomes via chemical linker. Nanovesicles were characterized for size, zeta potential, morphology, stability and biological efficacy.

    RESULTS: When evaluated in MDA-MB-231 cells, entrapment of T3 in niosomes caused 1.5-fold reduction in IC50 value compared with nonformulated T3. In vivo, the average tumor volume of mice treated with tumor-targeted niosomes was 12-fold lower than that of untreated group, accompanied by marked downregulation of three genes involved in metastasis.

    CONCLUSION: Findings suggested that tumor-targeted niosomes served as promising delivery system for T3 in cancer therapy.

    Matched MeSH terms: Liposomes/chemistry*
  16. Abdul Nasir NA, Agarwal R, Vasudevan S, Tripathy M, Alyautdin R, Ismail NM
    Mol Vis, 2014;20:822-35.
    PMID: 24940038
    Oxidative and nitrosative stress underlies cataractogenesis, and therefore, various antioxidants have been investigated for anticataract properties. Several vitamin E analogs have also been studied for anticataract effects due to their antioxidant properties; however, the anticataract properties of tocotrienols have not been investigated. In this study, we investigated the effects of topically applied tocotrienol on the onset and progression of cataract and lenticular oxidative and nitrosative stress in galactosemic rats.
    Matched MeSH terms: Liposomes/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links