Displaying publications 21 - 40 of 543 in total

Abstract:
Sort:
  1. Ibrahim NF, Abd Hamid M, Mohd Akhir MF, Chuan Ong M, Wan Talaat WIA, Idris I
    PeerJ, 2023;11:e16203.
    PMID: 38025728 DOI: 10.7717/peerj.16203
    BACKGROUND: The natural hydrodynamic process of Kuala Nerus, Terengganu, has changed since the extension of Sultan Mahmud Airport runway in 2008. Consequently, severe coastal erosion has occurred in the area, particularly during the northeast monsoon season (NEM). Numerous types of coastal defense structures (CDS) have been constructed to protect the coastline. Despite the loss of esthetic values, the effect of CDS construction on marine organisms in the area remains unknown. Hence, this study aims to assess the ecological aspects of macrobenthic compositions at the CDS area of Kuala Nerus, Terengganu, based on the differences between the southwest (SWM) and northeast (NEM) monsoon seasons.

    METHODS: Macrobenthos were collected from the sediment in July (SWM) and December 2021 (NEM) using the Ponar grab at 12 substations from five sampling stations.

    RESULTS: The density of macrobenthos was higher in SWM (48,190.82 ind./m2) than in NEM (24,504.83 ind./m2), with phylum Mollusca recording the highest species composition (60-99.3%). The macrobenthos species had a low to moderate level of diversity (H' = 1.4-3.1) with the species were almost evenly distributed (J' = 0.2-0.8). Windward substations exhibited coarser grain sizes (38.56%-86.84%), whereas landward substations exhibited very fine grain sizes (44.26%-86.70%). The SWM season recorded a higher organic matter content (1.6%-6.33%) than the NEM season (0.4%-3.1%). However, metal concentrations in the surface sediment were within the safe range and permissible limits for both seasons, inferring that the macrobenthos composition was unaffected.

    DISCUSSION: This study demonstrated that the CDS associated with the monsoon system has controlled the hydrodynamics and nearshore sedimentary processes in the Kuala Nerus coastal zone, thereby affecting the macrobenthos population, in terms of richness and density. The ecological and energetic effects of the coastal structures in different seasons have resulted in a more significant result, with the SWM exhibiting a higher macrobenthos composition than the NEM.

    Matched MeSH terms: Seasons
  2. Shaha DC, Hasan J, Kundu SR, Yusoff FM, Salam MA, Khan M, et al.
    Sci Rep, 2022 Dec 05;12(1):20980.
    PMID: 36470973 DOI: 10.1038/s41598-022-24500-2
    The tropical estuarine ecosystem is fascinating for studying the dynamics of water quality and phytoplankton diversity due to its frequently changing hydrological conditions. Most importantly, phytoplankton is the main supplier of ω3 polyunsaturated fatty acids (PUFA) in the coastal food web for fish as they could not synthesize PUFA. This study evaluated seasonal variations of water quality parameters in the Meghna River estuary (MRE), explored how phytoplankton diversity changes according to hydro-chemical parameters, and identified the major phytoplankton groups as the main source of PUFA for hilsa fish. Ten water quality indicators including temperature, dissolved oxygen, pH, salinity, dissolved inorganic nitrogen (DIN = nitrate, nitrite, ammonia) and phosphorus, dissolved silica and chlorophyll-a were evaluated. In addition, phytoplankton diversity was assessed in the water and hilsa fish gut. Principal component analysis (PCA) was used to analyze the spatio-temporal changes in the water quality conditions, and the driving factors in the MRE. Four main components were extracted and explained 75.4% variability of water quality parameters. The most relevant driving factors were dissolved oxygen, salinity, temperature, and DIN (nitrate, nitrite and ammonia). These variabilities in physicochemical parameters and dissolved inorganic nutrients caused seasonal variations in two major groups of phytoplankton. Peak abundance of Chlorophyta (green algae) occurred in water in nutrient-rich environments (nitrogen and phosphorus) during the wet (36%) season, while Bacillariophyta (diatoms) were dominant during the dry (32%) season that depleted dissolved silica. Thus, the decrease of green algae and the increase of diatoms in the dry season indicated the potential link to seasonal changes of hydro-chemical parameters. The green algae (53.7%) were the dominant phytoplankton group in the hilsa gut content followed by diatoms (22.6%) and both are contributing as the major source of PUFAs for hilsa fish according to the electivity index as they contain the highest amounts of PUFAs (60 and 28% respectively).
    Matched MeSH terms: Seasons
  3. Bauer M, Glenn T, Achtyes ED, Alda M, Agaoglu E, Altınbaş K, et al.
    J Psychosom Res, 2022 Sep;160:110982.
    PMID: 35932492 DOI: 10.1016/j.jpsychores.2022.110982
    OBJECTIVE: Circadian rhythm disruption is commonly observed in bipolar disorder (BD). Daylight is the most powerful signal to entrain the human circadian clock system. This exploratory study investigated if solar insolation at the onset location was associated with the polarity of the first episode of BD I. Solar insolation is the amount of electromagnetic energy from the Sun striking a surface area of the Earth.

    METHODS: Data from 7488 patients with BD I were collected at 75 sites in 42 countries. The first episode occurred at 591 onset locations in 67 countries at a wide range of latitudes in both hemispheres. Solar insolation values were obtained for every onset location, and the ratio of the minimum mean monthly insolation to the maximum mean monthly insolation was calculated. This ratio is largest near the equator (with little change in solar insolation over the year), and smallest near the poles (where winter insolation is very small compared to summer insolation). This ratio also applies to tropical locations which may have a cloudy wet and clear dry season, rather than winter and summer.

    RESULTS: The larger the change in solar insolation throughout the year (smaller the ratio between the minimum monthly and maximum monthly values), the greater the likelihood the first episode polarity was depression. Other associated variables were being female and increasing percentage of gross domestic product spent on country health expenditures. (All coefficients: P ≤ 0.001).

    CONCLUSION: Increased awareness and research into circadian dysfunction throughout the course of BD is warranted.

    Matched MeSH terms: Seasons
  4. ALbuloshi T, Kamel AM, Spencer JPE
    Nutrients, 2022 Aug 15;14(16).
    PMID: 36014846 DOI: 10.3390/nu14163342
    Low vitamin D levels among older people represent a significant health problem worldwide. This study aimed to examine the factors associated with vitamin D deficiency in older people (aged ≥ 65) in the Kuwaiti population. A cross-sectional study was conducted in seven primary healthcare centers across Kuwait (November 2020 to June 2021). The participants (n = 237) had their serum vitamin D (25(OH)D) concentrations (analyzed using LC-MS) classified as sufficiency 75 nmol/L (30 ng/mL) or deficiency < 75 nmol/L (below 30 ng/mL). The data were collected using self-administered questionnaires and face-to-face interviews with participants in geriatric clinics. Binomial logistic regression analysis was applied to assess factors associated with vitamin D deficiency. Vitamin D deficiency was found to be present in two thirds of the participants (n = 150, 63%), with a higher prevalence of deficiency in participants who did not receive vitamin D supplements, compared to those who did (84% vs. 16%, p = 0.001). The results from the binary logistic regression showed that a low duration of sun exposure (OR = 0.24, 95% C.I. [0.08−0.7], p = 0.011), dark skin pigmentation (OR = 4.46, 95% [1.35−20.49], p = 0.026), and lower caloric intake (OR = 0.9, 95% C.I. [0.85−0.96], p = 0.001) were risk factors for vitamin D deficiency. Furthermore, a significant inverse relationship was found between vitamin D levels and parathyroid hormone (PTH) levels (OR = 1.16, 95% C.I. [1.04−1.31], p = 0.016). These findings support the recommendation that vitamin D supplementation and adequate sunlight exposure are necessary for raising low vitamin D levels in older people in Kuwait.
    Matched MeSH terms: Seasons
  5. Rahman MM, Fathi A
    Environ Sci Pollut Res Int, 2022 Feb;29(9):13661-13674.
    PMID: 34590229 DOI: 10.1007/s11356-021-16502-w
    Very little work has determined the relative importance of uncontrolled environmental factors for affecting fish biology, and how these might influence gillnet catches. This study addresses this deficit for an important Southeast Asian cyprinid (Barbonymus schwanenfeldii). Fish were caught monthly for 12 months using gillnets of three different mesh sizes, each of which was deployed in duplicate at the surface of one of three randomly selected sites in Lake Kenyir, Malaysia, concurrent with determining various environmental parameters and the abundance of phytoplankton (chlorophyll-a). Results indicated that growth co-efficient of B. schwanenfeldii was positively influenced by dissolved oxygen and negatively influenced by total inorganic nitrogen, whereas an opposite result was observed in case of the hepatosomatic index of fish. Water turbidity was a limiting factor only for small fish (mean total length: 15.74±1.10 cm). B. schwanenfeldii could best be caught during the period of high phytoplankton abundance or at the location of high phytoplankton density in the water. Water temperature negatively influenced the gillnet catches of the fish. The remaining environmental factors such as water depth, pH, and phosphate had a weak and insignificant influence (P >0.05) on the biology and gillnet catches of fish. The observed results can be very useful for the ecological monitoring and conservation plans for this species in relation to climate change. Furthermore, the utility of the similar data for other species would be useful not only for regional but also for international fishery by optimizing catches considering environmental conditions.
    Matched MeSH terms: Seasons
  6. Anandkumar A, Nagarajan R, Sellappa Gounder E, Prabakaran K
    Chemosphere, 2022 Jan;287(Pt 1):132069.
    PMID: 34523457 DOI: 10.1016/j.chemosphere.2021.132069
    Miri city has a dynamic coastal environment, mainly influenced by intensive sedimentation from the Baram River and excessive trace metal loading by the Miri River, which are significant environmental concerns. As the mobility, bioavailability, and toxicity of the trace metals in the sediments are largely controlled by their particulate speciation, the modified BCR sequential extraction protocol was applied to determine the particulate speciation of trace metals in the coastal sediments of Miri, to unravel the seasonal geochemical processes responsible for known observations, and to identify possible sources of these trace metals. The granulometric analysis results showed that littoral currents aided by the monsoonal winds have influenced the grain size distribution of the sediments, enabling us to divide the study area into north-east and south-west segments where the geochemical composition are distinct. The Cu (>84%) and Zn (82%) concentrations are predominantly associated with the exchangeable fraction, which is readily bioavailable. Pb and Cd are dominant in non-residual fractions and other metals viz., Fe, Mn, Co, Ni, and Cr are dominant in the residual fraction. Using Pearson's correlation and factor analysis, the major mechanisms controlling the chemistry of the sediments are identified as association of Cu and Zn with fine fraction sediments, sulphide oxidation in the SW segment of the study area, atmospheric fallout of Pb and Cd in the river basins, precipitation of dissolved Fe and Mn supplied from the rivers and remobilization of Mn from the coastal sediments. Based on various pollution indices, it is inferred that the coastal sediments of NW Borneo are contaminated with Cu and Zn, and are largely bioavailable, which can be a threat to the local aquatic organisms, coral reefs, and coastal mangroves.
    Matched MeSH terms: Seasons
  7. Jamhari AA, Latif MT, Wahab MIA, Hassan H, Othman M, Abd Hamid HH, et al.
    Chemosphere, 2022 Jan;287(Pt 4):132309.
    PMID: 34601373 DOI: 10.1016/j.chemosphere.2021.132309
    This study aims to determine the inorganic and carbonaceous components depending on the seasonal variation and size distribution of urban air particles in Kuala Lumpur. Different fractions of particulate matter (PM) were measured using a Nanosampler from 17 February 2017 until 27 November 2017. The water-soluble inorganic ions (WSIIs) and carbonaceous components in all samples were analysed using ion chromatography and carbon analyser thermal/optical reflectance, respectively. Total PM concentration reached its peak during the southwest (SW) season (70.99 ± 6.04 μg/m3), and the greatest accumulation were observed at PM0.5-1.0 (22%-30%, 9.55 ± 1.03 μg/m3) and PM2.5-10 (22%-25%, 10.34 ± 0.81 μg/m3). SO42-, NO3- and NH4+ were major contributors of WSIIs, and their formation was favoured mainly during SW season (80.5% of total ions). PM0.5-1.0 and PM2.5-10 exhibited the highest percentage of WSII size distribution, accounted for 28.4% and 13.5% of the total mass, respectively. The average contribution of carbonaceous species (OC + EC) to total carbonaceous concentrations were higher in PM0.5-1.0 (35.2%) and PM2.5-10 (26.6%). Ultrafine particles (PM<0.1) consistently indicated that the sources were from vehicle emission while the SW season was constantly dominated by biomass burning sources. Using the positive matrix factorization (PMF) model, secondary inorganic aerosol and biomass burning (30.3%) was known as a significant source of overall PM. As a conclusion, ratio and source apportionment indicate the mixture of biomass burning, secondary inorganic aerosols and motor vehicle contributed to the size-segregated PM and seasonal variation of inorganic and carbonaceous components of urban air particles.
    Matched MeSH terms: Seasons
  8. Uning R, Suratman S, Nasir FAM, Latif MT
    Bull Environ Contam Toxicol, 2022 Jan;108(1):145-150.
    PMID: 34296326 DOI: 10.1007/s00128-021-03334-0
    This study determines the bulk surface water (BSW) dissolved inorganic nutrients of nitrogen (DINi) and phosphate (DIP) during the upwelling season off the east coast of Peninsular Malaysia, South China Sea. BSW samples were analysed for DINi and DIP by using a standard automated colorimetric method. BSW DINi and DIP concentrations varied between 0.11 and 2.55 μM (mean 1.12 ± 0.63 μM), and below detection limit, and 0.29 μM (mean 0.11 ± 0.08 μM), respectively. The spatial distribution of higher concentrations between DINi and DIP was distinct. However, the highest concentrations of DINi and DIP were mostly recorded in the month of peak upwelling (July and August), where colder BSW temperatures were also encountered during field sampling. This study provides new evidence on the presence of BSW nutrients of DINi and DIP during upwelling season peak in July and August before their decline in September.
    Matched MeSH terms: Seasons
  9. Heo CC, Teel PD, OConnor BM, Tomberlin JK
    Exp Appl Acarol, 2021 Dec;85(2-4):223-246.
    PMID: 34762225 DOI: 10.1007/s10493-021-00676-6
    Acari community structure and function associated with delayed pig carrion decomposition has not been examined. In this study, 18 swine carcasses were studied in central Texas, USA, during two consecutive summers (2013 and 2014). Samples of ca. 400 g soil were collected from beneath, aside, and 5 m away from each pig carcass over 180 days. Mites from soil samples were extracted using Berlese funnels and identified to order and family levels and classified according to ecological function. In total 1565 and 1740 mites were identified from the 2013 and 2014 soil samples, respectively. Significant differences were determined for mite community structure at order and family levels temporally on carrion (e.g., day 0 × day 14) regardless of treatments and between soil regions where mites were collected (e.g., soil beneath vs. soil 5 m away from carrion). However, no significant differences were found in mite community structure at the order level between pig carrion with and without delayed Diptera colonization (i.e., treatments). Analysis at the family level determined a significant difference across treatments for both summers. Ecological function of mites did not change significantly following the delayed decomposition of pig carcasses. However, detritivores and fungivores were significant indicator groups during the pig carrion decomposition process. Furthermore, 13 phoretic mite species associated with eight forensically important beetle species were documented. Data from this study indicated that the rate of nutrient flow into the soil impacted associated arthropod communities; however, detecting such shifts depends on the taxonomic resolution being applied.
    Matched MeSH terms: Seasons
  10. Khan AH, Aziz HA, Khan NA, Dhingra A, Ahmed S, Naushad M
    Sci Total Environ, 2021 Nov 10;794:148484.
    PMID: 34217082 DOI: 10.1016/j.scitotenv.2021.148484
    The occurrence of pharmaceutical residues in the aquatic ecosystem is an emerging concern of environmentalists. This study primarily investigated the seasonal variation of high-priority pharmaceutical residues in the Yamuna River, accompanied by 22 drains discharge from different parts of Delhi. Five sampling sites were selected for analyzing high-priority pharmaceuticals along with physico-chemical and biological parameters for 3 season's viz. pre-monsoon (PrM), monsoon (DuM), and post-monsoon (PoM), respectively. The maximum occurrences were detected during the PoM, compared to the PrM and DuM seasons. The maximum concentration of BOD, COD, and Phosphate was detected at the last sampling station (SP-5). Similarly, all targeted pharmaceuticals concentration were maximum at the last sampling point i.e. Okhla barrage (SP-5, max: DIC = 556.1 ng/l, IBU = 223.4 ng/l, CAR = 183.1 ng/l, DIA = 457.8 ng/l, OFL = 1726.5 ng/l, FRU = 312.2 ng/l and SIM = 414.9 ng/l) except at Barapulla downstream (SP-4, max: ERY = 178.1 ng/l). The mean concentrations of Fecal coliform (FC) ranged from 1700 to 6500 CFU/100 ml. The maximum colonies were detected in PrM season (6500 CFU/100 ml) followed by PoM (5800 CFU/100 ml) and least in DuM (1700 CFU/100 ml). Risk quotient (RQ) analysis of high-priority pharmaceuticals indicated high ecotoxicological risks exposure (>1) from DIC, DIA, OFL, and SIM in all seasons at all the sampling sites. However, lower risk was predicted for IBU, CAR, ERY, and FRU, respectively. This risk assessment indicated an aquatic ecosystem potentially exposed to high risks from these pharmaceutical residues. Moreover, seasonal agricultural application, rainfall, and temperature could influence the levels and compositions of pharmaceutical residue in the aquatic ecosystem. Hence, attention is required particularly to this stream since it is only a local lifeline source for urban consumers for domestic water supply and farmers for cultivation.
    Matched MeSH terms: Seasons
  11. Haque MA, Jewel MAS, Akhi MM, Atique U, Paul AK, Iqbal S, et al.
    Environ Monit Assess, 2021 Oct 08;193(11):704.
    PMID: 34623504 DOI: 10.1007/s10661-021-09500-5
    Functional classification of phytoplankton could be a valuable tool in water quality monitoring in the eutrophic riverine ecosystems. This study is novel from the Bangladeshi perspective. In this study, phytoplankton cell density and diversity were studied with particular reference to the functional groups (FGs) approach during pre-monsoon, monsoon, and post-monsoon at four sampling stations in Karatoya River, Bangladesh. A total of 54 phytoplankton species were recorded under four classes, viz. Chlorophyceae (21 species) Cyanophyceae (16 species), Bacillariophyceae (15 species), and Euglenophyceae (2 species). A significantly higher total cell density of phytoplankton was detected during the pre-monsoon season (24.20 × 103 cells/l), while the lowest in monsoon (9.43 × 103 cells/l). The Shannon-Wiener diversity index varied significantly (F = 16.109, P = 000), with the highest value recorded during the post-monsoon season. Analysis of similarity (ANOSIM) identified significant variations among the three seasons (P 
    Matched MeSH terms: Seasons
  12. Ng KKS, Kobayashi MJ, Fawcett JA, Hatakeyama M, Paape T, Ng CH, et al.
    Commun Biol, 2021 Oct 07;4(1):1166.
    PMID: 34620991 DOI: 10.1038/s42003-021-02682-1
    Hyperdiverse tropical rainforests, such as the aseasonal forests in Southeast Asia, are supported by high annual rainfall. Its canopy is dominated by the species-rich tree family of Dipterocarpaceae (Asian dipterocarps), which has both ecological (e.g., supports flora and fauna) and economical (e.g., timber production) importance. Recent ecological studies suggested that rare irregular drought events may be an environmental stress and signal for the tropical trees. We assembled the genome of a widespread but near threatened dipterocarp, Shorea leprosula, and analyzed the transcriptome sequences of ten dipterocarp species representing seven genera. Comparative genomic and molecular dating analyses suggested a whole-genome duplication close to the Cretaceous-Paleogene extinction event followed by the diversification of major dipterocarp lineages (i.e. Dipterocarpoideae). Interestingly, the retained duplicated genes were enriched for genes upregulated by no-irrigation treatment. These findings provide molecular support for the relevance of drought for tropical trees despite the lack of an annual dry season.
    Matched MeSH terms: Seasons
  13. Ali HR, Ariffin MM, Omar TFT, Ghazali A, Sheikh MA, Shazili NAM, et al.
    Environ Sci Pollut Res Int, 2021 Oct;28(37):52247-52257.
    PMID: 34002317 DOI: 10.1007/s11356-021-14424-1
    Irgarol 1051 and diuron are photosystem II inhibitors in agricultural activities and antifouling paints in the shipping sector. This study focused on three major ports (western, southern, and eastern) surrounding Peninsular Malaysia to construct the distribution of both biocides on the basis of the seasonal and geographical changes. Surface seawater samples were collected from November 2011 to April 2012 and pretreated using the solid-phase extraction technique followed by quantification with GC-MS and LC-MS-MS for Irgarol 1051 and diuron, respectively. Generally, the distribution of Irgarol 1051 was lowest during November 2011 and highest during April 2012, and similar patterns were observed at all ports, whereas the distribution of diuron was rather vague. The increasing pattern of Irgarol 1051 from time to time is probably related to its accumulation in the seawater as a result of its half-life and consistent utilization. On the basis of the discriminant analysis, the temporal distribution of Irgarol 1051 varied at Klang North Port, Klang South Port, and Pasir Gudang Port, whereas diuron was temporally varied only at Kemaman Port. Furthermore, Irgarol 1051 was spatially varied during November 2011, whereas diuron did not show any significant changes throughout all sampling periods. Ecological risk assessment exhibited a high risk for diuron and Irgarol 1051, but Irgarol 1051 should be of greater concern because of its higher risk compared to that of diuron. Thus, it is recommended that the current Malaysian guidelines and regulations of biocide application should be reevaluated and improved to protect the ecosystem, as well as to prevent ecological risks to the aquatic environment.
    Matched MeSH terms: Seasons
  14. Singh A, Lal B, Parhar IS, Millar RP
    Acta Histochem, 2021 Sep;123(6):151766.
    PMID: 34384940 DOI: 10.1016/j.acthis.2021.151766
    The central role of kisspeptin (kiss) in mammalian reproduction is well established; however, its intra-gonadal role is poorly addressed. Moreover, studies investigating intra-gonadal role of kiss in fish reproduction are scanty, contradictory and inconclusive. The expression of kiss1 mRNA has been detected in the fish brain, and functionally attributed to the regulation of reproduction, feeding and behavior. The kiss1 mRNA has also been demonstrated in tissues other than the brain in some studies, but its cellular distribution and role at the tissue level have not been adequately addressed in fish. Therefore, an attempt was made in the present study to localize kiss1 in gonadal cells of the freshwater catfish, Clarias batrachus. This study reports the presence of kiss1 in the theca cells and granulosa cells of the ovarian oocytes and interstitial cells in the testis of the catfish. The role of kiss1 in the ovary and testis of the catfish was also investigated using kiss1 receptor (kiss1r) antagonist (p234). The p234 treatment decreased the production of 17β-estradiol in ovary and testosterone in the testis by lowering the activities of 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase under both, in vivo as well as in vitro conditions. The p234 treatment also arrested the progression of oogenesis, as evident from the low number of advancing/advanced oocytes in the treated ovary in comparison to the control ovary. It also reduced the area and perimeter of the seminiferous tubules in the treated catfish testis. Thus, our findings suggest that kiss is involved in the regulation of gonadal steroidogenesis, independent of known endocrine/ autocrine/ paracine regulators, and thereby it accelerates gametogenic processes in the freshwater catfish.
    Matched MeSH terms: Seasons*
  15. Low DHW, Hitch AT, Skiles MM, Borthwick SA, Neves ES, Lim ZX, et al.
    PMID: 33948432 DOI: 10.1016/j.ijppaw.2021.04.001
    Haemosporidians infect a wide diversity of bat genera and species, yet little is known about their transmission cycles or epidemiology. Though several recent studies have focused on the genus Hepatocystis, an Old World parasite primarily infecting bats, monkeys, and squirrels, this group is still understudied with little known about its transmission and molecular ecology. These parasites lack an asexual erythrocytic stage, making them unique from the Plasmodium vertebrate life cycle. In this study, we detected a prevalence of 31% of Hepatocystis in short-nosed fruit bats (Cynopterus brachyotis) in Singapore. Phylogenetic reconstruction with a partial cytochrome b sequence revealed a monophyletic group of Hepatocystis from C. brachyotis in Malaysia, Singapore, and Thailand. There was no relationship with infection and bat age, sex, location, body condition or monsoon season. The absence of this parasite in the five other bat species sampled in Singapore indicates this Hepatocystis species may be host restricted.
    Matched MeSH terms: Seasons
  16. Borzák R, Borkhanuddin MH, Cech G, Molnár K, Hallett SL, Székely C
    Int J Parasitol Parasites Wildl, 2021 Aug;15:112-119.
    PMID: 33996443 DOI: 10.1016/j.ijppaw.2021.04.004
    Thelohanellus nikolskii, Achmerov, 1955 is a well-known myxozoan parasite of the common carp (Cyprinus carpio L.). Infection regularly manifests in numerous macroscopic cysts on the fins of two to three month-old pond-cultured carp fingerlings in July and August. However, a Thelohanellus infection is also common on the scales of two to three year-old common carp in ponds and natural waters in May and June. Based on myxospore morphology and tissue specificity, infection at both sites seems to be caused by the same species, namely T. nikolskii. This presumption was tested with molecular biological methods: SSU rDNA sequences of myxospores from fins of fingerlings and scales of older common carp were analysed and compared with each other and with related species available in GenBank. Sequence data revealed that the spores from the fins and scales represent the same species, T. nikolskii. Our study revealed a dichotomy in both infection site and time in T. nikolskii-infections: the fins of young carp are infected in Summer and Autumn, whereas the scales of older carp are infected in Spring. Myxosporean development of the species is well studied, little is known, however about the actinosporean stage of T. nikolskii. A previous experimental study suggests that aurantiactinomyxon actinospores of this species develop in Tubifex tubifex, Müller, 1774. The description included spore morphology but no genetic sequence data (Székely et al., 1998). We examined >9000 oligochaetes from Lake Balaton and Kis-Balaton Water Reservoire searching for the intraoligochaete developmental stage of myxozoans. Five oligochaete species were examined, Isochaetides michaelseni Lastochin, 1936, Branchiura sowerbyi Beddard, 1892, Nais sp., Müller, 1774, Dero sp. Müller, 1774 and Aelosoma sp. Ehrenberg, 1828. Morphometrics and SSU rDNA sequences were obtained for the released actinospores. Among them, from a single Nais sp., the sequence of an aurantiactinomyxon isolate corresponded to the myxospore sequences of T. nikolskii.
    Matched MeSH terms: Seasons
  17. Pak HY, Chuah CJ, Yong EL, Snyder SA
    Sci Total Environ, 2021 Aug 01;780:146661.
    PMID: 34030308 DOI: 10.1016/j.scitotenv.2021.146661
    Land use plays a significant role in determining the spatial patterns of water quality in the Johor River Basin (JRB), Malaysia. In the recent years, there have been several occurrences of pollution in these rivers, which has generated concerns over the long-term sustainability of the water resources in the JRB. Specifically, this water resource is a shared commodity between two states, namely, Johor state of Malaysia and Singapore, a neighbouring country adjacent to Malaysia. Prior to this study, few research on the influence of land use configuration on water quality have been conducted in Johor. In addition, it is also unclear how water quality varies under different seasonality in the presence of point sources. In this study, we investigated the influence of land use and point sources from wastewater treatment plants (WWTPs) on the water quality in the JRB. Two statistical techniques - Multivariate Linear Regression (MLR) and Redundancy Analysis (RA) were undertaken to analyse the relationships between river water quality and land use configuration, as well as point sources from WWTPs under different seasonality. Water samples were collected from 49 sites within the JRB from March to December in 2019. Results showed that influence from WWTPs on water quality was greater during the dry season and less significant during the wet season. In particular, point source was highly positively correlated with ammoniacal‑nitrogen (NH3-N). On the other hand, land use influence was greater than point source influence during the wet season. Residential and urban land use were important predictors for nutrients and organic matter (chemical oxygen demand); and forest land use were important sinks for heavy metals but a significant source of manganese.
    Matched MeSH terms: Seasons
  18. Knox SH, Bansal S, McNicol G, Schafer K, Sturtevant C, Ueyama M, et al.
    Glob Chang Biol, 2021 08;27(15):3582-3604.
    PMID: 33914985 DOI: 10.1111/gcb.15661
    While wetlands are the largest natural source of methane (CH4 ) to the atmosphere, they represent a large source of uncertainty in the global CH4 budget due to the complex biogeochemical controls on CH4 dynamics. Here we present, to our knowledge, the first multi-site synthesis of how predictors of CH4 fluxes (FCH4) in freshwater wetlands vary across wetland types at diel, multiday (synoptic), and seasonal time scales. We used several statistical approaches (correlation analysis, generalized additive modeling, mutual information, and random forests) in a wavelet-based multi-resolution framework to assess the importance of environmental predictors, nonlinearities and lags on FCH4 across 23 eddy covariance sites. Seasonally, soil and air temperature were dominant predictors of FCH4 at sites with smaller seasonal variation in water table depth (WTD). In contrast, WTD was the dominant predictor for wetlands with smaller variations in temperature (e.g., seasonal tropical/subtropical wetlands). Changes in seasonal FCH4 lagged fluctuations in WTD by ~17 ± 11 days, and lagged air and soil temperature by median values of 8 ± 16 and 5 ± 15 days, respectively. Temperature and WTD were also dominant predictors at the multiday scale. Atmospheric pressure (PA) was another important multiday scale predictor for peat-dominated sites, with drops in PA coinciding with synchronous releases of CH4 . At the diel scale, synchronous relationships with latent heat flux and vapor pressure deficit suggest that physical processes controlling evaporation and boundary layer mixing exert similar controls on CH4 volatilization, and suggest the influence of pressurized ventilation in aerenchymatous vegetation. In addition, 1- to 4-h lagged relationships with ecosystem photosynthesis indicate recent carbon substrates, such as root exudates, may also control FCH4. By addressing issues of scale, asynchrony, and nonlinearity, this work improves understanding of the predictors and timing of wetland FCH4 that can inform future studies and models, and help constrain wetland CH4 emissions.
    Matched MeSH terms: Seasons
  19. Rahman MM, Fathi A, Balcombe SR, Nelson B, John A
    Environ Sci Pollut Res Int, 2021 Aug;28(32):43935-43947.
    PMID: 33840035 DOI: 10.1007/s11356-021-13671-6
    Studies that associate environmental parameters with aquatic organisms in man-made lakes remain limited by accessibility and interest particularly in many Asian countries. With missed opportunities to monitor environmental transitions at Lake Kenyir, our knowledge of lake transition is restricted to the non-mixing shallow waters only. Triplicate monthly benthic invertebrate samples were collected concurrently with various environmental parameters at three locations (zones A-C) of Kenyir Lake, Malaysia. Our results affirmed that the northeast part of Lake Kenyir is oligotrophic. Abundance of phytoplankton, total suspended solids, phosphate, nitrite and nitrate drive the abundance of various groups of benthic invertebrates. All of these extrinsic variables (except phosphate) negatively influenced the density of Trichoptera and positively influenced (P<0.05) the densities of Polychaeta, Oligochaeta, Bivalvia, Gastropod, Isopoda and Copepod in all zones. Phosphate negatively influenced the density of Trichoptera and positively influenced (P<0.05) the densities of Oligochaeta, Bivalvia and Copepod. Its influences on the Polychaeta, Gastropod and Isopoda densities were zone-specific. Overall, seasons equally influenced the relationships between extrinsic and response variables in all zones. The results of this study are useful to evaluate the lake's environmental quality, in conservation and in similar projects involving environmental handling, monitoring and recovery.
    Matched MeSH terms: Seasons
  20. Wang X, Liu K, Zhu L, Li C, Song Z, Li D
    J Hazard Mater, 2021 07 15;414:125477.
    PMID: 33647626 DOI: 10.1016/j.jhazmat.2021.125477
    The presence of microplastics (MPs) in the atmosphere is a global concern because of its environmental and health impacts; however, the monsoonal transport of atmospheric MPs has not yet been investigated. To fully understand the effect of the monsoon on atmospheric MP transport, we conducted a study along the southeast coast of China during the East Asian summer monsoon (EASM). We found that the EASM transports atmospheric MPs back onto the continent at a flux of up to 212.977-213.433 kg/EASM/year. The backward trajectory and wind field results indicate that the EASM provides an effective MP transport pathway from Vietnam, the Philippines, and Malaysia to southeastern China. This suggests that only some of the airborne MPs over the ocean enter the marine ecosystem. The average abundance of atmospheric MPs over the sampling area was 0.39 items/100 m3 (0.39 ± 0.43 items/100 m3) during the EASM season, with high variability among the sampling sites. This study improves our understanding of the impact of the EASM on atmospheric MP transport, which can help quantify the contributions of atmospheric MPs to marine or terrestrial ecosystems.
    Matched MeSH terms: Seasons
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links