Displaying publications 21 - 40 of 151 in total

Abstract:
Sort:
  1. Karimian H, Fadaeinasab M, Moghadamtousi SZ, Hajrezaei M, Zahedifard M, Razavi M, et al.
    Cell Physiol Biochem, 2015;36(3):988-1003.
    PMID: 26087920 DOI: 10.1159/000430273
    BACKGROUND: Tanacetum polycephalum L. Schultz-Bip is a member of the Asteraceae family. This study evaluated the chemopreventive effect of a T. polycephalum hexane extract (TPHE) using in in vivo and in vitro models.

    METHODS AND RESULTS: Five groups of rats: normal control, cancer control, TPHE low dose, TPHE high dose and positive control (tamoxifen) were used for the in vivo study. Histopathological examination showed that TPHE significantly suppressed the carcinogenic effect of LA7 tumour cells. The tumour sections from TPHE-treated rats demonstrated significantly reduced expression of Ki67 and PCNA compared to the cancer control group. Using a bioassay-guided approach, the cytotoxic compound of TPHE was identified as a tricyclic sesquiterpene lactone, namely, 8β- hydroxyl- 4β, 15- dihydrozaluzanin C (HDZC). Signs of early and late apoptosis were observed in MCF7 cells treated with HDZC and were attributed to the mitochondrial intrinsic pathway based on the up-regulation of Bax and the down-regulation of Bcl-2. HDZC induced cell cycle arrest in MCF7 cells and increased the expression of p21 and p27 at the mRNA and protein levels.

    CONCLUSION: This results of this study substantiate the anticancer effect of TPHE and highlight the involvement of HDZC as one of the contributing compounds that act by initiating mitochondrial-mediated apoptosis.

    Matched MeSH terms: RNA, Messenger/genetics
  2. Colombo M, Lòpez-Perolio I, Meeks HD, Caleca L, Parsons MT, Li H, et al.
    Hum Mutat, 2018 May;39(5):729-741.
    PMID: 29460995 DOI: 10.1002/humu.23411
    Although the spliceogenic nature of the BRCA2 c.68-7T > A variant has been demonstrated, its association with cancer risk remains controversial. In this study, we accurately quantified by real-time PCR and digital PCR (dPCR), the BRCA2 isoforms retaining or missing exon 3. In addition, the combined odds ratio for causality of the variant was estimated using genetic and clinical data, and its associated cancer risk was estimated by case-control analysis in 83,636 individuals. Co-occurrence in trans with pathogenic BRCA2 variants was assessed in 5,382 families. Exon 3 exclusion rate was 4.5-fold higher in variant carriers (13%) than controls (3%), indicating an exclusion rate for the c.68-7T > A allele of approximately 20%. The posterior probability of pathogenicity was 7.44 × 10-115 . There was neither evidence for increased risk of breast cancer (OR 1.03; 95% CI 0.86-1.24) nor for a deleterious effect of the variant when co-occurring with pathogenic variants. Our data provide for the first time robust evidence of the nonpathogenicity of the BRCA2 c.68-7T > A. Genetic and quantitative transcript analyses together inform the threshold for the ratio between functional and altered BRCA2 isoforms compatible with normal cell function. These findings might be exploited to assess the relevance for cancer risk of other BRCA2 spliceogenic variants.
    Matched MeSH terms: RNA, Messenger/genetics
  3. Salleh N, Mokhtar HM, Kassim NM, Giribabu N
    J. Membr. Biol., 2015 Dec;248(6):1097-105.
    PMID: 26198330 DOI: 10.1007/s00232-015-9823-8
    Testosterone has been reported to cause a decrease in uterine fluid volume in which this could involve the aquaporins (AQPs). This study aimed to investigate effect of testosterone on uterine AQP-1, 5, and 7 expressions in order to explain the reported reduction in uterine fluid volume under testosterone influence. Ovariectomized adult female rats received peanut oil, testosterone (1 mg/kg/day), estrogen (0.2 µg/kg/day), or combined estrogen plus testosterone for three consecutive days. Other groups received 3 days estrogen followed by 2 days either peanut oil or testosterone with or without flutamide or finasteride. A day after last injection, uteri were harvested, and the levels of AQP-1, 5, and 7 messenger RNA (mRNA) in uterine tissue homogenates were analyzed by real-time PCR (qPCR). Distributions of AQP-1, 5, and 7 proteins in uterus were observed by immunofluorescence. Levels of AQP-1 mRNA were elevated in rats receiving either estrogen or testosterone-only treatment; however, levels of AQP-5 and 7 mRNAs were elevated in rats receiving testosterone-only treatment. In rats pre-treated with estrogen, testosterone treatment resulted in higher AQP-1, 5, and 7 mRNA levels compared to vehicle treatment. Testosterone effects were antagonized by flutamide but not finasteride. Immunofluorescence study showed that AQP-1 was highly distributed in uterine lumenal epithelium following estrogen or testosterone-only treatment. However, AQP-5 and 7 distributions were high in uterine lumenal epithelium following testosterone-only treatment. Testosterone-induced up-regulation of AQP-1, 5, and 7 expressions in uterus could explain the observed reduction in uterine fluid volume as reported under this condition.
    Matched MeSH terms: RNA, Messenger/genetics
  4. Abdul Satar N, Ismail MN, Yahaya BH
    Molecules, 2021 Feb 18;26(4).
    PMID: 33670440 DOI: 10.3390/molecules26041056
    Cancer stem cells (CSCs) represent a small subpopulation within a tumour. These cells possess stem cell-like properties but also initiate resistance to cytotoxic agents, which contributes to cancer relapse. Natural compounds such as curcumin that contain high amounts of polyphenols can have a chemosensitivity effect that sensitises CSCs to cytotoxic agents such as cisplatin. This study was designed to investigate the efficacy of curcumin as a chemo-sensitiser in CSCs subpopulation of non-small cell lung cancer (NSCLC) using the lung cancer adenocarcinoma human alveolar basal epithelial cells A549 and H2170. The ability of curcumin to sensitise lung CSCs to cisplatin was determined by evaluating stemness characteristics, including proliferation activity, colony formation, and spheroid formation of cells treated with curcumin alone, cisplatin alone, or the combination of both at 24, 48, and 72 h. The mRNA level of genes involved in stemness was analysed using quantitative real-time polymerase chain reaction. Liquid chromatography-mass spectrometry was used to evaluate the effect of curcumin on the CSC niche. A combined treatment of A549 subpopulations with curcumin reduced cellular proliferation activity at all time points. Curcumin significantly (p < 0.001) suppressed colonies formation by 50% and shrank the spheroids in CSC subpopulations, indicating inhibition of their self-renewal capability. This effect also was manifested by the down-regulation of SOX2, NANOG, and KLF4. Curcumin also regulated the niche of CSCs by inhibiting chemoresistance proteins, aldehyde dehydrogenase, metastasis, angiogenesis, and proliferation of cancer-related proteins. These results show the potential of using curcumin as a therapeutic approach for targeting CSC subpopulations in non-small cell lung cancer.
    Matched MeSH terms: RNA, Messenger/genetics
  5. Yusof NA, Kamaruddin S, Abu Bakar FD, Mahadi NM, Abdul Murad AM
    Cell Stress Chaperones, 2019 Mar;24(2):351-368.
    PMID: 30649671 DOI: 10.1007/s12192-019-00969-1
    Studies on TCP1-1 ring complex (TRiC) chaperonin have shown its indispensable role in folding cytosolic proteins in eukaryotes. In a psychrophilic organism, extreme cold temperature creates a low-energy environment that potentially causes protein denaturation with loss of activity. We hypothesized that TRiC may undergo evolution in terms of its structural molecular adaptation in order to facilitate protein folding in low-energy environment. To test this hypothesis, we isolated G. antarctica TRiC (GaTRiC) and found that the expression of GaTRiC mRNA in G. antarctica was consistently expressed at all temperatures indicating their importance in cell regulation. Moreover, we showed GaTRiC has the ability of a chaperonin whereby denatured luciferase can be folded to the functional stage in its presence. Structurally, three categories of residue substitutions were found in α, β, and δ subunits: (i) bulky/polar side chains to alanine or valine, (ii) charged residues to alanine, and (iii) isoleucine to valine that would be expected to increase intramolecular flexibility within the GaTRiC. The residue substitutions observed in the built structures possibly affect the hydrophobic, hydrogen bonds, and ionic and aromatic interactions which lead to an increase in structural flexibility. Our structural and functional analysis explains some possible structural features which may contribute to cold adaptation of the psychrophilic TRiC folding chamber.
    Matched MeSH terms: RNA, Messenger/genetics
  6. Hussin F, Eshkoor SA, Rahmat A, Othman F, Akim A, Eshak Z
    Asian Pac J Cancer Prev, 2015;16(14):6047-53.
    PMID: 26320494
    BACKGROUND: Hepatocellular carcinoma is one of the most common cancers worldwide. Its prevalence is increasing in many countries. Plant products can be used to protect against cancer due to natural anticancer and chemopreventive constituents. Strobilanthes crispus is one of plants with potential chemopreventive ability.

    OBJECTIVE: This study aimed to evaluate the anticancer effects of Strobilanthes crispus juice on hepatocellular carcinoma cells.

    MATERIALS AND METHODS: MTT assays, flow cytometry, comet assays and the reverse transcription- polymerase chain reaction (RT-PCR) were used to determine the effects of juice on DNA damage and cancer cell numbers.

    RESULTS: This juice induced apoptosis after exposure of the HepG2 cell line for 72 h. High percentages of apoptotic cell death and DNA damage were seen at the juice concentrations above 0.1%. It was found that the juice was not toxic for normal cells. In addition, juice exposure increased the expression level of c-myc gene and reduced the expression level of c-fos and c-erbB2 genes in HepG2 cells. The cytotoxic effects of juice on abnormal cells were in dose dependent.

    CONCLUSIONS: It was concluded that the Strobilanthes crispus juice may have chemopreventive effects on hepatocellular carcinoma cells.

    Matched MeSH terms: RNA, Messenger/genetics
  7. Maekawa F, Nagino K, Yang J, Htike NTT, Tsukahara S, Ubuka T, et al.
    Gen Comp Endocrinol, 2018 01 15;256:63-70.
    PMID: 28765073 DOI: 10.1016/j.ygcen.2017.07.025
    The National Institute for Environmental Studies (NIES) of Japan established a strain of Japanese quail (Coturnix japonica) known as NIES-L by rotation breeding in a closed colony for over 35years; accordingly, the strain has highly inbred-like characteristics. Another strain called NIES-Brn has been maintained by randomized breeding in a closed colony to produce outbred-like characteristics. The current study aimed to characterize intermale aggressive behaviors in both strains and to identify possible factors regulating higher aggression in the hypothalamus, such as sex hormone and neuropeptide expression. Both strains displayed a common set of intermale aggressive behaviors that included pecking, grabbing, mounting, and cloacal contact behavior, although NIES-Brn quail showed significantly more grabbing, mounting, and cloacal contact behavior than did NIES-L quail. We examined sex hormone levels in the blood and diencephalon in both strains. Testosterone concentrations were significantly higher in the blood and diencephalon of NIES-Brn quail compared to NIES-L quail. We next examined gene expression in the hypothalamus of both strains using an Agilent gene expression microarray and real-time RT-PCR and found that gene expression of mesotocin (an oxytocin homologue) was significantly higher in the hypothalamus of NIES-Brn quail compared to NIES-L quail. Immunohistochemistry of the hypothalamus revealed that numbers of large cells (cell area>500μm2) expressing mesotocin were significantly higher in the NIES-Brn strain compared to the NIES-L strain. Taken together, our findings suggest that higher testosterone and mesotocin levels in the hypothalamus may be responsible for higher aggression in the NIES-Brn quail strain.
    Matched MeSH terms: RNA, Messenger/genetics
  8. Lim FT, Ogawa S, Parhar IS
    J. Chem. Neuroanat., 2016 11;77:176-186.
    PMID: 27427471 DOI: 10.1016/j.jchemneu.2016.07.005
    Sprouty-related protein-2 (Spred-2) is a negative regulator of extracellular signal-regulated kinases (ERK) pathway, which is important for cell proliferation, neuronal differentiation, plasticity and survival. Nevertheless, its general molecular characteristics such as gene expression patterns and potential role in neural repair in the brain remain unknown. Thus, this study aimed to characterise the expression of spred-2 in the zebrafish brain. Digoxigenin-in situ hybridization showed spred-2 mRNA-expressing cells were mainly seen in the proliferative zones such as the olfactory bulb, telencephalon, optic tectum, cerebellum, and the dorsal and ventral hypothalamus, and most of which were neuronal cells. To evaluate the potential role of spred-2 in neuro-regeneration, spred-2 gene expression was examined in the dorsal telencephalon followed by mechanical-lesion. Real-time PCR showed a significant reduction of spred-2 mRNA levels in the telencephalon on 1-day till 2-days post-lesion and gradually increased to normal levels as compared with intact. Furthermore, to confirm involvement of Spred-2 signalling in the cell proliferation after brain injury, double-labelling of spred-2 in-situ hybridization with immunofluorescence of BrdU and phosphorylated-ERK1/2 (p-ERK1/2), a downstream of Spred-2 was performed. Increase of BrdU and p-ERK1/2 immunoreactive cells suggest that a decrease in spred-2 after injury might associated with activation of the ERK pathway to stimulate cell proliferation in the adult zebrafish brain. The present study demonstrates the possible role of Spred-2 signalling in cell proliferative phase during the neural repair in the injured zebrafish brain.
    Matched MeSH terms: RNA, Messenger/genetics
  9. Abdul Aziz AA, Md Salleh MS, Mohamad I, Krishna Bhavaraju VM, Mazuwin Yahya M, Zakaria AD, et al.
    J Genet, 2018 Dec;97(5):1185-1194.
    PMID: 30555068
    Triple negative breast cancer (TNBC) is typically associated with poor and interindividual variability in treatment response. Cytochrome P450 family 1 subfamily B1 (CYP1B1) is a metabolizing enzyme, involved in the biotransformation of xenobiotics and anticancer drugs. We hypothesized that, single-nucleotide polymorphisms (SNPs), CYP1B1 142 C>G, 4326 C>G and 4360 A>G, and CYP1B1 mRNA expression might be potential biomarkers for prediction of treatment response in TNBC patients. CYP1B1 SNPs genotyping (76 TNBC patients) was performed using allele-specific polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism methods and mRNA expression of CYP1B1 (41 formalin-fixed paraffin embeddedblocks) was quantified using quantitative reverse transcription PCR. Homozygous variant genotype (GG) and variant allele (G) of CYP1B1 4326C>G polymorphism showed significantly higher risk for development of resistance to chemotherapy with adjusted odds ratio (OR): 6.802 and 3.010, respectively. Whereas, CYP1B1 142 CG heterozygous genotype showed significant association with goodtreatment response with adjusted OR: 0.199. CYP1B1 142C-4326G haplotype was associated with higher risk for chemoresistance with OR: 2.579. Expression analysis revealed that the relative expression of CYP1B1 was downregulated (0.592) in cancerous tissue compared with normal adjacent tissues. When analysed for association with chemotherapy response, CYP1B1 expression was found to be significantly upregulated (3.256) in cancerous tissues of patients who did not respond as opposed to those of patients who showed response to chemotherapy. Our findings suggest that SNPs together with mRNA expression of CYP1B1 may be useful biomarkers to predict chemotherapy response in TNBC patients.
    Matched MeSH terms: RNA, Messenger/genetics*
  10. Mahkamova K, Latar NM, Aspinall S, Meeson A
    Exp Cell Res, 2019 01 01;374(1):104-113.
    PMID: 30465733 DOI: 10.1016/j.yexcr.2018.11.012
    Comparison of studies of cells derived from normal and pathological tissues of the same organ can be fraught with difficulties, particular with cancer where a number of different diseases are considered cancer within the same tissue. In the thyroid, there are 4 main types of cancer, three of which arise from follicular epithelial cells; papillary and follicular which are classified as differentiated, and anaplastic which is classified as undifferentiated. One assay that can be utilised for isolation of cancer stem cells is the side population (SP) assay. However, SP studies have been limited in part due to lack of optimal isolation strategies and in the case of anaplastic thyroid cancer (ATC) are further compounded by lack of access to ATC tumors. We have used thyroid cell lines to determine the optimal conditions to isolate viable SP cells. We then compared SP cells and NSP cells (bulk tumour cells without the SP) of a normal thyroid cell line N-thy ori-3-1 and an anaplastic thyroid cancer cell line SW1736 and showed that both SP cell populations displayed higher levels of stem cell characteristics than the NSP. When we compared SP cells of the N-thy ori-3-1 and the SW1736, the SW1736 SP had a higher colony forming potential, expressed higher levels of stem cell markers and CXCR4 and where more migratory and invasive, invasiveness increasing in response to CXCL12. This is the first report showing functional differences between ATC SP and normal thyroid SP and could lead to the identification of new therapeutic targets to treat ATC.
    Matched MeSH terms: RNA, Messenger/genetics
  11. Aisha MD, Nor-Ashikin MN, Sharaniza AB, Nawawi HM, Kapitonova MY, Froemming GR
    Exp Cell Res, 2014 Aug 1;326(1):46-56.
    PMID: 24928274 DOI: 10.1016/j.yexcr.2014.06.003
    Exposure of Normal Human Osteoblast cells (NHOst) to a period of hypothermia may interrupt their cellular functions, lead to changes in bone matrix and disrupt the balance between bone formation and resorption, resulting in bone loss or delayed fracture healing. To investigate this possibility, we exposed NHOst cells to moderate (35 °C) and severe (27 °C) hypothermia for 1, 12, 24 and 72 h. The effects of hypothermia with respect to cell cytoskeleton organization, metabolic activity and the expression of cold shock chaperone proteins, osteoblast transcription factors and functional markers, were examined. Our findings showed that prolonged moderate hypothermia retained the polymerization of the cytoskeletal components. NHOst cell metabolism was affected differently according to hypothermia severity. The osteoblast transcription factors Runx2 and osterix were necessary for the transcription and translation of bone matrix proteins, where alkaline phosphatase (Alp) activity and osteocalcin (OCN) bone protein were over expressed under hypothermic conditions. Consequently, bone mineralization was stimulated after exposure to moderate hypothermia for 1 week, indicating bone function was not impaired. The cold shock chaperone protein Rbm3 was significantly upregulated (p<0.001) during the cellular stress adaption under hypothermic conditions. We suggest that Rbm3 has a dual function: one as a chaperone protein that stabilizes mRNA transcripts and a second one in enhancing the transcription of Alp and Ocn genes. Our studies demonstrated that hypothermia permitted the in vitro maturation of NHOst cells probably through an osterix-dependent pathway. For that reason, we suggest that moderate hypothermia can be clinically applied to counteract heat production at the fracture site that delays fracture healing.
    Matched MeSH terms: RNA, Messenger/genetics
  12. Ho CL, Nguyen PD, Harikrishna JA, Rahim RA
    DNA Seq., 2008 Feb;19(1):73-7.
    PMID: 17852357
    The vacuolar-type H+ -ATPase (V-ATPase) is a multimeric enzyme with diverse functions in plants such as nutrient transport, flowering, stress tolerance, guard cell movement and development. A partial sequence of V-ATPase proteolipid was identified among the expressed sequence tags (ESTs) generated from Acanthus ebracteatus, and selected for full-length sequencing. The 876-nucleotide cDNA consists of an open reading frame of 165 amino acids. The deduced amino acid sequence displays high similarity (81%) with its homologs from Arabidopsis thaliana, Avecinnia marina and Gossypium hirsutum with the four transmembrane domains characteristics of the 16 kDa proteolipid subunit c of V-ATPase well conserved in this protein. Southern analysis revealed the existence of several members of proteolipid subunit c of V-ATPase in A. ebracteatus. The mRNA of this gene was detected in leaf, floral, stem and root tissues, however, the expression level was lower in stem and root tissues.
    Matched MeSH terms: RNA, Messenger/genetics*
  13. Karim ME, Haque ST, Al-Busaidi H, Bakhtiar A, Tha KK, Holl MMB, et al.
    Arch Pharm Res, 2022 Dec;45(12):865-893.
    PMID: 36422795 DOI: 10.1007/s12272-022-01418-x
    Messenger RNA (mRNA) recently emerged as an appealing alternative to treat and prevent diseases ranging from cancer and Alzheimer's disease to COVID-19 with significant clinical outputs. The in vitro-transcribed mRNA has been engineered to mimic the structure of natural mRNA for vaccination, cancer immunotherapy and protein replacement therapy. In past decades, significant progress has been noticed in unveiling the molecular pathways of mRNA, controlling its translatability and stability, and its evolutionary defense mechanism. However, numerous unsolved structural, biological, and technical difficulties hamper the successful implementation of systemic delivery of mRNA for safer human consumption. Advances in designing and manufacturing mRNA and selecting innovative delivery vehicles are mandatory to address the unresolved issues and achieve the full potential of mRNA drugs. Despite the substantial efforts made to improve the intracellular delivery of mRNA drugs, challenges associated with diverse applications in different routes still exist. This study examines the current progress of mRNA therapeutics and advancements in designing biomaterials and delivery strategies, the existing translational challenges of clinical tractability and the prospects of overcoming any challenges related to mRNA.
    Matched MeSH terms: RNA, Messenger/genetics
  14. Mohamad M, Wahab NA, Yunus R, Murad NA, Zainuddin ZM, Sundaram M, et al.
    Asian Pac J Cancer Prev, 2016;17(7):3437-45.
    PMID: 27509989
    BACKGROUND: There is an increasing concern in the role of microRNA (miRNA) in the pathogenesis of bone metastasis (BM) secondary to prostate cancer (CaP). In this exploratory study, we hypothesized that the expression of vinculin (VCL) and chemokine X3C ligand 1 (CX3CL1) might be downregulated in clinical samples, most likely due to the posttranscriptional modification by microRNAs. Targeted genes would be upregulated upon transfection of the bone metastatic prostate cancer cell line, PC3, with specific microRNA inhibitors.

    MATERIALS AND METHODS: MicroRNA software predicted that miR21 targets VCL while miR29a targets CX3CL1. Twenty benign prostatic hyperplasia (BPH) and 16 high grade CaP formalinfixed paraffin embedded (FFPE) specimens were analysed. From the bone scan results, high grade CaP samples were further classified into CaP with no BM and CaP with BM. Transient transfection with respective microRNA inhibitors was done in both RWPE1 (normal) and PC3 cell lines. QPCR was performed in all FFPE samples and transfected cell lines to measure VCL and CX3CL1 levels.

    RESULTS: QPCR confirmed that VCL messenger RNA (mRNA) was significantly down regulated while CX3CL1 was upregulated in all FFPE specimens. Transient transfection with microRNA inhibitors in PC3 cells followed by qPCR of the targeted genes showed that VCL mRNA was significantly up regulated while CX3CL1 mRNA was significantly downregulated compared to the RWPE1 case.

    CONCLUSIONS: The downregulation of VCL in FFPE specimens is most likely regulated by miR21 based on the in vitro evidence but the exact mechanism of how miR21 can regulate VCL is unclear. Upregulated in CaP, CX3CL1 was found not regulated by miR29a. More microRNA screening is required to understand the regulation of this chemokine in CaP with bone metastasis. Understanding miRNAmRNA interactions may provide additional knowledge for individualized study of cancers.

    Matched MeSH terms: RNA, Messenger/genetics
  15. Gupta G, Bebawy M, Pinto TJA, Chellappan DK, Mishra A, Dua K
    Crit Rev Eukaryot Gene Expr, 2018;28(3):217-221.
    PMID: 30311568 DOI: 10.1615/CritRevEukaryotGeneExpr.2018021188
    Cancer is a complicated transformational progression that fiercely changes the appearance of cell physiology as well as cells' relations with adjacent tissues. Developing an oncogenic characteristic requires a wide range of modifications in a gene expression at a cellular level. This can be achieved by activation or suppression of the gene regulation pathway in a cell. Tristetraprolin (TTP or ZFP36) associated with the initiation and development of tumors are regulated at the level of mRNA decay, frequently through the activity of AU-rich mRNA-destabilizing elements (AREs) located in their 3'-untranslated regions. TTP is an attractive target for therapeutic use and diagnostic tools due to its characteristic appearance in cancer tissue alone. Thus, the illumination of TTP in diverse types of cancer might deliver additional effective remedies in the coming era for cancer patients. The objective of this review is to familiarize the reader with the TTP proteins, focus on efficient properties that endow them with their effective oncogenic potential, describe their physiological role in cancer cells, and review the unique properties of TT, and of TTP-driven cancer.
    Matched MeSH terms: RNA, Messenger/genetics
  16. Bahrampour Juybari K, Kamarul T, Najafi M, Jafari D, Sharifi AM
    Cell Tissue Res, 2018 08;373(2):407-419.
    PMID: 29582166 DOI: 10.1007/s00441-018-2825-y
    Strategies based on mesenchymal stem cell (MSC) therapy for restoring injured articular cartilage are not effective enough in osteoarthritis (OA). Due to the enhanced inflammation and oxidative stress in OA microenvironment, differentiation of MSCs into chondrocytes would be impaired. This study aims to explore the effects of diallyl disulfide (DADS) on IL-1β-mediated inflammation and oxidative stress in human adipose derived mesenchymal stem cells (hADSCs) during chondrogenesis. MTT assay was employed to examine the effects of various concentrations of DADS on the viability of hADSCs at different time scales to obtain non-cytotoxic concentration range of DADS. The effects of DADS on IL-1β-induced intracellular ROS generation and lipid peroxidation were evaluated in hADSCs. Western blotting was used to analyze the protein expression levels of IκBα (np), IκBα (p), NF-κB (np) and NF-κB (p). Furthermore, the gene expression levels of antioxidant enzymes in hADSCs and chondrogenic markers at days 7, 14 and 21 of differentiation were measured using qRT-PCR. The results showed that addition of DADS significantly enhanced the mRNA expression levels of antioxidant enzymes as well as reduced ROS elevation, lipid peroxidation, IκBα activation and NF-κB nuclear translocation in hADSCs treated with IL-1β. In addition, DADS could significantly increase the expression levels of IL-1β-induced impaired chondrogenic marker genes in differentiated hADSCs. Treatment with DADS may provide an effective approach to prevent the pro-inflammatory cytokines and oxidative stress as catabolic causes of chondrocyte cell death and enhance the protective anabolic effects by promoting chondrogenesis associated gene expressions in hADSCs exposed to OA condition.
    Matched MeSH terms: RNA, Messenger/genetics
  17. Abubakar SA, Isa MM, Omar N, Tan SW
    Mol Med Rep, 2020 Dec;22(6):4931-4937.
    PMID: 33174018 DOI: 10.3892/mmr.2020.11560
    The human ocular surface produces highly conserved cationic peptides. Human β‑defensins (HBDs) serve an important role in innate and adaptive immunity. They are primarily expressed in epithelial cells in response to infection and provide the first line of defence against invading microbes. Defensin β1 (DEFB1) is constitutively expressed and regulated by inflammatory mediators including interferon‑γ, lipopolysaccharide and peptidoglycans. DEFB4A is locally induced in response to microbial infection while DEFB109 is induced via Toll‑like receptor 2. The present study examined the expression of the HBD DEFB1, DEFB4A and DEFB109 genes in pterygium. The pterygium tissues and normal conjunctiva samples were obtained from 18 patients undergoing pterygium surgery. The reverse transcription‑quantitative polymerase chain reaction method was employed to determine the expression of DEFB1, DEFB4A and DEFB109 genes. The results revealed that the expression of DEFB1 and DEFB4A was significantly higher and upregulated in pterygium samples when compared with normal conjunctiva samples from each patient (P<0.05), while the expression of DEFB109 was observed to be lower in pterygium samples when compared with normal samples from the same patient. Previous studies have revealed that DEFB1 and DEFB4A genes are present in low concentrations inside the human eye, and they are upregulated during the maturation of keratinocytes, suggesting a possible role in cell differentiation. The DEFB109 gene is present in higher concentrations inside the human eye, though it is newly discovered. It has also been reported that DEFB1 may be involved in carcinogenesis epithelial tumours. Collectively, the current data suggests that HBDs may serve a crucial role in the pathogenesis and development of pterygia, and thus may be considered as novel molecular targets in understanding pterygia development.
    Matched MeSH terms: RNA, Messenger/genetics
  18. Al-Naqeep G, Ismail M, Allaudin Z
    J Nutrigenet Nutrigenomics, 2009;2(4-5):163-72.
    PMID: 19887822 DOI: 10.1159/000227264
    BACKGROUND AND AIM: Nigella sativa and its active constituent thymoquinone (TQ) have been exploited for their various health benefits. This work was aimed to investigate the regulatory effects of TQ-rich fraction (TQRF) and commercial TQ on the low-density lipoprotein receptor (LDLR) and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) genes in HepG2 cells.

    METHODS AND RESULTS: TQRF was extracted from N. sativa seeds using supercritical fluid extraction. The regulatory effects of TQRF at 80 microg/ml and TQ at 2 microg/ml on LDLR and HMGCR gene expression were investigated in HepG2 cells using quantitative real-time PCR. The TQ content in TQRF was 2.77% (w/w) and was obtained at a temperature of 40 degrees C and a pressure of 600 bar. Treatment of cells with TQRF and TQ resulted in a 7- and 2-fold upregulation of LDLR mRNA level, respectively, compared with untreated cells. The mRNA level of HMGCR was downregulated by 71 and 12%, respectively, compared with untreated cells.

    CONCLUSION: TQRF and TQ regulated genes involved in cholesterol metabolism by two mechanisms, the uptake of low-density lipoprotein cholesterol via the upregulation of the LDLR gene and inhibition of cholesterol synthesis via the suppression of the HMGCR gene.

    Matched MeSH terms: RNA, Messenger/genetics
  19. Selvarajah GT, Bonestroo FAS, Timmermans Sprang EPM, Kirpensteijn J, Mol JA
    BMC Vet Res, 2017 Nov 25;13(1):354.
    PMID: 29178874 DOI: 10.1186/s12917-017-1281-3
    BACKGROUND: Quantitative PCR (qPCR) is a common method for quantifying mRNA expression. Given the heterogeneity present in tumor tissues, it is crucial to normalize target mRNA expression data using appropriate reference genes that are stably expressed under a variety of pathological and experimental conditions. No studies have validated specific reference genes in canine osteosarcoma (OS). Previous gene expression studies involving canine OS have used one or two reference genes to normalize gene expression. This study aimed to validate a panel of reference genes commonly used for normalization of canine OS gene expression data using the geNorm algorithm. qPCR analysis of nine canine reference genes was performed on 40 snap-frozen primary OS tumors and seven cell lines.

    RESULTS: Tumors with a variety of clinical and pathological characteristics were selected. Gene expression stability and the optimal number of reference genes for gene expression normalization were calculated. RPS5 and HNRNPH were highly stable among OS cell lines, while RPS5 and RPS19 were the best combination for primary tumors. Pairwise variation analysis recommended four and two reference genes for optimal normalization of the expression data of canine OS tumors and cell lines, respectively.

    CONCLUSIONS: Appropriate combinations of reference genes are recommended to normalize mRNA levels in canine OS tumors and cell lines to facilitate standardized and reliable quantification of target gene expression, which is essential for investigating key genes involved in canine OS metastasis and for comparative biomarker discovery.

    Matched MeSH terms: RNA, Messenger/genetics
  20. Greenwood MP, Greenwood M, Mecawi AS, Antunes-Rodrigues J, Paton JF, Murphy D
    Mol Brain, 2016 Jan 07;9:1.
    PMID: 26739966 DOI: 10.1186/s13041-015-0182-2
    BACKGROUND: Rasd1 is a member of the Ras family of monomeric G proteins that was first identified as a dexamethasone inducible gene in the pituitary corticotroph cell line AtT20. Using microarrays we previously identified increased Rasd1 mRNA expression in the rat supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus in response to increased plasma osmolality provoked by fluid deprivation and salt loading. RASD1 has been shown to inhibit adenylyl cyclase activity in vitro resulting in the inhibition of the cAMP-PKA-CREB signaling pathway. Therefore, we tested the hypothesis that RASD1 may inhibit cAMP stimulated gene expression in the brain.

    RESULTS: We show that Rasd1 is expressed in vasopressin neurons of the PVN and SON, within which mRNA levels are induced by hyperosmotic cues. Dexamethasone treatment of AtT20 cells decreased forskolin stimulation of c-Fos, Nr4a1 and phosphorylated CREB expression, effects that were mimicked by overexpression of Rasd1, and inhibited by knockdown of Rasd1. These effects were dependent upon isoprenylation, as both farnesyltransferase inhibitor FTI-277 and CAAX box deletion prevented Rasd1 inhibition of cAMP-induced gene expression. Injection of lentiviral vector into rat SON expressing Rasd1 diminished, whereas CAAX mutant increased, cAMP inducible genes in response to osmotic stress.

    CONCLUSIONS: We have identified two mechanisms of Rasd1 induction in the hypothalamus, one by elevated glucocorticoids in response to stress, and one in response to increased plasma osmolality resulting from osmotic stress. We propose that the abundance of RASD1 in vasopressin expressing neurons, based on its inhibitory actions on CREB phosphorylation, is an important mechanism for controlling the transcriptional responses to stressors in both the PVN and SON. These effects likely occur through modulation of cAMP-PKA-CREB signaling pathway in the brain.

    Matched MeSH terms: RNA, Messenger/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links