Displaying publications 21 - 40 of 2090 in total

Abstract:
Sort:
  1. Yap MS, Tang YQ, Yeo Y, Lim WL, Lim LW, Tan KO, et al.
    Virol J, 2016 Jan 06;13:5.
    PMID: 26738773 DOI: 10.1186/s12985-015-0454-6
    The incidence of neurological complications and fatalities associated with Hand, Foot & Mouth disease has increased over recent years, due to emergence of newly-evolved strains of Enterovirus 71 (EV71). In the search for new antiviral therapeutics against EV71, accurate and sensitive in vitro cellular models for preliminary studies of EV71 pathogenesis is an essential prerequisite, before progressing to expensive and time-consuming live animal studies and clinical trials.
    Matched MeSH terms: Mice
  2. Dups J, Middleton D, Long F, Arkinstall R, Marsh GA, Wang LF
    Virol J, 2014;11:102.
    PMID: 24890603 DOI: 10.1186/1743-422X-11-102
    Nipah virus and Hendra virus are closely related and following natural or experimental exposure induce similar clinical disease. In humans, encephalitis is the most serious outcome of infection and, hitherto, research into the pathogenesis of henipavirus encephalitis has been limited by the lack of a suitable model. Recently we reported a wild-type mouse model of Hendra virus (HeV) encephalitis that should facilitate detailed investigations of its neuropathogenesis, including mechanisms of disease recrudescence. In this study we investigated the possibility of developing a similar model of Nipah virus encephalitis.
    Matched MeSH terms: Mice, Inbred BALB C; Mice, Inbred C57BL
  3. Chan YF, AbuBakar S
    Virol J, 2005;2:74.
    PMID: 16122396
    At least three different EV-71 subgenotypes were identified from an outbreak in Malaysia in 1998. The subgenotypes C2 and B4 were associated with the severe and fatal infections, whereas the B3 virus was associated with mild to subclinical infections. The B3 virus genome sequences had >= 85% similarity at the 3' end to CV-A16. This offers opportunities to examine if there are characteristic similarities and differences in virulence between CV-A16, EV-71 B3 and EV-71 B4 and to determine if the presence of the CV-A16-liked genes in EV-71 B3 would also confer the virus with a CV-A16-liked neurovirulence in mice model infection.
    Matched MeSH terms: Mice
  4. Abdul Ahmad SA, Palanisamy UD, Khoo JJ, Dhanoa A, Syed Hassan S
    Virol J, 2019 02 27;16(1):26.
    PMID: 30813954 DOI: 10.1186/s12985-019-1127-7
    BACKGROUND: Dengue continues to be a major international public health concern. Despite that, there is no clinically approved antiviral for treatment of dengue virus (DENV) infections. In this study, geraniin extracted from the rind of Nephelium lappaceum was shown to inhibit the replication of DENV-2 in both in vitro and in vivo experiments.

    METHODS: The effect of geraniin on DENV-2 RNA synthesis in infected Vero cells was tested using quantitative RT-PCR. The in vivo efficacy of geraniin in inhibiting DENV-2 infection was then tested using BALB/c mice with geraniin administered at three different times. The differences in spleen to body weight ratio, DENV-2 RNA load and liver damage between the three treatment groups as compared to DENV-2 infected mice without geraniin administration were determined on day eight post-infection.

    RESULTS: Quantitative RT-PCR confirmed the decrease in viral RNA synthesis of infected Vero cells when treated with geraniin. Geraniin seemed to provide a protective effect on infected BALB/c mice liver when given at 24 h pre- and 24 h post-infection as liver damage was observed to be very mild even though a significant reduction of DENV-2 RNA load in serum was not observed in these two treatment groups. However, when administered at 72 h post-infection, severe liver damage in the form of necrosis and haemorrhage had prevailed despite a substantial reduction of DENV-2 RNA load in serum.

    CONCLUSIONS: Geraniin was found to be effective in reducing DENV-2 RNA load when administered at 72 h post-infection while earlier administration could prevent severe liver damage caused by DENV-2 infection. These results provide evidence that geraniin is a potential candidate for the development of anti-dengue drug.

    Matched MeSH terms: Mice, Inbred BALB C; Mice
  5. Pletnev AG
    Virology, 2001 Apr 10;282(2):288-300.
    PMID: 11289811
    Forty-five years ago a naturally attenuated tick-borne flavivirus, Langat (LGT) strain TP21, was recovered from ticks in Malaysia. Subsequently, it was tested as a live attenuated vaccine for virulent tick-borne encephalitis viruses. In a large clinical trial its attenuation was confirmed but there was evidence of a low level of residual virulence. Thirty-five years ago further attenuation of LGT TP21 was achieved by multiple passages in eggs to yield mutant E5. To study the genetic determinants of the further attenuation exhibited by E5 and to allow us to manipulate the genome of this virus for the purpose of developing a satisfactory live attenuated tick-borne flavivirus vaccine, we recovered infectious E5 virus from a full-length cDNA clone. The recombinant E5 virus (clone 651) recovered from a full-length infectious cDNA clone was more attenuated in immunodeficient mice than that of its biologically derived E5 parent. Increase in attenuation was associated with three amino acid substitutions, two located in the structural protein E and one in nonstructural protein NS4B. Subsequently an even greater degree of attenuation was achieved by creating a viable 320 nucleotide deletion in the 3'-noncoding region of infectious full-length E5 cDNA. This deletion mutant was not cytopathic in simian Vero cells and it replicated to lower titer than its E5-651 parent. In addition, the E5 3' deletion mutant was less neuroinvasive in SCID mice than its E5-651 parent. Significantly, the deletion mutant proved to be 119,750 times less neuroinvasive in SCID mice than its progenitor, LGT strain TP21. Despite its high level of attenuation, the E5 3' deletion mutant remained highly immunogenic and intraperitoneal (ip) inoculation of 10 PFU induced complete protection in Swiss mice against subsequent challenge with 2000 ip LD50 of the wild-type LGT TP21.
    Matched MeSH terms: Mice, SCID; Mice
  6. Harcourt BH, Tamin A, Ksiazek TG, Rollin PE, Anderson LJ, Bellini WJ, et al.
    Virology, 2000 Jun 5;271(2):334-49.
    PMID: 10860887
    Recently, a new paramyxovirus, now known as Nipah virus (NV), emerged in Malaysia and Singapore, causing fatal encephalitis in humans and a respiratory syndrome in pigs. Initial studies had indicated that NV is antigenically and genetically related to Hendra virus (HV). We generated the sequences of the N, P/C/V, M, F, and G genes of NV and compared these sequences with those of HV and other members of the family Paramyxoviridae. The intergenic regions of NV were identical to those of HV, and the gene start and stop sequences of NV were nearly identical to those of HV. The open reading frames (ORFs) for the V and C proteins within the P gene were found in NV, but the ORF encoding a potential short basic protein found in the P gene of HV was not conserved in NV. The N, P, C, V, M, F, and G ORFs in NV have nucleotide homologies ranging from 88% to 70% and predicted amino acid homologies ranging from 92% to 67% in comparison with HV. The predicted fusion cleavage sequence of the F protein of NV had a single amino acid substitution (K to R) in comparison with HV. Phylogenetic analysis demonstrated that although HV and NV are closely related, they are clearly distinct from any of the established genera within the Paramyxoviridae and should be considered a new genus.
    Matched MeSH terms: Mice
  7. Adams SC, Broom AK, Sammels LM, Hartnett AC, Howard MJ, Coelen RJ, et al.
    Virology, 1995 Jan 10;206(1):49-56.
    PMID: 7530394
    Previous studies have found Kunjin (KUN) virus isolates from within Australia to be genetically homogenous and that the envelope protein of the type strain (MRM61C) was unglycosylated and lacked a potential glycosylation site. We investigated the extent of antigenic variation between KUN virus isolates from Australia and Sarawak using an immunoperoxidase assay and a panel of six monoclonal antibodies. The glycosylation status of the E protein of each virus was also determined by N glycosidase F (PNGase F) digestion and limited sequence analysis. The results showed that KUN viruses isolated within Australia oscillated between three antigenic types defined by two epitopes whose expression was influenced by passage history and host cell type. In contrast an isolate from Sarawak formed a stable antigenic type that was not influenced by passage history and was distinct from all Australian isolates. PNGase F digestions of KUN isolates indicated that 19 of the 33 viruses possessed a glycosylated E protein. Nucleotide sequence of the 5' third of the E gene of selected KUN isolates revealed that a single base change in PNGase F sensitive strains changed the tripeptide N-Y-F (amino acids 154-156 of the published sequence) to the potential glycosylation site N-Y-S. Further analysis revealed that passage history also had a significant influence on glycosylation.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
  8. Cecilia D, Gould EA
    Virology, 1991 Mar;181(1):70-7.
    PMID: 1704661
    The Sarawak strain of Japanese encephalitis virus (JE-Sar) is virulent in 3-week-old mice when inoculated intraperitoneally. The nucleotide sequence for the envelope glycoprotein (E) of this virus was determined and compared with the published sequences of four other strains. There were several silent nucleotide differences and five codon changes. Monoclonal antibodies (MAbs) against the E protein of JE-Sar virus were prepared and characterized. MAb-resistant mutants of JE-Sar were selected to determine if mutations in the E protein gene could affect its virulence for mice. Eight mutants were isolated using five different MAbs that identified virus-specific or group-reactive epitopes on the E protein. The mutants lost either complete or partial reactivity with selecting MAb. Several showed decreased virulence in 3-week-old mice after intraperitoneal inoculation. Two (r27 and r30) also showed reduced virulence in 2-week-old mice. JE-Sar and the derived mutants were comparable in their virulence for mice, when inoculated intracranially. Mutant r30 but not r27 induced protective immunity in adult mice against intracranial challenge with parent virus. However, r27-2 did induce protective immunity against itself. Nucleotide sequencing of the E coding region for the mutants revealed single base changes in both r30 and r27 resulting in a predicted change from isoleucine to serine at position 270 in r30 and from glycine to aspartic acid at position 333 in r27. The altered capacity of the mutants to induce protective immunity is consistent with the immunogenicity changes predicted by computer analysis using the Protean II program.
    Matched MeSH terms: Mice, Inbred BALB C; Mice, Inbred Strains; Mice
  9. Wong SS, Abd-Jamil J, Abubakar S
    Viral Immunol, 2007 Sep;20(3):359-68.
    PMID: 17931106
    Outbreaks involving dengue viruses (DENV) of the same genotype occur in a cyclical pattern in Malaysia. Two cycles of outbreaks involving dengue virus type 2 (DENV-2) of the same genotype occurred in the 1990s in the Klang Valley, Malaysia. Sera of patients from the first outbreak and sera of mice inoculated with virus from the same outbreak had poorer neutralization activity against virus of the second outbreak. Conversely, patient sera from the second outbreak showed higher neutralization titer against virus of the early outbreak. At subneutralizing concentrations, sera of mice immunized with second outbreak virus did not significantly enhance infection with viruses from the earlier outbreak. Amino acid substitution from valine to isoleucine at position 129 of the envelope protein (E), as well as threonine to alanine at position 117 and lysine to arginine at position 272 of the NS1 protein, differentiated viruses of the two outbreaks. These findings highlight the potential influence of specific intragenotypic variations in eliciting varied host immune responses against the different DENV subgenotypes. This could be an important contributing factor in the recurring homogenotypic dengue virus outbreaks seen in dengue-endemic regions.
    Matched MeSH terms: Mice
  10. Asmilia N, Aliza D, Fahrimal Y, Abrar M, Ashary S
    Vet World, 2020 Jul;13(7):1457-1461.
    PMID: 32848324 DOI: 10.14202/vetworld.2020.1457-1461
    Background and Aim: Although existing research confirms the antiparasitic effect of the Malacca plant against Plasmodium, its effect on the liver, one of the target organs of Plasmodium has not been investigated. Therefore, this study was conducted to explore the potential of the ethanolic extract of Malacca (Phyllanthus emblica) leaves in preventing liver damage in mice (Mus musculus) caused by Plasmodium berghei infection.

    Materials and Methods: This study was conducted using the livers of 18 mice fixed in 10% neutral-buffered formalin. A completely randomized design with a unidirectional pattern comprising six treatments was used in this study, with each treatment consisting of three replications. Treatment 0 was the negative control group infected with P. berghei, treatment 1 was the positive control group infected with P. berghei followed by chloroquine administration at a dose of 5 mg/kg BW, and treatments 2, 3, 4, and 5 were groups infected with P. berghei and administered Malacca leaf ethanolic extracts at doses of 100, 300, 600, and 1200 mg/kg BW, respectively. The extracts were administered orally using a gastric tube for 4 consecutive days. Mice were sacrificed on the 7th day and livers were collected for histopathological examination.

    Results: Histopathological examination of the livers of mice infected with P. berghei demonstrated the presence of hemosiderin, hydropic degeneration, fat degeneration, necrosis, and megalocytosis. However, all these histopathological changes were reduced in the livers of P. berghei-infected mice treated with various doses of Malacca leaf ethanolic extract. The differences between the treatments were found be statistically significant (p<0.05).

    Conclusion: Ethanolic extract of Malacca leaves has the potential to protect against liver damage in mice infected with P. berghei. The dose of 600 mg/kg BW was found to be the most effective compared with the doses of 100, 300, and 1200 mg/kg BW.

    Matched MeSH terms: Mice
  11. Muhammad-Azam F, Nur-Fazila SH, Ain-Fatin R, Mustapha Noordin M, Yimer N
    Vet World, 2019 Nov;12(11):1682-1688.
    PMID: 32009746 DOI: 10.14202/vetworld.2019.1682-1688
    Background and Aim: Laboratory mice are widely used as a research model to provide insights into toxicological studies of various xenobiotic. Acetaminophen (APAP) is an antipyretic and analgesic drug that is commonly known as paracetamol, an ideal hepatotoxicant to exhibit centrilobular necrosis in laboratory mice to resemble humans. However, assessment of histopathological changes between mouse strains is important to decide the optimal mouse model used in APAP toxicity study. Therefore, we aim to assess the histomorphological features of APAP-induced liver injury (AILI) in BALB/C and Institute of Cancer Research (ICR) mice.

    Materials and Methods: Twenty-five ICR mice and 20 BALB/C mice were used where five animals as control and the rest were randomly divided into four time points at 5, 10, 24 and 48 hours post-dosing (hpd). They were induced with 500 mg/kg APAP intraperitoneally. Liver sections were processed for hematoxylin-eosin staining and histopathological changes were scored based on grading methods.

    Results: Intense centrilobular damage was observed as early as 5 hpd in BALB/C as compared to ICR mice, which was observed at 10 hpd. The difference of liver injury between ICR and BALB/C mice is due to dissimilarity in the genetic line-up that related to different elimination pathways of APAP toxicity. However, at 24 hpd, the damage was markedly subsided and liver regeneration had taken place for both ICR and BALB/C groups with evidence of mitotic figures. This study showed that normal liver architecture was restored after the clearance of toxic insult.

    Conclusion: AILI was exhibited earlier in BALB/C than ICR mice but both underwent liver recovery at later time points.

    Matched MeSH terms: Mice, Inbred BALB C; Mice, Inbred ICR; Mice
  12. Brandt JR, Sewell MM
    Vet Res Commun, 1981 Dec;5(2):187-91.
    PMID: 7345726
    Strains of Taenia taeniaeformis were shown to possess markedly differing infectivities for Sprague-Dawley rats and CFI mice. Strains from Scotland, Belgium and Iraq were more infective for mice than rats while this situation was reversed with a Malaysian strain. There were also differences in their ability to infect hosts of different ages within the range 3-12 weeks of age.
    Matched MeSH terms: Mice, Inbred Strains/parasitology*; Mice
  13. Cheah TS, Mattsson JG, Zaini M, Sani RA, Jakubek EB, Uggla A, et al.
    Vet Parasitol, 2004 Dec 15;126(3):263-9.
    PMID: 15567590
    In order to attempt isolate the protozoan parasite Neospora caninum, an N. caninum seropositive pregnant Sahiwal Friesian cross heifer from a large-scale dairy farm in Malaysia was kept for observation until parturition at the Veterinary Research Institute, Ipoh. The heifer gave birth to a female calf that was weak, underweight and unable to rise. Precolostral serum from the calf had an N. caninum indirect fluorescent antibody test titre of 1:3200. It died 12 h after birth and necropsy was performed. Brain homogenate from the calf was inoculated into 10 BALB/c mice that were kept for 3 months after which brain tissue from the mice was inoculated onto 24 h fresh monolayer Vero cell lines. The cell cultures were examined daily until growth of intracellular protozoa was observed. DNA of the organisms from the cell cultures was analyzed by PCR and DNA sequencing. DNA fragments of the expected size were amplified from the isolate using N. caninum-specific primers, and sequence analysis of ITS1 clearly identified the isolate as N. caninum. This is the first successful isolation of N. caninum from a bovine in Malaysia, and the isolate is designated Nc-MalB1.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
  14. Githiori JB, Höglund J, Waller PJ, Leyden Baker R
    Vet Parasitol, 2003 Dec 30;118(3-4):215-26.
    PMID: 14729169
    Parasitic nematodes are among the most common and economically important infectious diseases of grazing livestock, especially in small ruminants in the tropics and subtropics in Kenya the control of gastrointestinal nematode infections in sheep and goats is usually made with synthetic anthelmintics but substantial levels of anthelmintic resistance have been recorded. A number of medicinal plants, that may provide possible alternatives, and are used by pastoralists and smallholder farmers in Kenya as deworming agents for their livestock and equines, namely Aframomum sanguineum, Dodonea angustifolia, Hildebrandtia sepalosa, Myrsine africana, Rapanea melanophloeos from Kenya, and Azadirachta indica from Kenya and Malaysia, together with the chemicals embelin and santonin that occur in some of these plants, were evaluated against Heligmosomoides polygyrus in mice. Commercial anthelmintics, namely ivermectin, pyrantel and piperazine, were also investigated, both to validate the mouse model system and to assess efficacy of these drugs against H. polygyrus. Pyrantel and ivermectin were highly effective in reducing the numbers of H. polygyrus worms as well as eggs in faeces of the mice, but piperazine had a lower activity. Application of santonin and M. africana significantly reduced the number of total worm counts (TWC) but not faecal egg counts (FEC). The use of embelin, R. melanophloeos and A. indica reduced FEC but not TWC. In all cases, however, reductions were well below the a priori level of 70% required for biological significance. A. sanguineum, D. angustifolia and H. sepalosa had no effect on either TWC or FEC. In conclusion, none of the plant preparations had any biologically significant anthelmintic effect in this monogastric host-parasite model system.
    Matched MeSH terms: Mice
  15. Chandrasekaran S, Kennett L, Yeap PC, Muniandy N, Rani B, Mukkur TK
    Vet Microbiol, 1994 Aug 15;41(4):303-9.
    PMID: 7801530
    The relationship between the standard passive mouse protection test or serum antibody titres measured by indirect haemagglutination or enzyme-linked immunosorbent assays and active protection in buffaloes immunized with different types of haemorrhagic septicaemia bacterins was investigated. Groups of 2-3 buffaloes were immunized with the bacterins currently in use in Asia, viz., broth bacterin (BB), alum precipitated vaccine (APV) and oil adjuvant vaccine (OAV) either subcutaneously (BB, APV) or intramuscularly (OAV) and challenged subcutaneously with virulent organisms at different periods post-immunization. Although the passive mouse protection and indirect haemagglutination tests carried out with the pre-challenge sera from vaccinated buffaloes revealed no relationship with active protection in buffaloes, a relationship was observed between the ELISA antibody titres and protection. In contrast, a dose-response relationship was observed between the homologous active and passive mouse protection test.
    Matched MeSH terms: Mice
  16. Lei W, Guo X, Fu S, Feng Y, Tao X, Gao X, et al.
    Vet Microbiol, 2017 Mar;201:32-41.
    PMID: 28284620 DOI: 10.1016/j.vetmic.2017.01.003
    BACKGROUND: Since the turn of the 21st century, there have been several epidemic outbreaks of poultry diseases caused by Tembusu virus (TMUV). Although multiple mosquito and poultry-derived strains of TMUV have been isolated, no data exist about their comparative study, origin, evolution, and dissemination.

    METHODOLOGY: Parallel virology was used to investigate the phenotypes of duck and mosquito-derived isolates of TMUV. Molecular biology and bioinformatics methods were employed to investigate the genetic characteristics and evolution of TMUV.

    PRINCIPAL FINDINGS: The plaque diameter of duck-derived isolates of TMUV was larger than that of mosquito-derived isolates. The cytopathic effect (CPE) in mammalian cells occurred more rapidly induced by duck-derived isolates than by mosquito-derived isolates. Furthermore, duck-derived isolates required less time to reach maximum titer, and exhibited higher viral titer. These findings suggested that poultry-derived TMUV isolates were more invasive and had greater expansion capability than the mosquito-derived isolates in mammalian cells. Variations in amino acid loci in TMUV E gene sequence revealed two mutated amino acid loci in strains isolated from Malaysia, Thailand, and Chinese mainland compared with the prototypical strain of the virus (MM1775). Furthermore, TMUV isolates from the Chinese mainland had six common variations in the E gene loci that differed from the Southeast Asian strains. Phylogenetic analysis indicated that TMUV did not exhibit a species barrier in avian species and consisted of two lineages: the Southeast Asian and the Chinese mainland lineages. Molecular traceability studies revealed that the recent common evolutionary ancestor of TMUV might have appeared before 1934 and that Malaysia, Thailand and Shandong Province of China represent the three main sources related to TMUV spread.

    CONCLUSIONS: The current broad distribution of TMUV strains in Southeast Asia and Chinese mainland exhibited longer-range diffusion and larger-scale propagation. Therefore, in addition to China, other Asian and European countries linked to Asia have used improved measures to detect and monitor TMUV related diseases to prevent epidemics in poultry.

    Matched MeSH terms: Mice, Inbred BALB C
  17. Shuai L, Ge J, Wen Z, Wang J, Wang X, Bu Z
    Vet Microbiol, 2020 Feb;241:108549.
    PMID: 31928698 DOI: 10.1016/j.vetmic.2019.108549
    Nipah virus (NiV) is a re-emerging zoonotic pathogen that causes high mortality in humans and pigs. Oral immunization in free-roaming animals is one of the most practical approaches to prevent NiV pandemics. We previously generated a recombinant rabies viruses (RABV) Evelyn-Rokitnicki-Abelseth (ERA) strain, rERAG333E, which contains a mutation from arginine to glutamic acid at residue 333 of glycoprotein (G333E) and serves as an oral vaccine for dog rabies. In this study, we generated two recombinant RABVs, rERAG333E/NiVG and rERAG333E/NiVF, expressing the NiV Malaysian strain attachment glycoprotein (NiV-G) or fusion glycoprotein (NiV-F) gene based on the rERAG333E vector platform. Both rERAG333E/NiVG and rERAG333E/NiVF displayed growth properties similar to those of rERAG333E and caused marked syncytia formation after co-infection in BSR cell culture. Adult and suckling mice intracerebrally inoculated with the recombinant RABVs showed NiV-G and NiV-F expression did not increase the virulence of rERAG333E. Oral vaccination with rERAG333E/NiVG either singularly or combined with rERAG333E/NiVF induced significant NiV neutralizing antibody against NiV and RABV, and IgG to NiV-G or NiV-F in mice and pigs. rERAG333E/NiVG and rERAG333E/NiVF thus appeared to be suitable candidates for further oral vaccines for potential animal targets in endemic areas of NiV disease and rabies.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
  18. Ling WC, Mustafa MR, Vanhoutte PM, Murugan DD
    Vascul. Pharmacol., 2018 03;102:11-20.
    PMID: 28552746 DOI: 10.1016/j.vph.2017.05.003
    AIM: Endothelial dysfunction accompanied by an increase in oxidative stress is a key event leading to hypertension. As dietary nitrite has been reported to exert antihypertensive effect, the present study investigated whether chronic oral administration of sodium nitrite improves vascular function in conduit and resistance arteries of hypertensive animals with elevated oxidative stress.

    METHODS: Sodium nitrite (50mg/L) was given to angiotensin II-infused hypertensive C57BL/6J (eight to ten weeks old) mice for two weeks in the drinking water. Arterial systolic blood pressure was measured using the tail-cuff method. Vascular responsiveness of isolated aortae and renal arteries was studied in wire myographs. The level of nitrite in the plasma and the cyclic guanosine monophosphate (cGMP) content in the arterial wall were determined using commercially available kits. The production of reactive oxygen species (ROS) and the presence of proteins (nitrotyrosine, NOx-2 and NOx-4) involved in ROS generation were evaluated with dihydroethidium (DHE) fluorescence and by Western blotting, respectively.

    RESULTS: Chronic administration of sodium nitrite for two weeks to mice with angiotensin II-induced hypertension decreased systolic arterial blood pressure, reversed endothelial dysfunction, increased plasma nitrite level as well as vascular cGMP content. In addition, sodium nitrite treatment also decreased the elevated nitrotyrosine and NOx-4 protein level in angiotensin II-infused hypertensive mice.

    CONCLUSIONS: The present study demonstrates that chronic treatment of hypertensive mice with sodium nitrite improves impaired endothelium function in conduit and resistance vessels in addition to its antihypertensive effect, partly through inhibition of ROS production.

    Matched MeSH terms: Mice, Inbred C57BL
  19. Ong HK, Yong CY, Tan WS, Yeap SK, Omar AR, Razak MA, et al.
    Vaccines (Basel), 2019 08 19;7(3).
    PMID: 31430965 DOI: 10.3390/vaccines7030091
    Current seasonal influenza A virus (IAV) vaccines are strain-specific and require annual reconstitution to accommodate the viral mutations. Mismatches between the vaccines and circulating strains often lead to high morbidity. Hence, development of a universal influenza A vaccine targeting all IAV strains is urgently needed. In the present study, the protective efficacy and immune responses induced by the extracellular domain of Matrix 2 protein (M2e) displayed on the virus-like particles of Macrobrachium rosenbergii nodavirus (NvC-M2ex3) were investigated in BALB/c mice. NvC-M2ex3 was demonstrated to be highly immunogenic even in the absence of adjuvants. Higher anti-M2e antibody titers corresponded well with increased survival, reduced immunopathology, and morbidity of the infected BALB/c mice. The mice immunized with NvC-M2ex3 exhibited lower H1N1 and H3N2 virus replication in the respiratory tract and the vaccine activated the production of different antiviral cytokines when they were challenged with H1N1 and H3N2. Collectively, these results suggest that NvC-M2ex3 could be a potential universal influenza A vaccine.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
  20. Siak PY, Wong KY, Song AA, Rahim RA, In LLA
    Vaccines (Basel), 2021 Feb 26;9(3).
    PMID: 33652552 DOI: 10.3390/vaccines9030195
    KRAS G12A somatic point mutation in adenocarcinomas is categorized clinically as ineligibility criteria for anti-epidermal growth factor receptor (EGFR) monoclonal antibody therapies. In this study, a modified G12A-K-ras epitope (139A) with sequence-specific modifications to improve immunogenicity was developed as a potential vaccine against G12A-mutant KRAS cancers. Additionally, coupling of the 139A epitope with a tetanus toxoid (TTD) universal T-cell epitope to improve antigenicity was also reported. To facilitate convenient oral administration, Lactococcus lactis, which possesses innate immunomodulatory properties, was chosen as a live gastrointestinal delivery vehicle. Recombinant L. lactis strains secreting a G12A mutated K-ras control and 139A with and without TTD fusion were generated for comparative immunogenicity assessment. BALB/c mice were immunized orally, and high survivability of L. lactis passage through the gastrointestinal tract was observed. Elevations in B-cell count with a concomitant titre of antigen-specific IgG and interferon-γ secreting T-cells were observed in the 139A treated mice group. Interestingly, an even higher antigen-specific IgA response and interferon-γ secreting T-cell counts were observed in 139A-TTD mice group upon re-stimulation with the G12A mutated K-ras antigen. Collectively, these results indicated that an antigen-specific immune response was successfully stimulated by 139A-TTD vaccine, and a TTD fusion was successful in further enhancing the immune responses.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links