Displaying publications 21 - 40 of 50 in total

Abstract:
Sort:
  1. Bruce JP, To KF, Lui VWY, Chung GTY, Chan YY, Tsang CM, et al.
    Nat Commun, 2021 07 07;12(1):4193.
    PMID: 34234122 DOI: 10.1038/s41467-021-24348-6
    Interplay between EBV infection and acquired genetic alterations during nasopharyngeal carcinoma (NPC) development remains vague. Here we report a comprehensive genomic analysis of 70 NPCs, combining whole-genome sequencing (WGS) of microdissected tumor cells with EBV oncogene expression to reveal multiple aspects of cellular-viral co-operation in tumorigenesis. Genomic aberrations along with EBV-encoded LMP1 expression underpin constitutive NF-κB activation in 90% of NPCs. A similar spectrum of somatic aberrations and viral gene expression undermine innate immunity in 79% of cases and adaptive immunity in 47% of cases; mechanisms by which NPC may evade immune surveillance despite its pro-inflammatory phenotype. Additionally, genomic changes impairing TGFBR2 promote oncogenesis and stabilize EBV infection in tumor cells. Fine-mapping of CDKN2A/CDKN2B deletion breakpoints reveals homozygous MTAP deletions in 32-34% of NPCs that confer marked sensitivity to MAT2A inhibition. Our work concludes that NPC is a homogeneously NF-κB-driven and immune-protected, yet potentially druggable, cancer.
    Matched MeSH terms: Sequence Deletion
  2. Hung KL, Wang JS, Keng WT, Chen HJ, Liang JS, Ngu LH, et al.
    Pediatr Neurol, 2013 Sep;49(3):185-90.
    PMID: 23835273 DOI: 10.1016/j.pediatrneurol.2013.04.021
    X-linked adrenoleukodystrophy is caused by a defective peroxisomal membrane transporter, ABCD1, responsible for transporting very-long-chain fatty acid substrate into peroxisomes for degradation. The main biochemical defect, which is also one of the major diagnostic hallmarks, of X-linked adrenoleukodystrophy is the accumulation of saturated very-long-chain fatty acids in all tissues and body fluids.
    Matched MeSH terms: Sequence Deletion*
  3. Nur Hidayah Muhamad Yasin, Majdan Ramli, Ilunihayati Ibrahim, Rosnah Bahar, Noraesah Mahmud, Siti Shahrum Muhamed Said, et al.
    MyJurnal
    Haemoglobin E (Hb E) is a variant of structurally abnormal haemoglobin that can be found very commonly in the Asian countries particularly the Southeast Asian [1]. [H1] Alpha thalassaemia is a red cell disorder which is caused by deletion or mutation of one or more of the four alpha globin genes leading to absence or decrease in production of alpha globin peptides [2]. This disorder is far more common in South East Asian regions and in Malaysia itself, and the gene frequency is about 4.1% [2]. The interactions of Hb E and alpha thalassaemia are evident in Kelantan which is bordered by southern Thailand. Using capillary electrophoresis (CE), a reduction of Hb E level is noticed as compared to Hb E heterozygotes. DNA analysis should be done to determine the presence of concurrent alpha thalassaemia variant. This study was done to evaluate haematological parameters using automated blood counters, morphology of red cells, Hb separation and quantitation of Hb fractions using CE and molecular analysis for alpha thalassemia. The study also aimed to discover cut off point of Hb E level in heterozygous Hb E patients with concurrent deletional alpha thalassaemia by CE.
    Matched MeSH terms: Sequence Deletion
  4. Saitsu H, Watanabe M, Akita T, Ohba C, Sugai K, Ong WP, et al.
    Sci Rep, 2016 07 20;6:30072.
    PMID: 27436767 DOI: 10.1038/srep30072
    Epilepsy of infancy with migrating focal seizures (EIMFS) is one of the early-onset epileptic syndromes characterized by migrating polymorphous focal seizures. Whole exome sequencing (WES) in ten sporadic and one familial case of EIMFS revealed compound heterozygous SLC12A5 (encoding the neuronal K(+)-Cl(-) co-transporter KCC2) mutations in two families: c.279 + 1G > C causing skipping of exon 3 in the transcript (p.E50_Q93del) and c.572 C >T (p.A191V) in individuals 1 and 2, and c.967T > C (p.S323P) and c.1243 A > G (p.M415V) in individual 3. Another patient (individual 4) with migrating multifocal seizures and compound heterozygous mutations [c.953G > C (p.W318S) and c.2242_2244del (p.S748del)] was identified by searching WES data from 526 patients and SLC12A5-targeted resequencing data from 141 patients with infantile epilepsy. Gramicidin-perforated patch-clamp analysis demonstrated strongly suppressed Cl(-) extrusion function of E50_Q93del and M415V mutants, with mildly impaired function of A191V and S323P mutants. Cell surface expression levels of these KCC2 mutants were similar to wildtype KCC2. Heterologous expression of two KCC2 mutants, mimicking the patient status, produced a significantly greater intracellular Cl(-) level than with wildtype KCC2, but less than without KCC2. These data clearly demonstrated that partially disrupted neuronal Cl(-) extrusion, mediated by two types of differentially impaired KCC2 mutant in an individual, causes EIMFS.
    Matched MeSH terms: Sequence Deletion
  5. Mienda BS, Shamsir MS, Md Illias R
    J Biomol Struct Dyn, 2016 Nov;34(11):2305-16.
    PMID: 26510527 DOI: 10.1080/07391102.2015.1113387
    Succinic acid is an important platform chemical that has broad applications and is been listed as one of the top twelve bio-based chemicals produced from biomass by the US Department of Energy. The metabolic role of Escherichia coli formate dehydrogenase-O (fdoH) under anaerobic conditions in relation to succinic acid production remained largely unspecified. Herein we report, what are to our knowledge, the first metabolic fdoH gene knockout that have enhanced succinate production using glucose and glycerol substrates in E. coli. Using the most recent E. coli reconstruction iJO1366, we engineered its host metabolism to enhance the anaerobic succinate production by deleting the fdoH gene, which blocked H(+) conduction across the mutant cell membrane for the enhanced succinate production. The engineered mutant strain BMS4 showed succinate production of 2.05 g l(-1) (41.2-fold in 7 days) from glycerol and .39 g l(-1) (6.2-fold in 1 day) from glucose. This work revealed that a single deletion of the fdoH gene is sufficient to increase succinate production in E. coli from both glucose and glycerol substrates.
    Matched MeSH terms: Sequence Deletion
  6. Gill HK, Kumar HC, Dhaliwal JS, Zabidi F, Sendut IH, Noah RM, et al.
    Asian Pac J Allergy Immunol, 2012 Dec;30(4):313-20.
    PMID: 23393912
    BACKGROUND: The most common autosomal form of Chronic Granulomatous Disease, p47-phox deficient CGD, generally features a GT (deltaGT) deletion in the GTGT sequence at the start of exon 2 on the NCF-1 gene. This consistency is due to the coexistence of and the recombination between 2 homologous pseudogenes (psi s) and NCF-1. The GTGT: deltaGT ratio mirrors the NCF-I: NCF-1 psi ratio and is 2:4 in normal individuals.
    OBJECTIVE: To determine the molecular basis of the Autosomal-CGD in a family with 2 children, a male and female, affected by the disease. The female patient suffered recurrent infection, retinitis pigmentosa and discoid lupus.
    METHODS: Chemiluminescence (CL) was used to study the respiratory burst, while genetic analysis was done by RT-PCR, PCR, deltaGT and the 20bp gene scans.
    RESULTS: The CL response of the patient was profoundly low. The patient's p47-phox band was absent in the RT-PCR for NADPH-oxidase component mRNAs. The deltaGT scan showed that the patient's GTGT: deltaGT ratio was 0:6, the parents' and the younger brother's was 1:5 and the younger sister's was 2:4. Examination of other NCF-1/ NCF-1 psi s differences showed that the father had a compound deltaGT allele ie. deltaGT-20bp, inherited by the patient, and that both parents had compound GTGT alleles with a single 30bp segment in intron 1.
    CONCLUSIONS: The patient was a classic, homozygous deltaGT p47-phox deficient CGD with one allele harbouring a compound deltaGT-20bp gene. The deltaGT and 20bp gene scans offer a relatively simple and efficient means of defining a p47-phox deficient CGD patient.
    Key words: Chronic Granulomatous Disease, Primary Immunodeficiency, NCF-1, p47-phox, NADPH-oxidas
    Matched MeSH terms: Sequence Deletion*
  7. Luan OG, Yam H, Samian R, Wajidi MFF, Mahadi NM, Mohamad S, et al.
    Trop Life Sci Res, 2017 Jul;28(2):57-74.
    PMID: 28890761 MyJurnal DOI: 10.21315/tlsr2017.28.2.5
    Burkholderia pseudomallei is a soil-dwelling bacterium that causes a globally emerging disease called melioidosis. Approximately one third of the in silico annotated genes in its genome are classified as hypothetical genes. This group of genes is difficult to be functionally characterised partly due to the absence of noticeable phenotypes under conventional laboratory settings. A bioinformatic survey of hypothetical genes revealed a gene designated as BPSL3393 that putatively encodes a small protein of 11 kDA with a CoA binding domain. BPSL3393 is conserved in all the B. pseudomallei genomes as well as various in other species within the genus Burkholderia. Taking into consideration that CoA plays a ubiquitous metabolic role in all life forms, characterisation of BPSL3393 may uncover a previously over-looked metabolic feature of B. pseudomallei. The gene was deleted from the genome using a double homologous recombination approach yielding a null mutant. The BPSL3393 mutant showed no difference in growth rate with the wild type under rich and minimal growth conditions. An extensive metabolic phenotyping test was performed involving 95 metabolic substrates. The deletion mutant of BPSL3393 was severely impaired in its ethanolamine metabolism. The growth rate of the mutant was attenuated when ethanolamine was used as the sole carbon source. A transcriptional analysis of the ethanolamine metabolism genes showed that they were down-regulated in the BPSL3393 mutant. This seemed to suggest that BPSL3393 functions as a positive regulator for ethanolamine metabolism.
    Matched MeSH terms: Sequence Deletion
  8. Sandvej K, Peh SC, Andresen BS, Pallesen G
    Blood, 1994 Dec 15;84(12):4053-60.
    PMID: 7994023
    In this study, we have sequenced the C-terminal part of the Epstein-Barr virus (EBV)-BNLF-1 gene encoding for the latent membrane protein-1 from tissues of EBV-positive Danish Hodgkin's disease (HD) and of Danish and Malaysian peripheral T-cell lymphomas (PTLs) and from tonsils of Danish infectious mononucleosis (IM). Our study showed that some of the 7 single-base mutations and the 30-bp deletion previously detected between codons of amino acid 322 and 366 in the BNLF-1 gene of the nasopharyngeal carcinoma cell line CAO were present in all Malaysian PTLs and in 60% of the Danish PTLs. In HD and the IM cases, the mutations were present in about 30%. The 30-bp deletion and the single base mutations occurred independently, and mutations were detectable in the majority of EBV type B-positive cases. These findings suggest that the 30-bp deletion and the 7 single-base mutations in the C-terminal part of the CAO-BNLF-1 gene do not characterize a new EBV type A substrain. Rather, some of the positions of single base mutations and the 30-bp deletion are hot spots that may have mutated independently through the evolution of EBV strains.
    Matched MeSH terms: Sequence Deletion*
  9. Tan LP, Ng BK, Balraj P, Poh BH, Lim PK, Peh SC
    Hum Genet, 2005 Dec;118(3-4):539-40.
    PMID: 16521263
    Matched MeSH terms: Sequence Deletion*
  10. Baker RJ, Dickins B, Wickliffe JK, Khan FAA, Gaschak S, Makova KD, et al.
    Evol Appl, 2017 09;10(8):784-791.
    PMID: 29151870 DOI: 10.1111/eva.12475
    Currently, the effects of chronic, continuous low dose environmental irradiation on the mitochondrial genome of resident small mammals are unknown. Using the bank vole (Myodes glareolus) as a model system, we tested the hypothesis that approximately 50 generations of exposure to the Chernobyl environment has significantly altered genetic diversity of the mitochondrial genome. Using deep sequencing, we compared mitochondrial genomes from 131 individuals from reference sites with radioactive contamination comparable to that present in northern Ukraine before the 26 April 1986 meltdown, to populations where substantial fallout was deposited following the nuclear accident. Population genetic variables revealed significant differences among populations from contaminated and uncontaminated localities. Therefore, we rejected the null hypothesis of no significant genetic effect from 50 generations of exposure to the environment created by the Chernobyl meltdown. Samples from contaminated localities exhibited significantly higher numbers of haplotypes and polymorphic loci, elevated genetic diversity, and a significantly higher average number of substitutions per site across mitochondrial gene regions. Observed genetic variation was dominated by synonymous mutations, which may indicate a history of purify selection against nonsynonymous or insertion/deletion mutations. These significant differences were not attributable to sample size artifacts. The observed increase in mitochondrial genomic diversity in voles from radioactive sites is consistent with the possibility that chronic, continuous irradiation resulting from the Chernobyl disaster has produced an accelerated mutation rate in this species over the last 25 years. Our results, being the first to demonstrate this phenomenon in a wild mammalian species, are important for understanding genetic consequences of exposure to low-dose radiation sources.
    Matched MeSH terms: Sequence Deletion
  11. Pletnev AG
    Virology, 2001 Apr 10;282(2):288-300.
    PMID: 11289811
    Forty-five years ago a naturally attenuated tick-borne flavivirus, Langat (LGT) strain TP21, was recovered from ticks in Malaysia. Subsequently, it was tested as a live attenuated vaccine for virulent tick-borne encephalitis viruses. In a large clinical trial its attenuation was confirmed but there was evidence of a low level of residual virulence. Thirty-five years ago further attenuation of LGT TP21 was achieved by multiple passages in eggs to yield mutant E5. To study the genetic determinants of the further attenuation exhibited by E5 and to allow us to manipulate the genome of this virus for the purpose of developing a satisfactory live attenuated tick-borne flavivirus vaccine, we recovered infectious E5 virus from a full-length cDNA clone. The recombinant E5 virus (clone 651) recovered from a full-length infectious cDNA clone was more attenuated in immunodeficient mice than that of its biologically derived E5 parent. Increase in attenuation was associated with three amino acid substitutions, two located in the structural protein E and one in nonstructural protein NS4B. Subsequently an even greater degree of attenuation was achieved by creating a viable 320 nucleotide deletion in the 3'-noncoding region of infectious full-length E5 cDNA. This deletion mutant was not cytopathic in simian Vero cells and it replicated to lower titer than its E5-651 parent. In addition, the E5 3' deletion mutant was less neuroinvasive in SCID mice than its E5-651 parent. Significantly, the deletion mutant proved to be 119,750 times less neuroinvasive in SCID mice than its progenitor, LGT strain TP21. Despite its high level of attenuation, the E5 3' deletion mutant remained highly immunogenic and intraperitoneal (ip) inoculation of 10 PFU induced complete protection in Swiss mice against subsequent challenge with 2000 ip LD50 of the wild-type LGT TP21.
    Matched MeSH terms: Sequence Deletion/genetics*
  12. Yusoff AAM, Abdullah WSW, Khair SZNM, Radzak SMA
    Oncol Rev, 2019 Jan 14;13(1):409.
    PMID: 31044027 DOI: 10.4081/oncol.2019.409
    Mitochondria are cellular machines essential for energy production. The biogenesis of mitochondria is a highly complex and it depends on the coordination of the nuclear and mitochondrial genome. Mitochondrial DNA (mtDNA) mutations and deletions are suspected to be associated with carcinogenesis. The most described mtDNA deletion in various human cancers is called the 4977-bp common deletion (mDNA4977) and it has been explored since two decades. In spite of that, its implication in carcinogenesis still unknown and its predictive and prognostic impact remains controversial. This review article provides an overview of some of the cellular and molecular mechanisms underlying mDNA4977 formation and a detailed summary about mDNA4977 reported in various types of cancers. The current knowledges of mDNA4977 as a prognostic and predictive marker are also discussed.
    Matched MeSH terms: Sequence Deletion
  13. Kingma DW, Weiss WB, Jaffe ES, Kumar S, Frekko K, Raffeld M
    Blood, 1996 Jul 01;88(1):242-51.
    PMID: 8704180
    LMP-1, an Epstein-Barr viral (EBV) latency protein, is considered a viral oncogene because of its ability to transform rodent fibroblasts in vivo and render them tumorigenic in nude mice. In human B cells, EBV LMP-1 induces DNA synthesis and abrogates apoptosis. LMP-1 is expressed in EBV-transformed lymphoblastoid cell lines, nasopharyngeal carcinoma (NPC), a subset of Hodgkin's disease (HD), and in EBV-associated lymphoproliferative disorders (EBV-LPDs). Recently, focused deletions near the 3' end of the LMP-1 gene (del-LMP-1, amino acids 346-355), in a region functionally related to the half-life to the LMP-1 protein, have been reported frequently in human immunodeficiency virus (HIV)-associated HD (100%) and EBV+ Malaysian and Danish peripheral T-cell lymphomas (100%, 61% respectively), but less frequently in cases of HD not associated with HIV (28%, 33%) and infectious mononucleosis (33%). To further investigate the potential relationship of del-LMP-1 to EBV-LPDs associated with immunosuppression or immunodeficiency, we studied 39 EBV-associated lymphoproliferations (10 benign, 29 malignant) from four distinct clinical settings: posttransplant (4 malignant, 1 reactive); HIV+ (18 malignant, 2 reactive); nonimmunodeficiency malignant lymphoma (ML) (7 cases); and sporadic EBV infection with lymphoid hyperplasia (7 cases). The presence of EBV within lymphoid cells was confirmed by EBV EBER1 RNA in situ hybridization or by polymerase chain reaction (PCR) analysis. EBV strain type and LMP-1 deletion status were determined by PCR. EBV strain types segregated into two distinct distributions: HIV+ (9 A; 11 B) and non-HIV (19 A, 0 B), consistent with previous reports. Overall, del-LMP-1 were found in 1 of 5 (20%) Burkitt lymphomas (BL); 17 of 24 (71%) aggressive non-Hodgkin's lymphoma (agg-NHL), and 2 of 10 (20%) reactive lymphoid proliferations. Of the agg-NHLs, del-LMP-1 were present in 4 of 4 PT-ML (100%); 10 of 15 HIV+ ML (67%); and 3 of 5 nonimmunodeficiency malignant lymphoma (ML, 60%). A total of 2 of 7 (28%) sporadic EBV-associated lymphoid hyperplasias contained a del-LMP-1. All del-LMP-1 were identical by DNA sequence analysis. No correlation was identified between the presence of del-LMP-1 and the EBV strain type observed. The high incidence of del-LMP-1 observed in agg-NHLs (71%), in contrast to the relatively low incidence observed in reactive lymphoid proliferations (28%), suggests that the deleted form may be preferentially selected in lymphomatous processes. All posttransplant agg-NHLs contained a del-LMP-1, and a similar frequency of del-LMP-1 was observed in both HIV-associated ML (66%) and nonimmunodeficiency ML (60%), suggesting that impairment of immune function alone is not a requirement for the expansion of malignant cells infected by EBV stains containing the deleted LMP-1 gene.
    Matched MeSH terms: Sequence Deletion*
  14. Kamarudin NH, Rahman RN, Ali MS, Leow TC, Basri M, Salleh AB
    Mol Biotechnol, 2014 Aug;56(8):747-57.
    PMID: 24771007 DOI: 10.1007/s12033-014-9753-1
    Terminal moieties of most proteins are long known to be disordered and flexible. To unravel the functional role of these regions on the structural stability and biochemical properties of AT2 lipase, four C-terminal end residues, (Ile-Thr-Arg-Lys) which formed a flexible, short tail-like random-coil segment were targeted for mutation. Swapping of the tail-like region had resulted in an improved crystallizability and anti-aggregation property along with a slight shift of the thermostability profile. The lipolytic activity of mutant (M386) retained by 43 % compared to its wild-type with 18 % of the remaining activity at 45 °C. In silico analysis conducted at 25 and 45 °C was found to be in accordance to the experimental findings in which the RMSD values of M386 were more stable throughout the total trajectory in comparison to its wild-type. Terminal moieties were also observed to exhibit large movement and flexibility as denoted by high RMSF values at both dynamics. Variation in organic solvent stability property was detected in M386 where the lipolytic activity was stimulated in the presence of 25 % (v/v) of DMSO, isopropanol, and diethyl ether. This may be worth due to changes in the surface charge residues at the mutation point which probably involve in protein-solvent interaction.
    Matched MeSH terms: Sequence Deletion
  15. Ismail NF, Nik Abdul Malik NM, Mohseni J, Rani AM, Hayati F, Salmi AR, et al.
    Jpn J Clin Oncol, 2014 May;44(5):506-11.
    PMID: 24683199 DOI: 10.1093/jjco/hyu024
    Tuberous sclerosis complex is an autosomal dominant neurocutaneous disorder affecting multiple organs. Tuberous sclerosis complex is caused by mutation in either one of the two disease-causing genes, TSC1 or TSC2, encoding for hamartin and tuberin, respectively. TSC2/PKD1 contiguous gene deletion syndrome is a very rare condition due to deletion involving both TSC2 and PKD1 genes. Tuberous sclerosis complex cannot be easily diagnosed since there is no pathognomonic feature, although there are consensus diagnostic criteria for that. Mutation analysis is useful and plays important roles. We report here two novel gross deletions of TSC2 gene in Malay patients with tuberous sclerosis complex and TSC2/PKD1 contiguous gene deletion syndrome, respectively.
    Matched MeSH terms: Sequence Deletion*
  16. Tan HY, Nagoor NH, Sekaran SD
    Trop Biomed, 2010 Dec;27(3):430-41.
    PMID: 21399583 MyJurnal
    The major outer membrane protein (OmpH) of 4 local Malaysian strains of Pasteurella multocida serotype B:2 were characterized in comparison to ATCC strains. Three major peptide bands of MW 26, 32 and 37 kDa were characterized using SDSPAGE. Two of these fragments, the 32 kDa and 37 kDa were observed to be more reactive with a mouse polyclonal antiserum in all of the local isolates as well as the ATCC strains in a Western blot. However, the 32 kDa fragment was found to cross react with other Gram negative bacteria. Therefore, the 37 kDa OmpH was selected as vaccine candidate. The 37 kDa ompH gene of the isolated strain 1710 was cloned into an Escherichia coli expression vector to produce large amounts of recombinant OmpH (rOmpH). The 37 kDa ompH gene of strain 1710 was sequenced. In comparison to a reference strain X-73 of the ompH of P. multocida, 39bp was found deleted in the 37 kDa ompH gene. However, the deletion did not shift the reading frame or change the amino acid sequence. The rOmpH was used in a mice protection study. Mice immunized and challenged intraperitoneally resulted 100% protection against P. multocida whilst mice immunized subcutaneously and challenged intraperitoneally only resulted 80% protection. The rOmpH is therefore a suitable candidate for vaccination field studies. The same rOmpH was also used to develop a potential diagnostic kit in an ELISA format.
    Matched MeSH terms: Sequence Deletion
  17. Chee Wei T, Nurul Wahida AG, Shaharum S
    Trop Biomed, 2014 Dec;31(4):792-801.
    PMID: 25776606 MyJurnal
    Malaysia first reported H5N1 poultry case in 2004 and subsequently outbreak in poultry population in 2007. Here, a recombinant gene encoding of peptide epitopes, consisting fragments of HA1, HA2 and a polybasic cleavage site of H5N1 strain Malaysia, was amplified and cloned into pET-47b(+) bacterial expression vector. DNA sequencing and alignment analysis confirmed that the gene had no alteration and in-frame to the vector. Then, His-tagged truncated HA protein was expressed in Escherichia coli BL21 (DE3) under 1 mM IPTG induction. The protein expression was optimized under a time-course induction study and further purified using Ni-NTA agarose under reducing condition. Migration size of protein was detected at 15 kDa by Western blot using anti-His tag monoclonal antibody and demonstrated no discrepancy compared to its calculated molecular weight.
    Matched MeSH terms: Sequence Deletion
  18. Juriza, I., Sharifah Azween, S.O., Azli, I., Zarina, A.L., Mohd Fadly, M.A., Zubaidah, Z., et al.
    Medicine & Health, 2010;5(2):108-113.
    MyJurnal
    The human genome contains many submicroscopic copy number variations which includes deletions, duplications and insertions. Although conventional karyotyping remains an important diagnostic tool in evaluating a dysmorphic patient with mental retardation, molecular diagnostic technology such as array comparative genomic hybridization (aCGH) has proven to be sensitive and reliable in detecting these submicroscopic anomalies. A 3 month-old infant with dysmorphic facies, microcephaly and global developmental delay was referred for genetic evaluation. Preliminary karyotyping which was confounded by the quality of metaphase spread was normal; however, aCGH detected a 30.6Mb deletion from 5p15.33-p13.3. This case illustrates the usefulness of aCGH as an adjunctive investigative tool for detecting chromosomal imbalances.
    Matched MeSH terms: Sequence Deletion
  19. Jamora RD, Tan EK, Liu CP, Kathirvel P, Burgunder JM, Tan LC
    J Neurol Sci, 2006 Aug 15;247(1):35-7.
    PMID: 16631205
    Dystonia is a heterogenous group of movement disorders whose clinical spectrum is very wide. At least 13 different genes and gene loci have been reported. While a 3-bp deletion in the DYT1 gene is the most frequent cause of early limb-onset, generalized dystonia, it has also been found in non-generalized forms of sporadic dystonia. An 18-bp deletion in the DYT1 gene has also been reported.
    Matched MeSH terms: Sequence Deletion
  20. Goh ZH, Mohd NAS, Tan SG, Bhassu S, Tan WS
    J Gen Virol, 2014 Sep;95(Pt 9):1919-1928.
    PMID: 24878641 DOI: 10.1099/vir.0.064014-0
    White tail disease (WTD) kills prawn larvae and causes drastic losses to the freshwater prawn (Macrobrachium rosenbergii) industry. The main causative agent of WTD is Macrobrachium rosenbergii nodavirus (MrNV). The N-terminal end of the MrNV capsid protein is very rich in positively charged amino acids and is postulated to interact with RNA molecules. N-terminal and internal deletion mutagenesis revealed that the RNA-binding region is located at positions 20-29, where 80 % of amino acids are positively charged. Substitution of all these positively charged residues with alanine abolished the RNA binding. Mutants without the RNA-binding region still assembled into virus-like particles, suggesting that this region is not a part of the capsid assembly domain. This paper is, to the best of our knowledge, the first to report the specific RNA-binding region of MrNV capsid protein.
    Matched MeSH terms: Sequence Deletion/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links