Displaying publications 21 - 40 of 116 in total

Abstract:
Sort:
  1. Alhabshi SM, Rahmat K, Abu Hassan H, Westerhout CJ, Chandran PA
    Jpn J Radiol, 2013 May;31(5):342-8.
    PMID: 23385379 DOI: 10.1007/s11604-013-0183-y
    Phyllodes tumour or cystosarcoma phyllodes is a rare stromal breast tumour that is usually benign but on rare occasions can turn malignant. Non-specificity of the imaging features on sonography and mammography makes it difficult to distinguish malignant from benign counterparts solely based on imaging. The final diagnosis is still highly dependent on histopathological assessment. Herein, we describe two cases of malignant phyllodes tumour with emphasis on magnetic resonance (MR) imaging features using advanced MR applications.
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  2. Ahmad RF, Malik AS, Kamel N, Reza F, Abdullah JM
    Australas Phys Eng Sci Med, 2016 Jun;39(2):363-78.
    PMID: 27043850 DOI: 10.1007/s13246-016-0438-x
    Memory plays an important role in human life. Memory can be divided into two categories, i.e., long term memory and short term memory (STM). STM or working memory (WM) stores information for a short span of time and it is used for information manipulations and fast response activities. WM is generally involved in the higher cognitive functions of the brain. Different studies have been carried out by researchers to understand the WM process. Most of these studies were based on neuroimaging modalities like fMRI, EEG, MEG etc., which use standalone processes. Each neuroimaging modality has some pros and cons. For example, EEG gives high temporal resolution but poor spatial resolution. On the other hand, the fMRI results have a high spatial resolution but poor temporal resolution. For a more in depth understanding and insight of what is happening inside the human brain during the WM process or during cognitive tasks, high spatial as well as high temporal resolution is desirable. Over the past decade, researchers have been working to combine different modalities to achieve a high spatial and temporal resolution at the same time. Developments of MRI compatible EEG equipment in recent times have enabled researchers to combine EEG-fMRI successfully. The research publications in simultaneous EEG-fMRI have been increasing tremendously. This review is focused on the WM research involving simultaneous EEG-fMRI data acquisition and analysis. We have covered the simultaneous EEG-fMRI application in WM and data processing. Also, it adds to potential fusion methods which can be used for simultaneous EEG-fMRI for WM and cognitive tasks.
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  3. Tooyama I, Yanagisawa D, Taguchi H, Kato T, Hirao K, Shirai N, et al.
    Ageing Res Rev, 2016 09;30:85-94.
    PMID: 26772439 DOI: 10.1016/j.arr.2015.12.008
    The formation of senile plaques followed by the deposition of amyloid-β is the earliest pathological change in Alzheimer's disease. Thus, the detection of senile plaques remains the most important early diagnostic indicator of Alzheimer's disease. Amyloid imaging is a noninvasive technique for visualizing senile plaques in the brains of Alzheimer's patients using positron emission tomography (PET) or magnetic resonance imaging (MRI). Because fluorine-19 ((19)F) displays an intense nuclear magnetic resonance signal and is almost non-existent in the body, targets are detected with a higher signal-to-noise ratio using appropriate fluorinated contrast agents. The recent introduction of high-field MRI allows us to detect amyloid depositions in the brain of living mouse using (19)F-MRI. So far, at least three probes have been reported to detect amyloid deposition in the brain of transgenic mouse models of Alzheimer's disease; (E,E)-1-fluoro-2,5-bis-(3-hydroxycarbonyl-4-hydroxy)styrylbenzene (FSB), 1,7-bis(4'-hydroxy-3'-trifluoromethoxyphenyl)-4-methoxycarbonylethyl-1,6-heptadiene3,5-dione (FMeC1, Shiga-Y5) and 6-(3',6',9',15',18',21'-heptaoxa-23',23',23'-trifluorotricosanyloxy)-2-(4'-dimethylaminostyryl)benzoxazole (XP7, Shiga-X22). This review presents the recent advances in amyloid imaging using (19)F-MRI, including our own studies.
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  4. Mohd Zaki F, Moineddin R, Grant R, Chavhan GB
    Pediatr Radiol, 2016 Nov;46(12):1684-1693.
    PMID: 27406610
    BACKGROUND: Safety concerns are increasingly raised regarding the use of gadolinium-based contrast media for MR imaging.

    OBJECTIVE: To determine the accuracy of pre-contrast abdominal MR imaging for lesion detection and characterization in pediatric oncology patients.

    MATERIALS AND METHODS: We included 120 children (37 boys and 83 girls; mean age 8.94 years) referred by oncology services. Twenty-five had MRI for the first time and 95 were follow-up scans. Two authors independently reviewed pre-contrast MR images to note the following information about the lesions: location, number, solid vs. cystic and likely nature. Pre- and post-contrast imaging reviewed together served as the reference standard.

    RESULTS: The overall sensitivity was 88% for the first reader and 90% for the second; specificity was 94% and 91%; positive predictive value was 96% and 94%; negative predictive value was 82% and 84%; accuracy of pre-contrast imaging for lesion detection as compared to the reference standard was 90% for both readers. The difference between mean number of lesions detected on pre-contrast imaging and reference standard was not significant for either reader (reader 1, P = 0.072; reader 2, P = 0.071). There was substantial agreement (kappa values of 0.76 and 0.72 for readers 1 and 2) between pre-contrast imaging and reference standard for determining solid vs. cystic lesion and likely nature of the lesion. The addition of post-contrast imaging increased confidence of both readers significantly (P 

    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  5. Abdullah H, Abdul Wahab N, Abu Bakar K
    BMJ Case Rep, 2017 Jun 13;2017.
    PMID: 28611167 DOI: 10.1136/bcr-2017-219793
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  6. Ahmad RF, Malik AS, Kamel N, Reza F, Amin HU, Hussain M
    Technol Health Care, 2017;25(3):471-485.
    PMID: 27935575 DOI: 10.3233/THC-161286
    BACKGROUND: Classification of the visual information from the brain activity data is a challenging task. Many studies reported in the literature are based on the brain activity patterns using either fMRI or EEG/MEG only. EEG and fMRI considered as two complementary neuroimaging modalities in terms of their temporal and spatial resolution to map the brain activity. For getting a high spatial and temporal resolution of the brain at the same time, simultaneous EEG-fMRI seems to be fruitful.

    METHODS: In this article, we propose a new method based on simultaneous EEG-fMRI data and machine learning approach to classify the visual brain activity patterns. We acquired EEG-fMRI data simultaneously on the ten healthy human participants by showing them visual stimuli. Data fusion approach is used to merge EEG and fMRI data. Machine learning classifier is used for the classification purposes.

    RESULTS: Results showed that superior classification performance has been achieved with simultaneous EEG-fMRI data as compared to the EEG and fMRI data standalone. This shows that multimodal approach improved the classification accuracy results as compared with other approaches reported in the literature.

    CONCLUSIONS: The proposed simultaneous EEG-fMRI approach for classifying the brain activity patterns can be helpful to predict or fully decode the brain activity patterns.

    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  7. Manan HA, Franz EA, Yahya N
    Neuroradiology, 2020 Mar;62(3):353-367.
    PMID: 31802156 DOI: 10.1007/s00234-019-02322-w
    PURPOSE: Functional MRI (fMRI) can be employed to non-invasively localize brain regions involved in functional areas of language in patients with brain tumour, for applications including pre-operative mapping. The present systematic review was conducted to explore prevalence of different language paradigms utilised in conjunction with fMRI approaches for pre-operative mapping, with the aim of assessing their effectiveness and suitability.

    METHODS: A systematic literature search of brain tumours in the context of fMRI methods applied to pre-operative mapping for language functional areas was conducted using PubMed/MEDLINE and Scopus electronic database following PRISMA guidelines. The article search was conducted between the earliest record and March 1, 2019. References and citations were checked in Google Scholar database.

    RESULTS: Twenty-nine independent studies were identified, comprising 1031 adult participants with 976 patients characterised with different types and sizes of brain tumours, and the remaining 55 being healthy controls. These studies evaluated functional language areas in patients with brain tumours prior to surgical interventions using language-based fMRI. Results demonstrated that 86% of the studies used a Word Generation Task (WGT) to evoke functional language areas during pre-operative mapping. Fifty-seven percent of the studies that used language-based paradigms in conjunction with fMRI as a pre-operative mapping tool were in agreement with intra-operative results of language localization.

    CONCLUSIONS: WGT was most commonly utilised and is proposed as a suitable and useful technique for a language-based paradigm fMRI for pre-operative mapping. However, based on available evidence, WGT alone is not sufficient. We propose a combination and convergence paradigms for a more sensitive and specific map of language function for pre-operative mapping. A standard guideline for clinical applications should be established.

    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  8. Duc NM, Huy HQ, Nadarajan C, Keserci B
    Anticancer Res, 2020 May;40(5):2975-2980.
    PMID: 32366451 DOI: 10.21873/anticanres.14277
    BACKGROUND/AIM: Even though advanced magnetic resonance imaging (MRI) can effectively differentiate between medulloblastoma and ependymoma, it is not readily available throughout the world. This study aimed to investigate the role of simple quantified basic MRI sequences in the differentiation between medulloblastoma and ependymoma in children.

    PATIENTS AND METHODS: The institutional review board approved this prospective study. The brain MRI protocol, including sagittal T1-weighted, axial T2-weighted, coronal fluid-attenuated inversion recovery, and axial T1-weighted with contrast enhancement (T1WCE) sequences, was assessed in 26 patients divided into two groups: Medulloblastoma (n=22) and ependymoma (n=4). The quantified region of interest (ROI) values of tumors and their ratios to parenchyma were compared between the two groups. Multivariate logistic regression analysis was utilized to find significant factors influencing the differential diagnosis between the two groups. A generalized estimating equation (GEE) was used to create the predictive model for the discrimination of medulloblastoma from ependymoma.

    RESULTS: Multivariate logistic regression analysis showed that the T2- and T1WCE-ROI values of tumors and the ratios of T1WCE-ROI values to parenchyma were the most significant factors influencing the diagnosis between these two groups. GEE produced the model: y=exn/(1+exn) with predictor xn=-8.773+0.012x1 - 0.032x2 - 13.228x3, where x1 was the T2-weighted signal intensity (SI) of tumor, x2 the T1WCE SI of tumor, and x3 the T1WCE SI ratio of tumor to parenchyma. The sensitivity, specificity, and area under the curve of the GEE model were 77.3%, 100%, and 92%, respectively.

    CONCLUSION: The GEE predictive model can discriminate between medulloblastoma and ependymoma clinically. Further research should be performed to validate these findings.

    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  9. Siddiqui MF, Reza AW, Shafique A, Omer H, Kanesan J
    Magn Reson Imaging, 2017 12;44:82-91.
    PMID: 28855113 DOI: 10.1016/j.mri.2017.08.005
    Sensitivity Encoding (SENSE) is a widely used technique in Parallel Magnetic Resonance Imaging (MRI) to reduce scan time. Reconfigurable hardware based architecture for SENSE can potentially provide image reconstruction with much less computation time. Application specific hardware platform for SENSE may dramatically increase the power efficiency of the system and can decrease the execution time to obtain MR images. A new implementation of SENSE on Field Programmable Gate Array (FPGA) is presented in this study, which provides real-time SENSE reconstruction right on the receiver coil data acquisition system with no need to transfer the raw data to the MRI server, thereby minimizing the transmission noise and memory usage. The proposed SENSE architecture can reconstruct MR images using receiver coil sensitivity maps obtained using pre-scan and eigenvector (E-maps) methods. The results show that the proposed system consumes remarkably less computation time for SENSE reconstruction, i.e., 0.164ms @ 200MHz, while maintaining the quality of the reconstructed images with good mean SNR (29+ dB), less RMSE (<5×10-2) and comparable artefact power (<9×10-4) to conventional SENSE reconstruction. A comparison of the center line profiles of the reconstructed and reference images also indicates a good quality of the reconstructed images. Furthermore, the results indicate that the proposed architectural design can prove to be a significant tool for SENSE reconstruction in modern MRI scanners and its low power consumption feature can be remarkable for portable MRI scanners.
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  10. Oluwasola IE, Ahmad AL, Shoparwe NF, Ismail S
    J Contam Hydrol, 2022 Oct;250:104057.
    PMID: 36130428 DOI: 10.1016/j.jconhyd.2022.104057
    The current toxicity concerns of gadolinium-based contrast agents (GBCAs) have birthed the need to regulate and, sometimes restrict its clinical administration. However, tolerable concentration levels of Gd in the water sector have not been set. Therefore, the detection and speedy increase of the anthropogenic Gd-GBCAs in the various water bodies, including those serving as the primary source of drinking water for adults and children, is perturbing. Nevertheless, the strongly canvassed risk-benefit considerations and superior uniqueness of GBCAs compared to the other ferromagnetic metals guarantees its continuous administration for Magnetic resonance imaging (MRI) investigations regardless of the toxicity concerns. Unfortunately, findings have shown that both the advanced and conventional wastewater treatment processes do not satisfactorily remove GBCAs but rather risk transforming the chelated GBCAs to their free ionic metal (Gd 3+) through inadvertent degradation processes. This unintentional water processing-induced GBCA dechelation leads to the intricate  pathway for unintentional human intake of Gd ion. Hence exposure to its probable ecotoxicity and several reported inimical effects on human health such as; digestive symptoms, twitching or weakness, cognitive flu, persistent skin diseases, body pains, acute renal and non-renal adverse reactions, chronic skin, and eyes changes. This work proposed an economical and manageable remediation technique for the potential remediation of Gd-GBCAs in wastewater, while a precautionary limit for Gd in public water and commercial drinks is advocated.
    Matched MeSH terms: Magnetic Resonance Imaging/methods
  11. Siti Aishah AA, Normala I, Faruque Reza M, M Iqbal S
    Med J Malaysia, 2023 Jan;78(1):46-53.
    PMID: 36715191
    INTRODUCTION: Studies are lacking in evaluating brain atrophy patterns in the Malaysian population. This study aimed to compare the patterns of cerebral atrophy and impaired glucose metabolism on 18F-FDG PET/CT imaging in various stages of AD in a Klang Valley population by using voxelbased morphometry in SPM12.

    MATERIALS AND METHODS: 18F-FDG PET/CT images of 14 healthy control (HC) subjects (MoCA score > 26 (mean+SD~ 26.93+0.92) with no clinical evidence of cognitive deficits or neurological disease) and 16 AD patients (MoCA ≤22 (mean+SD~18.6+9.28)) were pre-processed in SPM12 while using our developed Malaysian healthy control brain template. The AD patients were assessed for disease severity using ADAS-Cog neuropsychological test. KNE96 template was used for registration-induced deformation in comparison with the ICBM templates. All deformation fields were corrected using the Malaysian healthy control template. The images were then nonlinearly modified by DARTEL to segment grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) to produce group-specific templates. Age, intracranial volume, MoCA score, and ADASCog score were used as variables in two sample t test between groups. The inference of our brain analysis was based on a corrected threshold of p<0.001 using Z-score threshold of 2.0, with a positive value above it as hypometabolic. The relationship between regional atrophy in GM and WM atrophy were analysed by comparing the means of cortical thinning between normal control and three AD stages in 15 clusters of ROI based on Z-score less than 2.0 as atrophied.

    RESULTS: One-way ANOVA indicated that the means were equal for TIV, F(2,11) = 1.310, p=0.309, GMV, F(2,11) = 0.923, p=0.426, WMV, F(2,11) = 0.158, p=0.856 and CSF, F(2,11) = 1.495 p=0.266. Pearson correlations of GM, WM and CSF volume between HC and AD groups indicated the presence of brain atrophy in GM (p=-0.610, p<0.0001), WM (p=-0.178, p=0.034) and TIV (p=-0.374, p=0.042) but showed increased CSF volume (p=0.602, p<0.0001). Voxels analysis of the 18FFDG PET template revealed that GM atrophy differs significantly between healthy control and AD (p<0.0001). Zscore comparisons in the region of GM & WM were shown to distinguish AD patients from healthy controls at the prefrontal cortex and parahippocampal gyrus. The atrophy rate within each ROI is significantly different between groups (c2=35.9021, df=3, p<0.0001), Wilcoxon method test showed statistically significant differences were observed between Moderate vs. Mild AD (p<0.0001), Moderate AD vs. healthy control (p=0.0005), Mild AD vs. HC (p=0.0372) and Severe AD vs. Moderate AD (p<0.0001). The highest atrophy rate within each ROI between the median values ranked as follows severe AD vs. HC (p<0.0001) > mild AD vs. HC (p=0.0091) > severe AD vs. moderate AD (p=0.0143).

    CONCLUSION: We recommend a reliable method in measuring the brain atrophy and locating the patterns of hypometabolism using a group-specific template registered to a quantitatively validated KNE96 group-specific template. The studied regions together with neuropsychological test approach is an effective method for the determination of AD severity in a Malaysian population.

    Matched MeSH terms: Magnetic Resonance Imaging/methods
  12. Liu F, Wang H, Liang SN, Jin Z, Wei S, Li X, et al.
    Comput Biol Med, 2023 May;157:106790.
    PMID: 36958239 DOI: 10.1016/j.compbiomed.2023.106790
    Structural magnetic resonance imaging (sMRI) is a popular technique that is widely applied in Alzheimer's disease (AD) diagnosis. However, only a few structural atrophy areas in sMRI scans are highly associated with AD. The degree of atrophy in patients' brain tissues and the distribution of lesion areas differ among patients. Therefore, a key challenge in sMRI-based AD diagnosis is identifying discriminating atrophy features. Hence, we propose a multiplane and multiscale feature-level fusion attention (MPS-FFA) model. The model has three components, (1) A feature encoder uses a multiscale feature extractor with hybrid attention layers to simultaneously capture and fuse multiple pathological features in the sagittal, coronal, and axial planes. (2) A global attention classifier combines clinical scores and two global attention layers to evaluate the feature impact scores and balance the relative contributions of different feature blocks. (3) A feature similarity discriminator minimizes the feature similarities among heterogeneous labels to enhance the ability of the network to discriminate atrophy features. The MPS-FFA model provides improved interpretability for identifying discriminating features using feature visualization. The experimental results on the baseline sMRI scans from two databases confirm the effectiveness (e.g., accuracy and generalizability) of our method in locating pathological locations. The source code is available at https://github.com/LiuFei-AHU/MPSFFA.
    Matched MeSH terms: Magnetic Resonance Imaging/methods
  13. Zulkifle AF, Siti Soraya AR, Hamzaini AH
    Med J Malaysia, 2023 Nov;78(6):774-779.
    PMID: 38031220
    INTRODUCTION: We aimed to compare the degree of bowel distension and image quality between pineapple juice and different mannitol concentrations, as well as patients' acceptance and side effects of these different magnetic resonant enterography (MRE) oral contrast agents.

    MATERIALS AND METHODS: Seventy-five participants underwent MRE as an initial investigation or follow-up for inflammatory bowel disease. A systematic sampling method was used to divide the participants into three different groups: group 1 received 6.7% mannitol concentration, group 2 received 3.3% mannitol concentration and group 3 received pineapple juice as an oral contrast agent during their MRE examination. The degree of bowel distension on MRE images was assessed by a radiologist by measuring the bowel diameter from inner wall to inner wall at specified levels, while qualitative analysis was evaluated based on the presence of artefacts. All patients were asked to score their acceptance of the oral contrast and were asked about side effects such as diarrhoea, abdominal discomfort and vomiting.

    RESULTS: All patients were able to completely ingest 1.5L of oral contrast. The mean diameter of bowel distension was 2.1cm in patients who received 6.7% mannitol concentration, 2.0cm in patients who received 3.3% mannitol concentration and 1.6 cm in patients who received pineapple juice. Twothirds of patients who received 6.7% mannitol and 3.3% mannitol solutions had good-quality MRE images, but 68% of patients who received pineapple juice had poor-quality MRE images. Twenty-four patients (96%) who received pineapple juice rated it as slightly acceptable and acceptable but only 12 patients (48%) who received 6.7% mannitol solution rated it as slightly acceptable and acceptable. Eighty-eight percent of patients who received 6.7% mannitol solution experienced at least one form of side effect as compared to 44% of patients who received 3.3% mannitol solution and 18% of patients who received pineapple juice.

    CONCLUSION: Optimum small bowel distension and good image quality can be achieved using 3.3% mannitol concentration as an oral contrast agent. Increase in mannitol concentration does not result in significant improvement of small bowel distension or image quality but is instead related to poorer patient acceptance and increased side effects. Pineapple juice is more palatable than mannitol and produces satisfactory small bowel distension. However, the small bowel distension is less uniform when using pineapple juice with a considerable presence of artefacts. Mannitol, 3.3% concentration, is therefore recommended as an endoluminal contrast agent for bowel in MRE.

    Matched MeSH terms: Magnetic Resonance Imaging/methods
  14. Seriramulu VP, Suppiah S, Lee HH, Jang JH, Omar NF, Mohan SN, et al.
    Med J Malaysia, 2024 Jan;79(1):102-110.
    PMID: 38287765
    INTRODUCTION: Magnetic resonance spectroscopy (MRS) has an emerging role as a neuroimaging tool for the detection of biomarkers of Alzheimer's disease (AD). To date, MRS has been established as one of the diagnostic tools for various diseases such as breast cancer and fatty liver, as well as brain tumours. However, its utility in neurodegenerative diseases is still in the experimental stages. The potential role of the modality has not been fully explored, as there is diverse information regarding the aberrations in the brain metabolites caused by normal ageing versus neurodegenerative disorders.

    MATERIALS AND METHODS: A literature search was carried out to gather eligible studies from the following widely sourced electronic databases such as Scopus, PubMed and Google Scholar using the combination of the following keywords: AD, MRS, brain metabolites, deep learning (DL), machine learning (ML) and artificial intelligence (AI); having the aim of taking the readers through the advancements in the usage of MRS analysis and related AI applications for the detection of AD.

    RESULTS: We elaborate on the MRS data acquisition, processing, analysis, and interpretation techniques. Recommendation is made for MRS parameters that can obtain the best quality spectrum for fingerprinting the brain metabolomics composition in AD. Furthermore, we summarise ML and DL techniques that have been utilised to estimate the uncertainty in the machine-predicted metabolite content, as well as streamline the process of displaying results of metabolites derangement that occurs as part of ageing.

    CONCLUSION: MRS has a role as a non-invasive tool for the detection of brain metabolite biomarkers that indicate brain metabolic health, which can be integral in the management of AD.

    Matched MeSH terms: Magnetic Resonance Imaging/methods
  15. Yazdani S, Yusof R, Riazi A, Karimian A
    Diagn Pathol, 2014;9:207.
    PMID: 25540017 DOI: 10.1186/s13000-014-0207-7
    Brain segmentation in magnetic resonance images (MRI) is an important stage in clinical studies for different issues such as diagnosis, analysis, 3-D visualizations for treatment and surgical planning. MR Image segmentation remains a challenging problem in spite of different existing artifacts such as noise, bias field, partial volume effects and complexity of the images. Some of the automatic brain segmentation techniques are complex and some of them are not sufficiently accurate for certain applications. The goal of this paper is proposing an algorithm that is more accurate and less complex).
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  16. Gan HS, Swee TT, Abdul Karim AH, Sayuti KA, Abdul Kadir MR, Tham WK, et al.
    ScientificWorldJournal, 2014;2014:294104.
    PMID: 24977191 DOI: 10.1155/2014/294104
    Well-defined image can assist user to identify region of interest during segmentation. However, complex medical image is usually characterized by poor tissue contrast and low background luminance. The contrast improvement can lift image visual quality, but the fundamental contrast enhancement methods often overlook the sudden jump problem. In this work, the proposed bihistogram Bezier curve contrast enhancement introduces the concept of "adequate contrast enhancement" to overcome sudden jump problem in knee magnetic resonance image. Since every image produces its own intensity distribution, the adequate contrast enhancement checks on the image's maximum intensity distortion and uses intensity discrepancy reduction to generate Bezier transform curve. The proposed method improves tissue contrast and preserves pertinent knee features without compromising natural image appearance. Besides, statistical results from Fisher's Least Significant Difference test and the Duncan test have consistently indicated that the proposed method outperforms fundamental contrast enhancement methods to exalt image visual quality. As the study is limited to relatively small image database, future works will include a larger dataset with osteoarthritic images to assess the clinical effectiveness of the proposed method to facilitate the image inspection.
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  17. Manan HA, Franz EA, Yusoff AN, Mukari SZ
    Aging Clin Exp Res, 2015 Feb;27(1):27-36.
    PMID: 24906677 DOI: 10.1007/s40520-014-0240-0
    In the present study, brain activation associated with speech perception processing was examined across four groups of adult participants with age ranges between 20 and 65 years, using functional MRI (fMRI). Cognitive performance demonstrates that performance accuracy declines with age. fMRI results reveal that all four groups of participants activated the same brain areas. The same brain activation pattern was found in all activated areas (except for the right superior temporal gyrus and right middle temporal gyrus); brain activity was increased from group 1 (20-29 years) to group 2 (30-39 years). However, it decreased in group 3 (40-49 years) with further decreases in group 4 participants (50-65 years). Result also reveals that three brain areas (superior temporal gyrus, Heschl's gyrus and cerebellum) showed changes in brain laterality in the older participants, akin to a shift from left-lateralized to right-lateralized activity. The onset of this change was different across brain areas. Based on these findings we suggest that, whereas all four groups of participants used the same areas in processing, the engagement and recruitment of those areas differ with age as the brain grows older. Findings are discussed in the context of corroborating evidence of neural changes with age.
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  18. Hani AF, Kumar D, Malik AS, Ahmad RM, Razak R, Kiflie A
    Rheumatol Int, 2015 Jan;35(1):1-16.
    PMID: 24879325 DOI: 10.1007/s00296-014-3052-9
    Early detection of knee osteoarthritis (OA) is of great interest to orthopaedic surgeons, rheumatologists, radiologists, and researchers because it would allow physicians to provide patients with treatments and advice to slow the onset or progression of the disease. Early detection can be achieved by identifying early changes in selected features of degenerative articular cartilage (AC) using non-invasive imaging modalities. Magnetic resonance imaging (MRI) is becoming the standard for assessment of OA. The aim of this paper was to review the influence of MRI on the selection, detection, and measurement of AC features associated with early OA. Our review of the literature indicates that the changes associated with early OA are in cartilage thickness, cartilage volume, cartilage water content, and proteoglycan content that can be accurately, consistently, and non-invasively measured using MRI. Choosing an MR pulse sequence that provides the capability to assess cartilage physiology and morphology in a single acquisition and advanced multi-nuclei MRI is desirable. The results of the review indicate that using an ultra-high magnetic strength, MR imager does not affect early OA detection. In conclusion, MRI is currently the most suitable modality for early detection of knee OA, and future research should focus on the quantitative evaluation of early OA features using advances in MR hardware, software, and data processing with sophisticated image/pattern recognition techniques.
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  19. Sim KS, Chia FK, Nia ME, Tso CP, Chong AK, Abbas SF, et al.
    Comput Biol Med, 2014 Jun;49:46-59.
    PMID: 24736203 DOI: 10.1016/j.compbiomed.2014.03.003
    A computer-aided detection auto-probing (CADAP) system is presented for detecting breast lesions using dynamic contrast enhanced magnetic resonance imaging, through a spatial-based discrete Fourier transform. The stand-alone CADAP system reduces noise, refines region of interest (ROI) automatically, and detects the breast lesion with minimal false positive detection. The lesions are then classified and colourised according to their characteristics, whether benign, suspicious or malignant. To enhance the visualisation, the entire analysed ROI is constructed into a 3-D image, so that the user can diagnose based on multiple views on the ROI. The proposed method has been applied to 101 sets of digital images, and the results compared with the biopsy results done by radiologists. The proposed scheme is able to identify breast cancer regions accurately and efficiently.
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  20. Tan HK, Bakri MM, Peh WC
    Semin Musculoskelet Radiol, 2014 Feb;18(1):45-53.
    PMID: 24515881 DOI: 10.1055/s-0034-1365834
    MR imaging is an established tool for the detection and diagnosis of various injuries and internal derangements of the knee, enabling excellent anatomical visualization and producing good soft tissue contrast and characterization. However, numerous normal variants and potential pitfalls may lead to diagnostic errors. Understanding the basic MR imaging principles, applying the correct technique, knowing the normal anatomy and variants, recognizing artifacts, and assuring good clinical and radiographic correlation helps avoid these potential pitfalls.
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links