Displaying publications 21 - 40 of 364 in total

Abstract:
Sort:
  1. Goa Y, Du JG, Jirapattharasate C, Galon E, Ji SW, Ran ZG, et al.
    Trop Biomed, 2023 Dec 01;40(4):400-405.
    PMID: 38308826 DOI: 10.47665/tb.40.4.004
    Beta toxin (CPB) is a lethal toxin and plays a key role in enterotoxemia of ruminants caused by Clostridium perfringens type C strain. The existing vaccines based on crude CPB need time-consuming detoxification and difficult quality control steps. In this study, we synthesized the rCPBm4 of C. perfringens type C strain and small ubiquitin-like modifier (SUMO)-tag CPBm4 (rSUMO-CPBm4) by introducing four amino acid substitutions: R212E, Y266A, L268G, and W275A. Compared with rCPBm4, rSUMO-CPBm4 was expressed with higher solubility in Escherichia coli BL21 (DE3). Neither rCPBm4 nor rSUMO-CPBm4 was lethal to mice. Although rCPBm4 and rSUMO-CPBm4 were reactogenic with polyclonal antibodies against crude CPB, rabbits vaccinated with rSUMO-CPBm4 developed significant levels of toxin-neutralizing antibody (TNA) titers that conferred protection against crude toxin challenge. These data suggest that genetically detoxified rSUMO-CPBm4 is a promising subunit vaccine candidate for C. perfringens type C beta enterotoxemia.
    Matched MeSH terms: Rabbits
  2. Tan NH, Tan CS
    Toxicon, 1989;27(3):349-57.
    PMID: 2543103
    Trimeresurus wagleri (speckled pit viper) venom exhibited the usual set of enzyme activities occurring in pit viper venoms but the content of alkaline phosphomonoesterase was unusually high, whereas the proportions of protease and arginine ester hydrolase were very low. The venom also exhibited weak thrombin-like activity but did not exhibit hemorrhagic or anticoagulant activity. Analysis of the Sephadex G-200 gel filtration fractions of the venom indicated that the lethal fraction was a low mol.wt protein, and that fractions exhibiting phosphodiesterase, phosphomonoesterase, arginine ester hydrolase, thrombin-like enzyme, L-amino acid oxidase and phospholipase A activities were not lethal. Two lethal toxins, designated as wagleri toxins 1 and 2, were isolated from the venom using Sephadex G-50 gel filtration chromatography followed by SP-Sephadex C-25 ion exchange chromatography. The mol.wts of the two toxins were 8900 by gel filtration. The LD50 (i.v.) values in mice for wagleri toxins 1 and 2 are 0.17 microgram/g and 0.19 microgram/g, respectively.
    Matched MeSH terms: Rabbits
  3. Tan NH, Saifuddin MN, Jaafar MI
    Toxicon, 1990;28(11):1355-9.
    PMID: 2128424
    Hannahtoxin, the major hemorrhagin purified from king cobra (Ophiophagus hannah) venom, elicits hemorrhages in rabbits but not in mice. Two antisera against hannahtoxin were prepared: one raised against purified hannahtoxin, while the other was raised against glutaraldehyde cross-linked and detoxified hannahtoxin. The antisera were refined by pepsin digestion and ammonium sulfate precipitation. They are of approximately equal potency in their ability to neutralize the hemorrhagic activity of king cobra venom in rabbits. The antisera did not form a precipitin line with venom of snakes of the Viperidae family nor neutralize hemorrhages elicited in mice by any of these venoms. However, when the hemorrhagic activity was assayed in rabbits, both antisera were able to abolish the hemorrhages elicited by all of the venoms tested. These results suggest that hannahtoxin displays few epitopes in common with hemorrhagins of viperid venoms, except those involved in the neutralization of hemorrhagic activity in rabbits. The epitopes of viperid venom hemorrhagins involved in the neutralization reaction in rabbits are different from those in mice.
    Matched MeSH terms: Rabbits
  4. Tan NH, Hj MN
    Toxicon, 1989;27(6):689-95.
    PMID: 2749765
    Some enzymatic activities and toxic properties of four samples of Ophiophagus hannah (king cobra) venom were investigated. There is little intraspecific variation in enzyme contents, protein composition and toxic properties of the venom. The venom does not exhibit hemolytic or edema-inducing activity but is characterized by an exceptionally high alkaline phosphomonoesterase activity. DEAE-Sephacel ion exchange chromatography and Sephadex G-75 gel filtration chromatography of the venom indicate that the major lethal toxins are the low mol.wt, non-enzymatic basic proteins. Venom fractions exhibiting high enzymatic activities apparently do not play an important role in the lethality in mice of Ophiophagus hannah venom.
    Matched MeSH terms: Rabbits
  5. Tan NH, Saifuddin MN
    Toxicon, 1990;28(4):385-92.
    PMID: 2190359
    The major hemorrhagin (termed hannahtoxin) of the venom of Ophiophagus hannah (king cobra) was purified to electrophoretic homogeneity by DEAE-Sephacel ion exchange chromatography, Sephadex G-200 gel filtration followed by a second DEAE-Sephacel chromatography. Proteolytic activity was associated with the hemorrhagic activity throughout the purification procedures. Hannahtoxin constituted approximately 2% of the crude venom. It had an isoelectric point of 5.3, a carbohydrate content of 12%, a mol. wt of 66,000 as determined by SDS-polyacrylamide gel electrophoresis and 63,000 as determined by gel filtration. It contains 1 mole of Zn per mole of protein. The minimum hemorrhage doses for hannahtoxin are 0.7 microgram and 75 micrograms, respectively, in rabbits and in mice. Hannahtoxin was not lethal to mice at a dose of 2 mg/kg (i.v.) but killed rabbits at doses above 0.18 mg/kg (i.v.). It liberated protein from rabbit glomerular basement membrane but not rat glomerular basement membrane. Treatment of the hemorrhagin with EDTA and 1,10-phenanthroline eliminated both the proteolytic and hemorrhagic activities completely.
    Matched MeSH terms: Rabbits
  6. Tan CH, Sim SM, Gnanathasan CA, Fung SY, Tan NH
    Toxicon, 2014 Mar;79:37-44.
    PMID: 24412778 DOI: 10.1016/j.toxicon.2013.12.011
    The knowledge of venom pharmacokinetics is essential to improve the understanding of envenomation pathophysiology. Using a double-sandwich ELISA, this study investigated the pharmacokinetics of the venom of hump-nosed pit viper (Hypnale hypnale) following intravenous and intramuscular injections into rabbits. The pharmacokinetics of the venom injected intravenously fitted a three-compartment model. There is a rapid (t1/2π = 0.4 h) and a slow (t1/2α = 0.8 h) distribution phase, followed by a long elimination phase (t1/2β = 19.3 h) with a systemic clearance of 6.8 mL h(-1) kg(-1), consistent with the prolonged abnormal hemostasis reported in H. hypnale envenomation. On intramuscular route, multiple peak concentrations observed in the beginning implied a more complex venom absorption and/or distribution pattern. The terminal half-life, volume of distribution by area and systemic clearance of the venom injected intramuscularly were nevertheless not significantly different (p > 0.05) from that of the venom injected intravenously. The intramuscular bioavailability was exceptionally low (Fi.m. = 4%), accountable for the highly varied median lethal doses between intravenous and intramuscular envenomations in animals. The findings indicate that the intramuscular route of administration does not significantly alter the pharmacokinetics of H. hypnale venom although it significantly reduces the systemic bioavailability of the venom.
    Matched MeSH terms: Rabbits
  7. Yap MK, Tan NH, Sim SM, Fung SY
    Toxicon, 2013 Jun;68:18-23.
    PMID: 23537711 DOI: 10.1016/j.toxicon.2013.02.017
    Existing protocols for antivenom treatment of snake envenomations are generally not well optimized due partly to inadequate knowledge of the toxicokinetics of venoms. The toxicokinetics of Naja sputatrix (Javan spitting cobra) venom was investigated following intravenous and intramuscular injections of the venom into rabbits using double-sandwich ELISA. The toxicokinetics of the venom injected intravenously fitted a two-compartment model. When the venom was injected intramuscularly, the serum concentration-time profile exhibited a more complex absorption and/or distribution pattern. Nevertheless, the terminal half-life, volume of distribution by area and systemic clearance of the venom injected intramuscularly were not significantly different (p > 0.05) from that of the venom injected intravenously. The systemic bioavailability of the venom antigens injected by intramuscular route was 41.7%. Our toxicokinetic finding is consistent with other reports, and may indicate that some cobra venom toxins have high affinity for the tissues at the site of injection. Our results suggest that the intramuscular route of administration doesn't significantly alter the toxicokinetics of N. sputatrix venom although it significantly reduces the systemic bioavailability of the venom.
    Matched MeSH terms: Rabbits
  8. Tan NH, Ponnudurai G, Mirtschin PJ
    Toxicon, 1993 Mar;31(3):363-7.
    PMID: 8470140
    The biological properties of adult and juvenile inland taipan (Oxyuranus microlepidotus) snake venoms were examined. The enzymatic activities, intravenous median lethal dose and procoagulant activity of the juvenile venom samples were not significantly different from those of the adult venom samples. Also, the juvenile and adult venoms exhibited similar electrophoretic patterns, indicating that they possessed similar protein composition.
    Matched MeSH terms: Rabbits
  9. Wee AS, Lim CK, Tan SL, Ahmad TS, Kamarul T
    Tissue Eng Part C Methods, 2022 10;28(10):501-510.
    PMID: 36082992 DOI: 10.1089/ten.TEC.2022.0112
    Transforming growth factor-beta 1 (TGF-β1) has been reported to promote chondrogenic differentiation and proliferation in the multipotent stromal cell (MSCs), and the transforming growth factor-beta 3 (TGF-β3) tends to be exclusively in promoting cell differentiation alone. The objective of this study was to determine the effect of TGF-β1 and -β3 on the MSCs chondrogenic differentiation on the poly (vinyl alcohol)-chitosan-poly (ethylene glycol) (PVA-NOCC-PEG) scaffold, compared with that of monolayer and pellet cultures. In this study, P2 rabbit bone marrow-derived MSCs were seeded either on the untreated six-well plate (for monolayer culture) or onto the PVA-NOCC-PEG scaffold or cultured as a pellet culture. The cultures were maintained in a chemically defined serum-free medium supplemented with 10 ng/mL of either TGF-β1 or TGF-β3. Cell viability assay, biochemical assay, and real-time polymerase chain reaction were performed to determine the net effect of cell proliferation and chondrogenic differentiation of each of the growth factors. The results showed that the PVA-NOCC-PEG scaffold enhanced MSCs cell proliferation from day 12 to 30 (p  0.05). In terms of chondrogenic differentiation, the PVA-NOCC-PEG scaffold augmented the GAGs secretion in MSCs and the mRNA expression levels of Sox9, Col2a1, Acan, and Comp were elevated (p  0.05). In conclusion, TGF-β1 and TGF-β3 enhanced the chondrogenic differentiation of MSCs seeded on the PVA-NOCC-PEG scaffold; however, there was no significant difference between the effect of TGF-β1 and TGF-β3. Impact statement Transforming growth factor-beta (TGF-β) superfamily members is a key requirement for the in vitro chondrogenic differentiation of mesenchymal stem cells (MSCs). In this study, the effects of TGF-β1 and -β3 on MSC chondrogenic differentiation and proliferation on a novel three-dimensional scaffold, the poly(vinyl alcohol)-chitosan-poly(ethylene glycol) (PVA-NOCC-PEG) scaffold, was evaluated. In this study, the results showed both TGF-β1 and TGF-β3 can enhance the chondrogenic differentiation of MSCs seeded on the PVA-NOCC-PEG scaffold.
    Matched MeSH terms: Rabbits
  10. Hoque ME, San WY, Wei F, Li S, Huang MH, Vert M, et al.
    Tissue Eng Part A, 2009 Oct;15(10):3013-24.
    PMID: 19331580 DOI: 10.1089/ten.TEA.2008.0355
    Synthetic polymers have attracted much attention in tissue engineering due to their ability to modulate biomechanical properties. This study investigated the feasibility of processing poly(epsilon-caprolactone) (PCL) homopolymer, PCL-poly(ethylene glycol) (PEG) diblock, and PCL-PEG-PCL triblock copolymers into three-dimensional porous scaffolds. Properties of the various polymers were investigated by dynamic thermal analysis. The scaffolds were manufactured using the desktop robot-based rapid prototyping technique. Gross morphology and internal three-dimensional structure of scaffolds were identified by scanning electron microscopy and micro-computed tomography, which showed excellent fusion at the filament junctions, high uniformity, and complete interconnectivity of pore networks. The influences of process parameters on scaffolds' morphological and mechanical characteristics were studied. Data confirmed that the process parameters directly influenced the pore size, porosity, and, consequently, the mechanical properties of the scaffolds. The in vitro cell culture study was performed to investigate the influence of polymer nature and scaffold architecture on the adhesion of the cells onto the scaffolds using rabbit smooth muscle cells. Light, scanning electron, and confocal laser microscopy showed cell adhesion, proliferation, and extracellular matrix formation on the surface as well as inside the structure of both scaffold groups. The completely interconnected and highly regular honeycomb-like pore morphology supported bridging of the pores via cell-to-cell contact as well as production of extracellular matrix at later time points. The results indicated that the incorporation of hydrophilic PEG into hydrophobic PCL enhanced the overall hydrophilicity and cell culture performance of PCL-PEG copolymer. However, the scaffold architecture did not significantly influence the cell culture performance in this study.
    Matched MeSH terms: Rabbits
  11. Md Nazir N, Zulkifly AH, Khalid KA, Zainol I, Zamli Z, Sha'ban M
    Tissue Eng Regen Med, 2019 06;16(3):285-299.
    PMID: 31205857 DOI: 10.1007/s13770-019-00191-1
    Background: This study aimed to observe the cartilaginous matrix production in SRY (sex determining region Y)-box 9 (SOX9)- and/or telomerase reverse transcriptase (TERT)-transfected chondrocytes from monolayer to three-dimensional (3D) culture.

    Methods: The genes were transferred into chondrocytes at passage-1 (P1) via lipofection. The post-transfected chondrocytes (SOX9-, TERT- and SOX9/TERT) were analysed at P1, P2 and P3. The non-transfected group was used as control. The 3D culture was established using the chondrocytes seeded in a disc-shaped PLGA/fibrin and PLGA scaffolds. The resulting 3D "cells-scaffolds" constructs were analysed at week-1, -2 and -3. The histoarchitecture was evaluated using haematoxylin and eosin, alcian blue and safranin o stains. The quantitative sulphated glycosaminoglycan (sGAG) content was measured using biochemical assay. The cartilage-specific markers expression were analysed via real-time polymerase chain reaction.

    Results: All monolayer cultured chondrocytes showed flattened, fibroblast-like appearance throughout passages. Proteoglycan and sGAG were not detected at the pericellular matrix region of the chondrocytes. The sGAG content assay indicated the matrix production depletion in the culture. The cartilage-specific markers, COL2A1 and ACAN, were downregulated. However, the dedifferentiation marker, COL1A1 was upregulated. In 3D "cells-scaffolds" constructs, regardless of transfection groups, chondrocytes seeded in PLGA/fibrin showed a more uniform distribution and produced denser matrix than the PLGA group especially at week-3. Both sGAG and proteoglycan were clearly visualised in the constructs, supported by the increment of sGAG content, quantitatively. Both COL2A1 and ACAN were upregulated in SOX9/TERT-PLGA and SOX9/TERT-PLGA/fibrin respectively. While, COL1A1 was downregulated in SOX9/TERT-PLGA.

    Conclusion: These findings indicated that the SOX9/TERT-transfected chondrocytes incorporation into 3D scaffolds facilitates the cartilage regeneration which is viable structurally and functionally.

    Matched MeSH terms: Rabbits
  12. Abdul Rahman R, Mohamad Sukri N, Md Nazir N, Ahmad Radzi MA, Zulkifly AH, Che Ahmad A, et al.
    Tissue Cell, 2015 Aug;47(4):420-30.
    PMID: 26100682 DOI: 10.1016/j.tice.2015.06.001
    Articular cartilage is well known for its simple uniqueness of avascular and aneural structure that has limited capacity to heal itself when injured. The use of three dimensional construct in tissue engineering holds great potential in regenerating cartilage defects. This study evaluated the in vitro cartilaginous tissue formation using rabbit's bone marrow mesenchymal stem cells (BMSCs)-seeded onto poly(lactic-co-glycolic acid) PLGA/fibrin and PLGA scaffolds. The in vitro cartilaginous engineered constructs were evaluated by gross inspection, histology, cell proliferation, gene expression and sulphated glycosaminoglycan (sGAG) production at week 1, 2 and 3. After 3 weeks of culture, the PLGA/fibrin construct demonstrated gross features similar to the native tissue with smooth, firm and glistening appearance, superior histoarchitectural and better cartilaginous extracellular matrix compound in concert with the positive glycosaminoglycan accumulation on Alcian blue. Significantly higher cell proliferation in PLGA/fibrin construct was noted at day-7, day-14 and day-21 (p<0.05 respectively). Both constructs expressed the accumulation of collagen type II, collagen type IX, aggrecan and sox9, showed down-regulation of collagen type I as well as produced relative sGAG content with PLGA/fibrin construct exhibited better gene expression in all profiles and showed significantly higher relative sGAG content at each time point (p<0.05). This study suggested that with optimum in vitro manipulation, PLGA/fibrin when seeded with pluripotent non-committed BMSCs has the capability to differentiate into chondrogenic lineage and may serve as a prospective construct to be developed as functional tissue engineered cartilage.
    Matched MeSH terms: Rabbits
  13. Subhan RA, Puvanan K, Murali MR, Raghavendran HR, Shani S, Abdullah BJ, et al.
    ScientificWorldJournal, 2014;2014:818502.
    PMID: 24983002 DOI: 10.1155/2014/818502
    This study was conducted to develop a technique for minimally invasive and accurate delivery of stem cells to augment nucleus pulposus (NP) in damaged intervertebral discs (IVD). IVD damage was created in noncontiguous discs at L4-L5 level; rabbits (N = 12) were randomly divided into three groups: group I treated with MSCs in HyStem hydrogel, group II treated with HyStem alone, and group III received no intervention. MSCs and hydrogel were administered to the damaged disc under guidance of fluoroscopy. Augmentation of NP was assessed through histological and MRI T2 mapping of the NP after eight weeks of transplantation. T2 weighted signal intensity was higher in group I than in groups II and III (P < 0.05). Disc height index showed maximum disc height in group I compared to groups II and III. Histological score of the degenerative index was significantly (P < 0.05) lower in group I (8.6 ± 1.8) than that in groups II (11.6 ± 2.3) and III (18.0 ± 5.7). Immunohistochemistry staining for collagen type II and aggrecan staining were higher in group I as compared to other groups. Our results demonstrate that the minimally invasive administration of MSCs in hyaluronan hydrogel (HyStem) augments the repair of NP in damaged IVD.
    Matched MeSH terms: Rabbits
  14. Alfarisi HAH, Ibrahim MB, Mohamed ZBH, Azahari N, Hamdan AHB, Che Mohamad CA
    ScientificWorldJournal, 2020;2020:4503253.
    PMID: 33132768 DOI: 10.1155/2020/4503253
    Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disorder worldwide with no curative therapy. The aim of this study was to investigate the hepatoprotective effects of a novel Trihoney against biochemical and histological manifestations of NAFLD in hypercholesterolemic rabbits. Methodology. Forty-eight male New Zealand white (NZW) rabbits were grouped into normal diet (C), normal diet with 0.6 g/kg/day of Trihoney (C + H), 1% cholesterol diet (HCD), 1% cholesterol diet with 0.3 g/kg/day of Trihoney (HCD + H1), 1% cholesterol diet with 0.6 g/kg/day of Trihoney (HCD + H2), and 1% cholesterol diet with 2 mg/kg/day of atorvastatin (HCD + At.). Animals were sacrificed after 12 weeks of treatment. Serum lipids and liver function test (LFT) were measured prior to and at the endpoint of the experiment for total cholesterol (TC), low-density lipoprotein (LDL-c), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), and total bilirubin (T. Bil.). Liver was processed for histopathology study. Liver homogenate was analysed for oxidative stress parameters: superoxide dismutase (SOD), glutathione peroxidase (GPx), and malondialdehyde (MDA). Results. Lipid analysis approved the induction of hypercholesterolemia. A significant elevation (p < 0.01) of serum AST and ALT levels showed by the HCD group was compared to C and C + H groups. Trihoney exhibited a significant reduction (p < 0.001) of AST and ALT compared to the HCD group. Likewise, AST and ALT reduced significantly in the HCD + At. group (p < 0.001). Trihoney supplementation induced significant (p < 0.05) enhancement of SOD and GPx activities. Atorvastatin treatment was associated with significant (p < 0.05) reduction of SOD and GPx activities in the liver. Trihoney and atorvastatin showed marked (p < 0.001) reduction of hepatic lipid peroxidation. Trihoney showed histological protection against progression of NAFLD to nonalcoholic steatohepatitis (NASH). Atorvastatin exhibited no beneficial impact on hepatic architecture. Conclusion. Trihoney was able to maintain normal liver function and showed hepatoprotection against progression of NAFLD to NASH probably through hypocholesterolaemic and antioxidant functions.
    Matched MeSH terms: Rabbits
  15. Shekhar KC, Pathmanathan R
    PMID: 8266238
    Two groups of three rabbits each were infected with 250 cercariae of the Baling and Koyan strain of Schistosoma malayensis. Changes induced by both strains included periportal hepatocellular necrosis and fibrosis. Vascular changes such as portal phlebitis and thrombophlebitis and varying degrees of pericholangitis were also present. Amyloid deposition was noted. A comparative study of the changes induced in rabbits by S. malayensis, S. mekongi and S. japonicum showed that the hepatic lesions induced by the Baling strain of S. malayensis were similar to that induced by S. japonicum, and were more severe than that induced by S. mekongi or the Koyan strain.
    Matched MeSH terms: Rabbits
  16. Shekhar KC, Pathmanathan R
    PMID: 1523486
    Schistosoma malayensis Sp N is a putative new species of schistosome discovered in Peninsular Malaysia in 1973. This paper comprises the first report on the detailed gastrointestinal pathology present in rabbits infected with strains of the parasite. Two different strains of schistosome--the Baling and Koyan strains--from two different ecosystems were used to infect inbred rabbits and the resulting pathophysiology was studied. Our results showed that the Baling strain of S. malayensis was more virulent than the Koyan strain and produced nodular, segmental circumferential lesions and large bilharziomas measuring 1-7 cm in diameter in the distal jejunum, ileum and the ileo-caecal junction. The findings indicate that the Baling strain of S. malayensis was more pathogenic for rabbits as compared with the Koyan strain--in relation to the gross pathology of the gut and the tissue egg load. Earlier reports have shown that rabbits infected with S. japonicum induces significant intestinal lesions in rabbits (Cheever et al, 1980 a,b) but these animals are refractory to infection with S. mekongi (Byram and Lichtenberg, 1980). Our studies show that the two strains of S. malayensis adapted well in rabbits. It is also established that in rabbits, the virulence of the Baling strain of S. malayensis is greater than that of S. mekongi and approximates that of S. japonicum.
    Matched MeSH terms: Rabbits
  17. Normaznah Y, Saniah K, Nazma M, Mak JW, Krishnasamy M, Hakim SL
    PMID: 9031401
    The Aborigines or Orang Asli in Peninsular Malaysia who are still seminomadic are known to have a close association with dogs. In this study, enzyme-linked immunosorbent assay (ELISA) was used to detect anti-Sarcoptes scabiei var canis antibodies in this community as a measure of exposure to the mite. Out of 312 Orang Asli tested, 24.7% were positive for polyvalent anti-Sarcoptes antibodies. No significant difference was found between the positive rates in males (26.1%) and females (23.6%). Only 1.9% were positive for IgA and none was positive for IgE anti-Sarcoptes antibodies. Since there were very few patients with clinical manifestation of scabies, there is a possibility that continuous exposure to the dogs mite confers cross-protective immunity in the community against human scabies.
    Matched MeSH terms: Rabbits
  18. Shekhar KC, Pathmanathan R
    PMID: 1298078
    Two distinct strains of Schistosoma malayensis exist in Malaysia (designated the Baling and Koyan strains). Both these strains show intraspecific variations in pathology (Greer et al, 1988). To evaluate the differences in the pulmonary pathology resulting from infections of the two different strains of Malaysian schistosome, a total of 20 experimental rabbits were infected, 10 each with cercariae of the Koyan strains. Pathological changes were studied over a period of 28 weeks. Granulomas in the lung occurring as a result of infection with the Baling strain were compared with those caused by infection with the Koyan strain. Although both strains produced parenchymatous and alveolar lesions, granulomas caused by the Baling strain of Malaysian schistosome were more numerous and larger (when comparing mean diameter as well as area of granuloma, p < 0.05). In addition, pulmonary vascular hypertensive changes were present in Baling strain infected rabbits. These comprised of pulmonary arteriolar endothelial swelling and damage, intimal elastosis and medial hypertrophy. Angiitis and pulmonary periphlebitis were also noted occasionally. In contrast, Koyan strain infection resulted in fewer and smaller granulomas. Pulmonary vascular changes were minimal.
    Matched MeSH terms: Rabbits
  19. Nizam MH, Ruszymah BH, Chua KH, Ghafar NA, Hamzah JC
    Med J Malaysia, 2008 Jul;63 Suppl A:111-2.
    PMID: 19025010
    This study was conducted to explore the feasibility of culturing conjunctiva epithelial cells in serum-free and feeder layer-free culture system with regard to the cell morphology and immunocytochemistry of the rabbit bulbar, fornix and palpebral conjunctiva epithelia. The results showed that epithelium cells from all the three conjunctiva regions can be cultured in a serum-free and feeder layer-free environment. We obtained highest epithelial growth from fornix region with minimum invasion of fibroblast cells compared to other area. All cultured cells were stained positive for cytokeratin 19 and MUC5AC and negative for cytokeratin 3. These findings suggested that fornix was a better source of cells for the development of tissue engineered conjunctiva for future clinical application.
    Matched MeSH terms: Rabbits
  20. Masrudin SS, Ghafar NA, Saidi M, Aminuddin BS, Rahmat A, Ruszymah BH, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:109-10.
    PMID: 19025009
    The present work was to determine the development and re-epithelization of bilayered corneal construct (BCC) in vitro and in vivo using scanning electron microscopy (SEM). The in vitro BCC was transplanted to the rabbit's eye and after 90 days the BCC was harvested and analyzed. The corneas were processed for morphology studies. The result indicates that the BICC that was transplanted for 90 days showed good development and re-epithelization of epithelial layer similar to the normal cornea.
    Matched MeSH terms: Rabbits
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links