Displaying publications 21 - 40 of 152 in total

Abstract:
Sort:
  1. Wongyai N, Jutagate A, Grudpan C, Jutagate T
    Trop Life Sci Res, 2020 Jul;31(2):159-173.
    PMID: 32922673 DOI: 10.21315/tlsr2020.31.2.8
    Condition index, reproduction and feeding of three non-obligatory riverine Mekong cyprinids namely Hampala dispar, Hampala macrolepidota and Osteochilus vittatus were examined. The samples were from the Nam Ngiep (NN) River and Bueng Khong Long (BKL) Swamp, which are the representative of the lotic- and lentic-environments, respectively. These two habitats lay in the same geographical area but on the opposite banks of the Mekong mainstream. The samplings were conducted between May 2017 and April 2018. There were 365 H. dispar, 259 H. macrolepidota and 298 O. vittatus samples in this study. The condition index of all three species were beyond 90% implying they can live well in both lotic and lentic environments. Reproductions of all three species were taken place in both environments with two peaks at the onset and end of rainy season. The samples from BKL showed early maturation than NN samples in all three (3) species. Feeding plasticity, though dominant by insects, was observed in Hampala spp., while O. vittatus can utilise any available detritus in both environments. Results clearly show that all the three selected non-obligatory riverine fish species can live very well in either lotic or lentic environments and imply that they can adjust themselves to reservoir environment.
    Matched MeSH terms: Rain
  2. Huat, Bujang B.K, Faisal AIi, Choong, Foong Heng
    MyJurnal
    Residual soils occur in most countries of the world but the greater areas and depths are normally found in tropical humid areas. In these places, the soil forming processes are still very active and the weathering is much faster than the erosive factor. Most residual exhibit high soil suctions for most of the year. The absence of positive pore water pressure except immediately after rain, renders conventional soil mechanics for saturated soil irrelevant. In particular, the effective stress theories of saturated soil are not applicable at the practical leve l. Ignorance or lack of understanding of the geotechnical behavior of soil in the partially or unsaturated state has caused a lot of damages to infrastructures, buildings and other structures. For instances, the collapsibility and volume change of partially saturated soils in connection with the drying or wetting causes a lot of damage to foundation, roads and other structures. As such, the development of extended soil mechanics, which embraces the soil in the unsaturated state or subjected to soil suction, is essential. This paper examines the collapsibility and volume change behavior specifically of an unsaturated residual soil under various levels of applied matric suction (u -u ), and net mean stress (a-u) in a predetermined stress path. The volume change of ;he"' soil is found to be sensitive to both the applied matric suction and net mean stress. The soil is found to exhibit a collapsibility behavior upon a reduction in applied matric suction to 25 kPa at constant net mean stress.
    Matched MeSH terms: Rain
  3. Ho, C. L. I., Choo, B. Q.
    MyJurnal
    In this paper, stormwater runoff from a residential catchment located in Miri, Sarawak, was characterized to determine the pollutant concentrations and loading. The observed average event mean concentrations were 116 mg/L for TSS, 115 mg/L for COD, 1.5 mg/L for NH3-N, and 0.23 mg/L for Pb. Based on Interim National Water Quality Standards (INWQS) for Malaysia, the average event mean concentration, EMC value for TSS exceeded class II (50 mg/L), exceeded class V (>100 mg/L) for COD, and exceeded class III (0.9 mg/L) for NH3-N. All four water quality parameters exhibited first flush characteristic but to varying magnitude which was influenced by the storm characteristics.
    Matched MeSH terms: Rain
  4. Sayang Mohd Deni, Suhaila Jamaluddin, Wan Zawiah Wan Zin, Abdul Aziz Jemain
    This study attempts to trace changes in the wet spells over Peninsular Malaysia based on the daily rainfall data from 32 selected rainfall stations which include four sub-regions; northwest, west, south and east, for the period of 1975 to 2004. Six wet spells indices comprising of the main characteristics (maximum, mean, standard deviation), the persistency of two consecutive wet days and the frequency of the short and long duration of wet spells will be used to identify whether or not these indices increase or decrease over Peninsular Malaysia during the monsoon seasons. The study indicates that the eastern areas of the peninsula could be considered as the wettest areas since almost all the indices of wet spells over these areas are higher than over the other regions during the northeast monsoon (NE). The Mann-Kendall (MK) trend test revealed that almost all of the stations located in the eastern areas of the peninsula exhibited a positive trend in the mean, variability and persistency of wet spells indices during the NE monsoon, while a negative trend was observed during the southwest monsoon (SW) in these areas. Moreover, these indices showed a positive trend, and at the same time a decreasing trend was observed in the frequency of the long wet spells in most stations located over the west coast of Peninsular Malaysia during the SW monsoon for the period of 1975 to 2004.
    Matched MeSH terms: Rain
  5. Wahidah Sanusi, Kamarulzaman Ibrahim
    Sains Malaysiana, 2012;41:1345-1353.
    Climate changes have become serious issues that have been widely discussed by researchers. One of the issues concerns with the study in changes of rainfall patterns. Changes in rainfall patterns affect the dryness and wetness conditions of a region. In this study, the three-dimensional loglinear model was used to fit the observed frequencies and to model the expected frequencies of wet class transition on eight rainfall stations in Peninsular Malaysia. The expected frequency values could be employed to determine the odds value of wet classes of each station. Further, the odds values were used to estimate the wet class of the following month if the wet class of the previous month and current month were identified. The wet classification based on SPI index (Standardized Precipitation Index). For station that was analyzed, there was no difference found were between estimated and observed wet classes. It was concluded that the loglinear models can be used to estimate the wetness classes through the estimates of odds values.
    Matched MeSH terms: Rain
  6. Wan Zin Wan Zawiah, Abdul Aziz Jemain, Kamarulzaman Ibrahim, Jamaludin Suhaila, Mohd Deni Sayang
    Statistical distributions of annual extreme (AE) and partial duration (PD) for rainfall events are analysed using a database of 50 rain-gauge stations in Peninsular Malaysia, involving records of time series data which extend from 1975 to 2004. The generalised extreme value (GEV) and generalised Pareto (GP) distributions are considered to model the series of annual extreme and partial duration. In both cases, the three parameter models such as GEV and GP distributions are fitted by means of L-moments method, which is one of the commonly used methods for robust estimation. The goodness-of-fit of the theoretical distribution to the data is then evaluated by means of L-moment ratio diagram and several goodness-of-fit (GOF) tests for each of the 50 stations. It is found that for the majority of stations, the AE and PD series are well fitted by the GEV and GP models, respectively. Based on the models that have been identified, we can reasonably predict the risks associated with extreme rainfall for various return periods.
    Matched MeSH terms: Rain
  7. Norela Sulaiman, Toh LF, Hazzila Abdul Samat, Ismail Sahid, Maimon Abdullah, Mohd. Rozali Othman
    Sains Malaysiana, 2007;36(2):91-95.
    This study was carried out to determine the concentrations of cypermethrin in total suspended particulate in air in several farming areas of Cameron Highlands. Samples of total suspended particulate were collected using a high volume air sampler (Model Graseby) from six different sampling sites around Cameron Highlands. Laboratory analysis of total suspended particulate was conducted by the standard method. High dosages of cypermethrin were used by farmers in the dry season. Results of the study showed that the concentrations of cypermethrin in total suspended particulate in the air samples were higher during the dry season (May-July 2004) compared to the rainy season (September-October 2004). There was a significant positive correlation between the concentrations of cypermethrin and total suspended particulate (p<0.05).
    Matched MeSH terms: Rain
  8. Suhaila J, Sayang Mohd Deni, Wan Zawiah Wan Zin, Abdul Aziz Jemain
    This study investigated the spatial pattern and trends of the daily rainfall data in Peninsular Malaysia based on seasonal rainfall indices. Five rainfall indices which describe the main characteristics of rainfall, the total amount of rainfall, frequency of wet days, rainfall intensity, extreme frequency, and extreme intensity, were employed in this study. The statistics of rainfall indices were calculated in terms of their means for four regions in Peninsular Malaysia for the period 1975 to 2004. The findings indicate that the southwest monsoon had the greatest impact on the western part of the Peninsula, particularly in characterizing the rainfall pattern of the northwest region. During this season, the northwest region could be considered as the wettest region since all rainfall indices tested are higher than in other regions of the Peninsula. Otherwise, the northwest region is denoted as the driest part of the Peninsula during the northeast monsoon period. The northwest region is less influenced by the northeast monsoon because of the existence of the Titiwangsa Range, which blocks the region from receiving heavy rainfall. On the other hand, it is found that the lowlands areas such as the eastern part of the Peninsula are strongly characterized by the northeast monsoonal flow. Based on the results of the Mann-Kendall test, as the trend of the total amount of rainfall and the frequency of wet days during the southwest monsoon decrease at most of the stations, the rainfall intensity increases. In contrast, increasing trends in both the total amount of rainfall and the frequency of wet days were observed at several stations during the northeast monsoon, which give rise to the increasing trend of rainfall intensity. The results for both seasons indicate that there are significantly decreasing trends in the frequency of wet days during the extreme events for most of the stations on the peninsula. However, a smaller number of significant trends was found for extreme intensity.
    Matched MeSH terms: Rain
  9. Mohd Shafiq Zakeyuddin, Amir Shah Ruddin Md Sah, Mohd Syaiful Mohammad, Nurul Fazlinda Mohd Fadzil, Zarul Hazrin Hashim, Wan Maznah Wan Omar
    Sains Malaysiana, 2016;45:853-863.
    A study of spatial and temporal variations on water quality and trophic status was conducted twice a month from December
    2012 to January 2014 in four sampling stations at Bukit Merah Reservoir (BMR). The concentration of dissolved oxygen
    (DO), water temperature, conductivity, total dissolved solids (TDS), total phosphorous (TP), PO4
    -
    , NO2
    -
    , NO3
    -
    , NH4
    + and
    net primary productivity had significant differences temporally (p<0.05) except for pH, total suspended solids (TSS)
    and chlorophyll-a. Based on correlation analysis, the amount of rainfall and rain days has negatively correlated with
    secchi depth and chlorophyll-a (p<0.01). The water level has significantly decreased the value of the temperature, pH,
    conductivity, TP and NO2
    -
    but it has positive correlation with NO3
    -
    and NH4
    +. Discharged from Sungai Kurau increased
    the value of conductivity, TSS, TP and NO2
    -
    as a result from runoff and erosion, thus decreasing the secchi depth values,
    NO3
    -
    and NH4
    +. The water quality of BMR is classified in Class II and TSI indicates that the BMR has an intermediate level
    of productivity (mesotrophic) and meets the objective of this reservoir which was to provide water for paddy irrigation.
    Matched MeSH terms: Rain
  10. Imran M, Khan KB, Zaman K, Musah MB, Sudiapermana E, Aziz ARA, et al.
    Environ Sci Pollut Res Int, 2021 Aug;28(30):41000-41015.
    PMID: 33774795 DOI: 10.1007/s11356-021-13630-1
    The pro-poor growth and environmental sustainability are the twin agendas widely discussed in environmental science literature. The technology-embodied growth helps to attain both agendas through knowledge sharing and technology transfer, which trickle down to the poor income group and improve their living standards. Hence, the role of information and communication technologies (ICTs) is deemed crucial in boosting economic growth and is under deep consideration to establish its role in reducing poverty and environmental pollution. The current study examines the long-run relationship between ICTs, poverty reduction, and ecological degradation in Pakistan using time series data from 1975-2018. The short- and long-run parameter estimates were obtained through the Autoregressive Distributed Lag (ARDL) model for robust inferences. The results substantiate the inverted U-shaped Environmental Kuznets Curve relationship between income and emissions with a turning point at US$1000 in the short-run and US$800 in the long-run. The results confirmed the decisive intervention of ICTs factors in the poverty reduction, i.e., computer communications and mobile-telephone-broadband subscriptions support to reduce poverty incidence with the mediation of inbound FDI in a country. As far as income inequality is concerned, it shows that computer services support minimizing income inequality via a channel of high-technology exports in a country. The technology embodied emissions verified in the long-run, where mobile-telephone-broadband subscriptions increase carbon emissions. Finally, mobile-telephone-broadband subscriptions and inbound FDI both are significant contributors to amplify the country's economic growth. The results conclude that poverty reduction and environmental sustainability agenda are achieved by developing green ICT infrastructure in a country.
    Matched MeSH terms: Rain
  11. Sa'adi Z, Yusop Z, Alias NE, Shiru MS, Muhammad MKI, Ramli MWA
    Sci Total Environ, 2023 Sep 20;892:164471.
    PMID: 37257620 DOI: 10.1016/j.scitotenv.2023.164471
    This paper aims to select the most appropriate rain-based meteorological drought index for detecting drought characteristics and identifying tropical drought events in the Johor River Basin (JRB). Based on a multi-step approach, the study evaluated seven drought indices, including the Rainfall Anomaly Index (RAI), Standardized Precipitation Index (SPI), China-Z Index (CZI), Modified China-Z Index (MCZI), Percent of Normal (PN), Deciles Index (DI), and Z-Score Index (ZSI), based on the CHIRPS rainfall gridded-based datasets from 1981 to 2020. Results showed that CZI, MCZI, SPI, and ZSI outperformed the other indices based on their correlation and linearity (R2 = 0.96-0.99) along with their ranking based on the Compromise Programming Index (CPI). The historical drought evaluation revealed that MCZI, SPI, and ZSI performed similarly in detecting drought events, but SPI was more effective in detecting spatial coverage and the occurrence of 'very dry' and 'extremely dry' drought events. Based on SPI, the study found that the downstream area, north-easternmost area, and eastern boundary of the basin were more prone to higher frequency and longer duration droughts. Furthermore, the study found that prolonged droughts are characterized by episodic drought events, which occur with one to three months of 'relief period' before another drought event occurs. The study revealed that most drought events that coincide with El Niño, positive Indian Ocean Dipole (IOD), and negative Madden-Julian Oscillation (MJO) events, or a combination of these events, may worsen drought conditions. The application of CHIRPS datasets enables better spatiotemporal mapping and prediction of drought for JRB, and the output is pertinent for improving water management strategies and adaptation measures. Understanding spatiotemporal drought conditions is crucial to ensuring sustainable development and policies through better regulation of human activities. The framework of this research can be applied to other river basins in Malaysia and other parts of Southeast Asia.
    Matched MeSH terms: Rain
  12. Suhaizan FS, Mohd Taib A, Taha MR, Hasbollah DZA, Ibrahim A, Dan MFM, et al.
    PLoS One, 2025;20(1):e0316488.
    PMID: 39792898 DOI: 10.1371/journal.pone.0316488
    Rainfall-induced landslides are a frequent geohazard for tropical regions with prevalent residual soils and year-round rainy seasons. The water infiltration into unsaturated soil can be analyzed using the soil-water characteristic curve (SWCC) and permeability function which can be used to monitor and predict incoming landslides, showing the necessity of selecting the appropriate model parameter while fitting the SWCC model. This paper presents a set of data from six different sections of the studied slope at varying depths that are used to test the performance of three SWCC models, the van Genuchten-Mualem (vG-M), Fredlund-Xing (F-X) and Gardner (G). The dataset is obtained from field monitoring of the studied slope, over a duration of 6 months. The study discovered that the van Genuchten-Mualem model provided the best estimation based on RMSE and evaluation metric, R2 followed by Fredlund and Xing, and Gardner, however, the difference between them is minor. The R2 obtained varies as the value at the crest with 1.0 m depth has a mean of 0.44, the lowest among the overall data fitted but it also has the best RMSE value with a mean of 0.00473. Whereas the location mid-section at a depth of 1.0 m has the highest R2 with a mean of 0.97, and an average value of RMSE of 0.0145 which is the middle of the group that was fitted. This indicates that R2 measurement for model performance relies highly on the dispersion of the variables collected. The dispersion of the data set is mainly due to the sensors' inability to detect effectively at exceedingly high matric suction and zero matric suction. The investment in improving the equipment's precision will boost reliability and reduce the number of assumptions as the data is collected from the site rather than laboratory testing.
    Matched MeSH terms: Rain
  13. Hafilah Wan Ariffin WN, Sidek LM, Basri H, Idros N, Adrian MT, Abd Ghani NH, et al.
    PLoS One, 2025;20(2):e0311181.
    PMID: 40014607 DOI: 10.1371/journal.pone.0311181
    Climate change poses an escalating threat to the safety of high-hazard embankment dams, increases flood discharge impacting dam overtopping risk by altering the hydrological load of the original dam designed capacity. This paper's primary aims are to evaluate climate change's influence on extreme rainfall events and their impact on dam safety and to assess the overtopping risk of Batu Dam under various climate scenarios. This study focusses on assessing the overtopping risk of Batu Dam in Malaysia, utilizing regional climate model projections from the Coupled Model Intercomparison Project 5 (CMIP5) spanning 2020 to 2100. Three Representative Concentration Pathways (RCPs)-RCP4.5, RCP6.0, and RCP8.5 as the scenario and divide into 3 period of study: early century (2020-2046), mid (2047-2073) and late-century (2074-2100) evaluated with hydrological analysis to access the dam safety. Using the Linear Scaling Method (LSM), we corrected the bias projection rainfall data from three Regional Climate Models (RCMs) for the RCPs. Future Probable Maximum Precipitation (PMP) was estimated using statistical analysis techniques developed by the National Hydraulic Research Institute of Malaysia (NAHRIM). Additionally, Rainfall Intensity-Duration-Frequency (IDF) curves were updated based on climate scenarios outlined in the Hydrological Procedure 2021 and the associated Climate Change Factors. The HEC-HMS hydrological model was employed to simulate PMF and IDF for ARIs ranging from 1 to 100,000 years, providing a comprehensive analysis of risks under future climatic conditions. Across all future climate scenarios, inflow events were projected to exceed the dam design inflow, with RCP8.5 indicating the highest inflow values, particularly later in the century, highlighting probability of overtopping risks. Late-century projections show inflow for ARI 50 under RCP8.5 exceeding PMF by 20%, while mid-century RCP6.0 results indicate a 15% higher inflow for ARI 50000. Early-century RCP4.5 shows a 10% increase for ARI 100000 compared to PMF. The study advocates adaptive dam safety management and flood protection measures. This research provides crucial insights for embankment dam owners, stressing the urgent need to address Batu Dam's vulnerability to extreme flooding amidst climate change and emphasizing proactive measures to fortify critical infrastructure and protect downstream communities.
    Matched MeSH terms: Rain
  14. Noor Rodi NS, Malek MA, Ismail AR, Ting SC, Tang CW
    Water Sci Technol, 2014;70(10):1641-7.
    PMID: 25429452 DOI: 10.2166/wst.2014.420
    This study applies the clonal selection algorithm (CSA) in an artificial immune system (AIS) as an alternative method to predicting future rainfall data. The stochastic and the artificial neural network techniques are commonly used in hydrology. However, in this study a novel technique for forecasting rainfall was established. Results from this study have proven that the theory of biological immune systems could be technically applied to time series data. Biological immune systems are nonlinear and chaotic in nature similar to the daily rainfall data. This study discovered that the proposed CSA was able to predict the daily rainfall data with an accuracy of 90% during the model training stage. In the testing stage, the results showed that an accuracy between the actual and the generated data was within the range of 75 to 92%. Thus, the CSA approach shows a new method in rainfall data prediction.
    Matched MeSH terms: Rain*
  15. Tay JH, Jaafar S, Mohd Tahir N
    Bull Environ Contam Toxicol, 2014 Mar;92(3):329-33.
    PMID: 24435136 DOI: 10.1007/s00128-014-1203-z
    A short-term investigation on the chemical composition of rainwater was carried out at five selected sampling stations in Kuantan district, Pahang, Malaysia. Sampling of rainwater was conducted by event basis between September and November 2011. Rainwater samples were collected using polyethylene containers and the parameters measured were cations (sodium, potassium, ammonium, calcium and magnesium) and anions (chlorides, nitrates and sulphates). The average pH value for rainwater samples was 6.0 ± 0.57 in which most of the sampling sites exhibited pH values >5.6. Calcium and sulphate were the most abundant cation and anion, respectively, whilst the concentrations of other major ions varied according to sampling location.
    Matched MeSH terms: Rain/chemistry*
  16. Saner P, Loh YY, Ong RC, Hector A
    PLoS One, 2012;7(1):e29642.
    PMID: 22235319 DOI: 10.1371/journal.pone.0029642
    Deforestation in the tropics is an important source of carbon C release to the atmosphere. To provide a sound scientific base for efforts taken to reduce emissions from deforestation and degradation (REDD+) good estimates of C stocks and fluxes are important. We present components of the C balance for selectively logged lowland tropical dipterocarp rainforest in the Malua Forest Reserve of Sabah, Malaysian Borneo. Total organic C in this area was 167.9 Mg C ha⁻¹±3.8 (SD), including: Total aboveground (TAGC: 55%; 91.9 Mg C ha⁻¹±2.9 SEM) and belowground carbon in trees (TBGC: 10%; 16.5 Mg C ha⁻¹±0.5 SEM), deadwood (8%; 13.2 Mg C ha⁻¹±3.5 SEM) and soil organic matter (SOM: 24%; 39.6 Mg C ha⁻¹±0.9 SEM), understory vegetation (3%; 5.1 Mg C ha⁻¹±1.7 SEM), standing litter (<1%; 0.7 Mg C ha⁻¹±0.1 SEM) and fine root biomass (<1%; 0.9 Mg C ha⁻¹±0.1 SEM). Fluxes included litterfall, a proxy for leaf net primary productivity (4.9 Mg C ha⁻¹ yr⁻¹±0.1 SEM), and soil respiration, a measure for heterotrophic ecosystem respiration (28.6 Mg C ha⁻¹ yr⁻¹±1.2 SEM). The missing estimates necessary to close the C balance are wood net primary productivity and autotrophic respiration.Twenty-two years after logging TAGC stocks were 28% lower compared to unlogged forest (128 Mg C ha⁻¹±13.4 SEM); a combined weighted average mean reduction due to selective logging of -57.8 Mg C ha⁻¹ (with 95% CI -75.5 to -40.2). Based on the findings we conclude that selective logging decreased the dipterocarp stock by 55-66%. Silvicultural treatments may have the potential to accelerate the recovery of dipterocarp C stocks to pre-logging levels.
    Matched MeSH terms: Rain*
  17. Nazahiyah R, Yusop Z, Abustan I
    Water Sci Technol, 2007;56(7):1-9.
    PMID: 17951862
    Sampling of urban runoff was carried out in a small catchment, which represents a residential area (3.34 ha) in Skudai, Johor. One hundred and seventeen runoff samples from ten storm events were analysed. Runoff quality showed large variations in concentrations during storms, especially for SS, BOD5 and COD. Concentrations of NO3-N, NO2-N, NH3-N, and P were also high. Lead (Pb) was also detected but the levels were low (<0.001 mg/L). In general, the river quality is badly polluted and falls in Class V based on the Malaysian Interim National Water Quality Standards. Event mean concentrations for all parameters were found to vary greatly between storms. The values (mg/L) were BOD5 (72), COD (325), SS (386), NO3-N (2.5), NO2-N (0.58), NH3-N (6.8), P (3.4), respectively. First flush phenomena were observed for BOD, COD, SS, NO3-N, NH3-N and P. The first 20-30% of the runoff volume evacuated between 20-59% BOD, 15-69% COD, 15-78% SS, 14-49% NO3-N, 14-19% NO2-N, 23-53% NH3-N and 23-43% P.
    Matched MeSH terms: Rain/chemistry*
  18. Latif MT, Ngah SA, Dominick D, Razak IS, Guo X, Srithawirat T, et al.
    J Environ Sci (China), 2015 Jul 1;33:143-55.
    PMID: 26141887 DOI: 10.1016/j.jes.2015.02.002
    The aim of this study was to determine the source apportionment of dust fall around Lake Chini, Malaysia. Samples were collected monthly between December 2012 and March 2013 at seven sampling stations located around Lake Chini. The samples were filtered to separate the dissolved and undissolved solids. The ionic compositions (NO3-, SO4(2-), Cl- and NH4+) were determined using ion chromatography (IC) while major elements (K, Na, Ca and Mg) and trace metals (Zn, Fe, Al, Ni, Mn, Cr, Pb and Cd) were determined using inductively coupled plasma mass spectrometry (ICP-MS). The results showed that the average concentration of total solids around Lake Chini was 93.49±16.16 mg/(m2·day). SO4(2-), Na and Zn dominated the dissolved portion of the dust fall. The enrichment factors (EF) revealed that the source of the trace metals and major elements in the rain water was anthropogenic, except for Fe. Hierarchical agglomerative cluster analysis (HACA) classified the seven monitoring stations and 16 variables into five groups and three groups respectively. A coupled receptor model, principal component analysis multiple linear regression (PCA-MLR), revealed that the sources of dust fall in Lake Chini were dominated by agricultural and biomass burning (42%), followed by the earth's crust (28%), sea spray (16%) and a mixture of soil dust and vehicle emissions (14%).
    Matched MeSH terms: Rain/chemistry
  19. Aiken SR, Frost DB, Leigh CH
    Soc Sci Med Med Geogr, 1980 Sep;14D(3):307-16.
    PMID: 7455728
    Matched MeSH terms: Rain*
  20. Vijith H, Dodge-Wan D
    Environ Monit Assess, 2019 Jul 13;191(8):494.
    PMID: 31302794 DOI: 10.1007/s10661-019-7604-z
    The upper catchment region of the Baram River in Sarawak (Malaysian Borneo) is undergoing severe land degradation due to soil erosion. Heavy rainfall with high erosive power has led to a number of soil erosion hotspots. The goal of the present study is to generate an understanding about the spatial characteristics of seasonal and annual rainfall erosivity (R), which not only control sediment delivery from the region but also determine the quantity of material potentially eroded. Mean annual rainfall and rainfall erosivity range from 2170 to 5167 mm and 1632 to 5319 MJ mm ha-1 h-1 year-1, respectively. Seasonal rainfall and rainfall erosivity range from 848 to 1872 mm and 558 to 1883 MJ mm ha-1 h-1 year-1 for the southwest (SW) monsoon, 902 to 2200 mm and 664 to 2793 MJ mm ha-1h-1year-1 for the northeast (NE) monsoon and 400 to 933 mm and 331 to 1075 MJ mm ha-1 h-1 year-1 during the inter-monsoon (IM) period. Linear regression, Spearman's Rho and Mann Kendall tests were applied. Considering the regional mean rainfall erosivity in the study area, all the methods show an overall non-significant decreasing trend (- 9.34, - 0.25 and - 0.30 MJ mm ha-1 h-1 year-1, respectively for linear regression, Spearman's Rho and Mann Kendall tests). However, during SW monsoon and IM periods, rainfall erosivity showed a non-significant decreasing trend (- 25.45, - 0.52, - 0.40, and - 8.86, - 1.07, - 0.77 MJ mm ha-1 h-1 year-1, respectively) whereas in NE, monsoon season erosivity showed a non-significant increasing trend (14.90, 1.59 and 1.60 MJ mm ha-1 h-1 year-1, respectively). The mean erosivity density ranges from 0.77 to 1.38 MJ ha-1 h-1 year-1 and shows decreasing trend. Spatial distribution pattern of erosivity density indicates significantly higher occurrence of erosive rainfall in the lower elevation portion of the study area. The spatial pattern of mean rainfall erosivity trends (linear, Spearman's Rho and Mann Kendall) suggests that the study area can be divided into two zones with increasing rainfall erosivity trends in the northern zone and decreasing trends in the southern zone. These results can be used to plan conservation measures to reduce sediment delivery from localized soil erosion hotspots.
    Matched MeSH terms: Rain*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links