Displaying publications 21 - 40 of 337 in total

Abstract:
Sort:
  1. Aziz FFA, Jalil AA, Hassan NS, Fauzi AA, Khusnun NF, Ali MW, et al.
    Environ Res, 2023 Mar 01;220:115151.
    PMID: 36584845 DOI: 10.1016/j.envres.2022.115151
    Ternary CuO/AgO/FSZr photocatalysts were fabricated via the hydrothermal and electrochemical methods with three different CuO loading (1, 3 and 5 wt%), indicated as 1CuO/AgO/FSZr, 3CuO/AgO/FSZr and 5CuO/AgO/FSZr. The photocatalytic reaction was tested towards simultaneous chromium (VI) photoreduction and p-cresol photooxidation and the performance in order as follow: 3CuO/AgO/FSZr > 5CuO/AgO/FSZr > 1CuO/AgO/FSZr > AgO/FSZr > FSZr. CuO/AgO/FSZr photocatalysts showed an improvement in photocatalytic activity compared to AgO/FSZr and FSZr due to the reduction potential of chromium (VI) aligned closer to the conduction band of CuO and provided abundant free active electrons (e-) and holes (h+) with efficient transportation and migration. Interestingly, the 3CuO/AgO/FSZr was established as the best photocatalyst with 98% reduction of chromium (VI) and 83% oxidation of p-cresol simultaneously, owing to its strong corporation between the metal oxides and support and higher total pore volume. The Langmuir-Hinshelwood model were employed for kinetics which followed the pseudo-first-order kinetics model well. Based on the simultaneous photocatalytic mechanism, chromium (VI) and p-cresol were directly reduced and oxidized by e- and h+, respectively. The response surface methodology (RSM) discovered that the quadratic term initial concentration of chromium (VI) is the main significant factor in photocatalytic performance. The optimum parameters for simultaneous photoredox of chromium (VI) and p-cresol predicted from RSM are 9.6 mg L-1 of chromium (VI) concentration, 9.8 mg L-1 of p-cresol concentration and 0.32 g L-1 of catalyst dosage. Under these conditions the error between the predicted and experimental values is only 3.7%. The 3CuO/AgO/FSZr sustained the photocatalytic performance after reused for five cycles and could oxidized various organic pollutants as well as reduced chromium (VI) simultaneously.
    Matched MeSH terms: Silicon Dioxide*
  2. Nusrat Aman AM, Selvarajoo A, Lau TL, Chen WH
    Chemosphere, 2023 Feb;313:137477.
    PMID: 36509190 DOI: 10.1016/j.chemosphere.2022.137477
    The use of sustainable materials in the construction industry has been on the rise recently. Studies have proven that the use of conventional concrete and its raw materials has a negative impact on the environment. Research on incorporating biochar as a supplementary cementitious material has been recently evolving and has shown that the attributes of biochar are highly affected by the pyrolysis parameters. These attributes have enhanced the properties of biochar concrete and mortar composite. This paper identifies the different physiochemical properties exhibited by palm kernel shell biochar through optimization by response surface methodology. Focusing on some of the properties of biochar that have proven beneficial when used as a cement replacement. Very limited research has used optimization tools for the production of biochar with the intention of using it as a cement substitute. Pyrolysis was conducted by a tubular furnace at different temperature ranges from 200 °C to 800 °C. The biomass and biochar have been analyzed with TGA and FESEM-EDX. The targeted biochar properties and selected responses are the yield, carbon, oxygen, silica, and potassium content. The optimized parameters obtained are 409 °C, 15 °C/min, 120 min with responses of 38.2% yield, 73.37% carbon, 25.48% oxygen, 0.39% potassium and 0.44% silica. Thermal properties of the palm kernel shell biochar affected by the pyrolysis factors such as temperature, heating rate and residence time have also been discussed. In conclusion, this study supports and encourages the use of palm waste, which is abundant in Malaysia, as a supplementary cementitious material to promote sustainable growth in construction.
    Matched MeSH terms: Silicon Dioxide
  3. Asif K, Lock SSM, Taqvi SAA, Jusoh N, Yiin CL, Chin BLF
    Chemosphere, 2023 Jan;311(Pt 1):136936.
    PMID: 36273613 DOI: 10.1016/j.chemosphere.2022.136936
    Polysulfone (PSF) based mixed matrix membranes (MMMs) are one of the most broadly studied polymeric materials used for CO2/CH4 separation. The performance of existing PSF membranes encounters a bottleneck for widespread expansion in industrial applications due to the trade-off amongst permeability and selectivity. Membrane performance has been postulated to be enhanced via functionalization of filler at different weight percentages. Nonetheless, the preparation of functionalized MMMs without defects and its empirical study that exhibits improved CO2/CH4 separation performance is challenging at an experimental scale that needs prior knowledge of the compatibility between the filler and polymer. Molecular simulation approaches can be used to explore the effect of functionalization on MMM's gas transport properties at an atomic level without the challenges in the experimental study, however, they have received less scrutiny to date. In addition, most of the research has focused on pure gas studies while mixed gas transport properties that reflect real separation in functionalized silica/PSF MMMs are scarcely available. In this work, a molecular simulation computational framework has been developed to investigate the structural, physical properties and gas transport behavior of amine-functionalized silica/PSF-based MMMs. The effect of varying weight percentages (i.e., 15-30 wt.%) of amine-functionalized silica and gas concentrations (i.e., 30% CH4/CO2, 50% CH4/CO2, and 70% CH4/CO2) on physical and gas transport characteristics in amine-functionalized silica/PSF MMMs at 308.15 K and 1 atm has been investigated. Functionalization of silica nanoparticles was found to increase the diffusion and solubility coefficients, leading to an increase in the percentage enhancement of permeability and selectivity for amine-functionalized silica/PSF MMM by 566% and 56%, respectively, compared to silica/PSF-based MMMs at optimal weight percentage of 20 wt.%. The model's permeability differed by 7.1% under mixed gas conditions. The findings of this study could help to improve real CO2/CH4 separation in the future design and concept of functionalized MMMs using molecular simulation and empirical modeling strategies.
    Matched MeSH terms: Silicon Dioxide*
  4. Budiman A, Rusdin A, Subra L, Aulifa DL
    Int J Nanomedicine, 2023;18:5473-5493.
    PMID: 37791322 DOI: 10.2147/IJN.S426120
    In 2020, there were 2.21 million new instances of lung cancer, making it the top cause of mortality globally, responsible for close to 10 million deaths. The physicochemical problems of chemotherapy drugs are the primary challenge that now causes a drug's low effectiveness. Solubility is a physicochemical factor that has a significant impact on a drug's biopharmaceutical properties, starting with the rate at which it dissolves and extending through how well it is absorbed and bioavailable. One of the most well-known methods for addressing a drug's solubility is mesoporous silica, which has undergone excellent development due to the conjugation of polymers and ligands that increase its effectiveness. However, there are still very few papers addressing the success of this discovery, particularly those addressing its molecular pharmaceutics and mechanism. Our study's objectives were to explore and summarize the effects of targeting mediator on drug development using mesoporous silica with and without functionalized polymer. We specifically focused on highlighting the molecular pharmaceutics and mechanism in this study's innovative findings. Journals from the Scopus, PubMed, and Google Scholar databases that were released during the last ten years were used to compile this review. According to inclusion and exclusion standards adjusted. This improved approach produced very impressive results, a very significant change in the characteristics of mesoporous silica that can affect effectiveness. Mesoporous silica approaches have the capacity to greatly enhance a drug's physicochemical issues, boost therapeutic efficacy, and acquire superb features.
    Matched MeSH terms: Silicon Dioxide/chemistry
  5. Shaha DC, Hasan J, Kundu SR, Yusoff FM, Salam MA, Khan M, et al.
    Sci Rep, 2022 Dec 05;12(1):20980.
    PMID: 36470973 DOI: 10.1038/s41598-022-24500-2
    The tropical estuarine ecosystem is fascinating for studying the dynamics of water quality and phytoplankton diversity due to its frequently changing hydrological conditions. Most importantly, phytoplankton is the main supplier of ω3 polyunsaturated fatty acids (PUFA) in the coastal food web for fish as they could not synthesize PUFA. This study evaluated seasonal variations of water quality parameters in the Meghna River estuary (MRE), explored how phytoplankton diversity changes according to hydro-chemical parameters, and identified the major phytoplankton groups as the main source of PUFA for hilsa fish. Ten water quality indicators including temperature, dissolved oxygen, pH, salinity, dissolved inorganic nitrogen (DIN = nitrate, nitrite, ammonia) and phosphorus, dissolved silica and chlorophyll-a were evaluated. In addition, phytoplankton diversity was assessed in the water and hilsa fish gut. Principal component analysis (PCA) was used to analyze the spatio-temporal changes in the water quality conditions, and the driving factors in the MRE. Four main components were extracted and explained 75.4% variability of water quality parameters. The most relevant driving factors were dissolved oxygen, salinity, temperature, and DIN (nitrate, nitrite and ammonia). These variabilities in physicochemical parameters and dissolved inorganic nutrients caused seasonal variations in two major groups of phytoplankton. Peak abundance of Chlorophyta (green algae) occurred in water in nutrient-rich environments (nitrogen and phosphorus) during the wet (36%) season, while Bacillariophyta (diatoms) were dominant during the dry (32%) season that depleted dissolved silica. Thus, the decrease of green algae and the increase of diatoms in the dry season indicated the potential link to seasonal changes of hydro-chemical parameters. The green algae (53.7%) were the dominant phytoplankton group in the hilsa gut content followed by diatoms (22.6%) and both are contributing as the major source of PUFAs for hilsa fish according to the electivity index as they contain the highest amounts of PUFAs (60 and 28% respectively).
    Matched MeSH terms: Silicon Dioxide/analysis
  6. Khan MUA, Razak SIA, Rehman S, Hasan A, Qureshi S, Stojanović GM
    Int J Biol Macromol, 2022 Dec 01;222(Pt A):462-472.
    PMID: 36155784 DOI: 10.1016/j.ijbiomac.2022.09.153
    Globally, people suffering from bone disorders are steadily increasing and bone tissue engineering is an advanced approach to treating fractured and defected bone tissues. In this study, we have prepared polymeric nanocomposite by free-radical polymerization from sodium alginate, hydroxyapatite, and silica with different GO amounts. The porous scaffolds were fabricated using the freeze drying technique. The structural, morphological, mechanical, and wetting investigation was conducted by Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, universal tensile machine, and water contact angle characterization techniques. The swelling, biodegradation, and water retention were also studied. The biological studies were performed (cell viability, cell adherence, proliferation, and mineralization) against osteoblast cell lines. Scaffolds have exhibited different pore morphology SAG-1 (pore size = 414.61 ± 56 μm and porosity = 81.45 ± 2.17 %) and SAG-4 (pore size = 195.97 ± 82 μm and porosity = 53.82 ± 2.45 %). They have different mechanical behavior as SAG-1 has the least compression strength and compression modulus 2.14 ± 2.35 and 16.51 ± 1.27 MPa. However, SAG-4 has maximum compression strength and compression modulus 13.67 ± 2.63 and 96.16 ± 1.97 MPa with wetting behavior 80.70° and 58.70°, respectively. Similarly, SAG-1 exhibited the least and SAG-4 presented maximum apatite mineral formation, cell adherence, cell viability, and cell proliferation against mouse pre-osteoblast cell lines. The increased GO amount provides different multifunctional materials with different characteristics. Hence, the fabricated scaffolds could be potential scaffold materials to treat and regenerate fracture bone tissues in bone tissue engineering.
    Matched MeSH terms: Silicon Dioxide*
  7. Gajjala RR, Chinta RR, Gopireddy VSR, Poola S, Balam SK, Chintha V, et al.
    Bioorg Chem, 2022 Dec;129:106205.
    PMID: 36265354 DOI: 10.1016/j.bioorg.2022.106205
    Novel ethyl-4-(aryl)-6-methyl-2-(oxo/thio)-3,4-dihydro-1H-pyrimidine-5-carboxylates were synthesized from one-pot, three-component Biginelli reaction of aryl aldehydes, ethyl acetoacetate and urea/ thiourea by catalytic action of silica supported Bismuth(III) triflate, a Lewis acid. All the synthesized compounds were structurally characterized by spectral (IR, 1H NMR & 13C NMR spectroscopic and Mass spectrometric) and elemental (C, H & N) analyses. The present protocol has deserved novel as, formed the products in high yields with short reaction times, involved eco-friendly methodology and reusable heterogeneous Lewis acid catalyst. The title compounds were screened for in vitro DPPH free radical scavenging antioxidant activity and identified 4i, 4j, 4h & 4f as potential antioxidants. The obtained in vitro results were correlated with molecular docking, ADMET, QSAR, Bioactivity & toxicity risk studies and molecular finger print properties and found that in silico binding affinities were identified in good correlation with in vitro antioxidant activity and studied the structure activity relationship. The molecular docking study has disclosed strong hydrogen bonding interactions of title compounds with aspartic acid (ASP197) aminoacid residue of 2HCK, a complex enzyme of haematopoietic cell kinase and quercetin. Results of toxicology study evaluated for potential risks of compounds have revealed title compounds as safer drugs. In ultimate the study has established ligand's antioxidant potentiality as they effectively binds with ASP197 amino acid of Chain A hence confirms the inhibition of growth of reactive oxygen species in vivo. In addition, the title compounds have been identified as potential blood-brain barrier penetrable entities and efficient central nervous system (CNS) active neuro-protective antioxidant agents.
    Matched MeSH terms: Silicon Dioxide/chemistry
  8. Dorairaj D, Govender N, Zakaria S, Wickneswari R
    Sci Rep, 2022 Nov 23;12(1):20162.
    PMID: 36424408 DOI: 10.1038/s41598-022-24484-z
    Agriculture plays a crucial role in safeguarding food security, more so as the world population increases gradually. A productive agricultural system is supported by seed, soil, fertiliser and good management practices. Food productivity directly correlates to the generation of solid wastes and utilization of agrochemicals, both of which negatively impact the environment. The rice and paddy industry significantly adds to the growing menace of waste management. In low and middle-income countries, rice husk (RH) is an underutilized agro-waste discarded in landfills or burned in-situ. RH holds enormous potential in the development of value-added nanomaterials for agricultural applications. In this study, a simple and inexpensive sol-gel method is described to extract mesoporous silica nanoparticles (MSNs) from UKMRC8 RH using the bottom-up approach. RHs treated with hydrochloric acid were calcinated to obtain rice husk ash (RHA) with high silica purity (> 98% wt), as determined by the X-ray fluorescence analysis (XRF). Calcination at 650 °C for four hours in a box furnace yielded RHA that was devoid of metal impurities and organic matter. The X-ray diffraction pattern showed a broad peak at 2θ≈20-22 °C and was free from any other sharp peaks, indicating the amorphous property of the RHA. Scanning electron micrographs (SEM) showed clusters of spherically shaped uniform aggregates of silica nanoparticles (NPs) while transmission electron microscopy analysis indicated an average particle size of 
    Matched MeSH terms: Silicon Dioxide/chemistry
  9. Soni A, Das PK, Yusuf M, Kamyab H, Chelliapan S
    Sci Rep, 2022 Nov 07;12(1):18921.
    PMID: 36344577 DOI: 10.1038/s41598-022-19635-1
    Strict environmental concerns, depleting natural recourses, and rising demand for building construction materials have promoted scientific research toward alternative building materials. This research supports the idea of sustainability and a circular economy via the utilization of waste to produce value-added products. The research explored the potential of waste plastics and silica sand for developing thermoplastic composite as floor tiles. The samples were characterized by water absorption, compressive strength, flexural strength, and sliding wear. The morphological analysis of the sand-plastic interfaces was covered under the umbrella of this study. The maximum compressive and flexural strength were found to be 46.20 N/mm2 and 6.24 N/mm2, respectively, with the minimum water absorption and sliding wear rate of 0.039% and 0.143 × 10-8 kg/m, respectively. The study suggests the workability of the developed floor tiles in non-traffic areas of public places. Thus, the study provides a green building material through recycling waste plastics for sustainable development.
    Matched MeSH terms: Silicon Dioxide
  10. Ang CW, Tan L, Qu Z, West NP, Cooper MA, Popat A, et al.
    ACS Biomater Sci Eng, 2022 Oct 10;8(10):4196-4206.
    PMID: 34464089 DOI: 10.1021/acsbiomaterials.1c00807
    Pretomanid and MCC7433, a novel nitroimidazopyrazinone analog, are promising antitubercular agents that belong to the bicyclic nitroimidazole family. Despite possessing high cell permeability, they suffer from poor aqueous solubility and require specialized formulations in order to be orally bioavailable. To address this limitation, we investigated the use of mesoporous silica nanoparticles (MCM-41) as drug carriers. MCM-41 nanoparticles were synthesized using a sol-gel method, and their surface was further modified with amine and phosphonate groups. A simple rotary evaporation method was used to incorporate the compounds of interest into the nanoparticles, leading to a high encapsulation efficiency of ≥86% with ∼10% loading (w/w). An overall significant improvement of solubility was also observed, and the pharmacological activity of pretomanid and MCC7433 was fully retained when tested in vitro against Mycobacterium tuberculosis using these nanocarriers. Amino-functionalized MCM-41 nanoparticles were found to enhance the systemic exposure of MCC7433 in mice (1.3-fold higher Cmax) compared to MCC7433 alone. The current work highlights the potential of using nanoparticles such as mesoporous silica as a carrier for oral delivery of poorly soluble antibacterial agents against tuberculosis.
    Matched MeSH terms: Silicon Dioxide
  11. Mahmad-Toher AS, Govender N, Dorairaj D, Wong MY
    Sci Rep, 2022 Sep 20;12(1):15690.
    PMID: 36127366 DOI: 10.1038/s41598-022-19308-z
    Rice brown spot (BS) exerts devastating agronomic effects on grain quality and overall productivity. In Peninsular Malaysia, BS disease incidence is fairly prevalent and little is known about the diversity of BS pathogens in the local granaries. Fifteen isolates from BS symptomatic rice plants were identified at five different rice granaries across Peninsular Malaysia. Based on the morphological and molecular analyses, two isolates were confirmed as Bipolaris oryzae while the rest were identified as Exserohilum rostratum. Phylogenetic tree analysis revealed that BS incidence in rice granaries in Peninsular Malaysia is caused by a pair of closely related fungal pathogens, E. rostratum and B. oryzae, with the former being more predominant. Cultural characterization of E. rostratum isolate KT831962 showed the best growth and sporulation activity on corn meal agar plates incubated in complete darkness. The effects of calcium silicate (CaSiO3) and rice husk ash (RHA) soil amendment against MR219 and MR253 rice varieties were evaluated during rice-E. rostratum interaction. Results showed that soil amelioration using CaSiO3 and RHA singly and in combination with manganese (Mn) significantly reduced rice BS disease severity. The BS disease index was reduced significantly to less than 31.6% in the silicon-treated rice plants relative to the control plants at 41.2%. Likewise, the grain yield at the harvest stage showed significantly higher yield in the Si-treated rice plants in comparison to the control, non-Si treated rice plants. The findings highlight the potential of RHA agro-waste as Si fertilizer in a sustainable rice production system.
    Matched MeSH terms: Silicon Dioxide/pharmacology
  12. Sohu S, Bheel N, Jhatial AA, Ansari AA, Shar IA
    Environ Sci Pollut Res Int, 2022 Aug;29(39):58685-58697.
    PMID: 35366210 DOI: 10.1007/s11356-022-19894-5
    Cement production emits a significant carbon dioxide (CO2) gas, dramatically influencing the environment. Furthermore, a large amount of energy is consumed during the cement manufacturing process; since Pakistan is already facing an energy crisis, this high energy consumption by the cement industry puts further stress on Pakistan's energy sector. Hence, the price of cement is rising day by day. Furthermore, waste disposals and concrete ingredients' restoration after demolition have adversative effects on the environment. Therefore, using these wastes decreases cement manufacturing, thereby reducing energy consumption, but it also aids in safeguarding the environment. The study aimed to determine the concrete properties by partially replacing cement with only eggshell powder (ESP) and combining ESP and silica fume (SF) in a ternary binder system in the mixture. However, workability, water absorption, compressive strength, split tensile strength, and flexural strength were all investigated in this study. In this experimental study, cement was replaced as 5, 8, 11, 15, and 20% of ESP, along with 5, 10, and 15% of silica by weight of cement in concrete. Approximately 21 mixes were prepared, from which 01 control mix, 05 mixes of ESP alone, and 15 mixes designed with a blend of ESP and SF with a 1:1.25:3 mix ratio and 0.5 water-cement ratios. Study parameters advocate the substitution of 11% ESP and 10% SF as the optimal option for maximum strength. Furthermore, combining ESP and SF diminishes the composite concrete mixture's workability and dry density greatly.
    Matched MeSH terms: Silicon Dioxide*
  13. Yogarathinam LT, Usman J, Othman MHD, Ismail AF, Goh PS, Gangasalam A, et al.
    J Hazard Mater, 2022 02 15;424(Pt A):127298.
    PMID: 34571470 DOI: 10.1016/j.jhazmat.2021.127298
    In this study, an economic silica based ceramic hollow fiber (HF) microporous membrane was fabricated from guinea cornhusk ash (GCHA). A silica interlayer was coated to form a defect free silica membrane which serves as a support for the formation of thin film composite (TFC) ceramic hollow fiber (HF) membrane for the removal of microplastics (MPs) from aqueous solutions. Polyacrylonitrile (PAN), polyvinyl-chloride (PVC), polyvinylpyrrolidone (PVP) and polymethyl methacrylate (PMMA) are the selected MPs The effects of amine monomer concentration (0.5 wt% and 1 wt%) on the formation of poly (piperazine-amide) layer via interfacial polymerization over the GCHA ceramic support were also investigated. The morphology analysis of TFC GCHA HF membranes revealed the formation of a poly (piperazine-amide) layer with narrow pore arrangement. The pore size of TFC GCHA membrane declined with the formation of poly (piperazine-amide) layer, as evidenced from porosimetry analysis. The increase of amine concentration reduced the porosity and water flux of TFC GCHA HF membranes. During MPs filtration, 1 wt% (piperazine) based TFC GCHA membrane showed a lower transmission percentage of PVP (2.7%) and other suspended MPs also displayed lower transmission. The impact of humic acid and sodium alginate on MPs filtration and seawater pretreatment were also analyzed.
    Matched MeSH terms: Silicon Dioxide
  14. Chen K, Ng KH, Cheng CK, Cheng YW, Chong CC, Vo DN, et al.
    Chemosphere, 2022 Jan;287(Pt 2):132222.
    PMID: 34826917 DOI: 10.1016/j.chemosphere.2021.132222
    Biomass, which defined as plant- or animal-based materials, is intriguing tremendous scientific attentions due to its renewable attribute in serving energy security. Amongst, the plant-based biomasses, particularly those that co-generated in the agriculture activities, are commonly regarded as fuel for burning, which overlooked their hidden potentials for high-end applications. Organically, the plant-based biomass constitutes of lignocellulose components, which can be served as promising precursors for functionalized carbon materials. Meanwhile, its inorganic counterpart made up of various minerals, with Si being the most concerned one. With the advancement of biomass technologies and material synthesis in recent years, numerous attempts were endeavoured to obtain valorised products from biomass. Particularly, syntheses of catalytic and adsorptive materials are actively researched in the field of biomass reutilization. Herein, our work systematically summarized the advancements of biomass-materials for these applications in recent 10 years (2010-2020), with a special focus on the carbon-based and Si-based catalytic/adsorptive materials. Significantly, the deriving steps, inclusive of both pre-treatment and post-treatment of such materials, are incorporated in the discussion, alongside with their significances revealed too. The performance of the as-obtained materials in the respective application is systematically correlated to their physicochemical properties, hence providing valuable insights to the readers. Challenges and promising directions to be explored are raised too at the end of the review, aiming to advocate better-usage of biomass while offering great opportunities to sustain catalysis and adsorption in the industrial scale.
    Matched MeSH terms: Silicon Dioxide*
  15. Kumar A, Bheel N, Ahmed I, Rizvi SH, Kumar R, Jhatial AA
    Environ Sci Pollut Res Int, 2022 Jan;29(1):1210-1222.
    PMID: 34350574 DOI: 10.1007/s11356-021-15734-0
    The production of cement releases an enormous amount of CO2 into the environment. Besides, industrial wastes like silica fume and fly ash need effective utilization to reduce their impacts on the environment. This research aims to explore the influence of silica fume (SF) and fly ash (FA) individually and combine them as binary cementitious material (BCM) on the hardened properties and embodied carbon of roller compacted concrete (RCC). A total of ten mixes were prepared with 1:2:4 mix ratio at the different water-cement ratios to keep the zero slump of roller compacted concrete. However, the replacement proportions for SF were 5%-15%, and FA were 5%-15% by the weight of cement individually and combine in roller compacted concrete for determining the hardened properties and embodied carbon. In this regard, several numbers of concrete specimens (cubes and cylinders) were cast and cured for 7 and 28 days correspondingly. It was observed that the compressive strength of RCC is boosted by 33.6 MPa and 30.6 MPa while using 10% of cement replaced with SF and FA individually at 28 days, respectively. Similarly, the splitting tensile strength of RCC is enhanced by 3.5 MPa at 10% cement replaced with SF and FA on 28 days, respectively. The compressive and splitting tensile strength of RCC is increased by 34.2 MPa and 3.8 MPa at SF7.5FA7.5 as BCM after 28 days consistently. In addition, the water absorption of RCC decreased while using SF and FA as cementitious material individually and together at 28 days. Besides, the embodied carbon of RCC decreased with increasing the replacement level of SF and FA by the mass of cement individually and combined.
    Matched MeSH terms: Silicon Dioxide
  16. Shah SN, Tan TH, Tey OW, Leong GW, Chin YS, Yuen CW, et al.
    Sci Prog, 2022;105(2):368504221091186.
    PMID: 35379044 DOI: 10.1177/00368504221091186
    Lightweight cementitious composite (LCC) produced by incorporating lightweight silica aerogel was explored in this study. Silica aerogel was incorporated as 60% replacement of fine aggregate (sand/crushed glass) in producing the LCC. The effect of aerogel on the drying shrinkage and alkali-silica expansion of LCC was evaluated and compared with those of lightweight expanded perlite aggregate. At the density of 1600  ±  100 kg/m3, the aerogel/ expanded perlite LCC had attained compressive strength of about 17/24 MPa and 22/26 MPa in mixtures with sand and crushed glass as a fine aggregate, respectively. The inclusion of aerogel and expanded perlite increased the drying shrinkage. The drying shrinkage of aerogel LCC was up to about 3 times of the control mixtures. Although the presence of aerogel and expanded perlite could reduce the alkali-silica expansion when partially replacing crushed glass, the aerogel-glass LCC still recorded expansion exceeding the maximum limit of 0.10% at 14 days. However, when 15% cement was replaced with fly ash and granulated blast furnace slag, the alkali-silica expansion was reduced to 0.03% and 0.10%, respectively. Microstructural observations also revealed that the aerogel with fly ash can help in reducing the alkali-silica expansion in mixes containing the reactive crushed glass aggregate.
    Matched MeSH terms: Silicon Dioxide
  17. Alao AR, Mohd Azhari MA
    J Mech Behav Biomed Mater, 2021 12;124:104842.
    PMID: 34555624 DOI: 10.1016/j.jmbbm.2021.104842
    Indentation size effect (ISE) and R-curve behaviour of Li2O-SiO2 and Li2O-2SiO2 glass ceramics are investigated using micro-indentation and indentation-strength (IS) techniques, respectively. Vickers micro-indentations were applied on both materials at the load of 0.10-19.6 N to determine the load influence on the measured hardness. For the IS-measured fracture toughness, the load ranged from 1.96 to 19.6 N. The hardness decreased with increasing load by 20% and 18% on Li2O-SiO2 and Li2O-2SiO2 glass ceramics, respectively, indicating the ISE behaviour on both materials. The fracture toughness increased with the load by 27% and 59% on Li2O-SiO2 and Li2O-2SiO2 glass ceramics, respectively, signifying the R-curve behaviour. The ISE behaviour of both materials was analysed using the Meyer's, Hays-Kendall (HK), proportional specimen resistance (PSR), Nix-Gao (NG), modified PSR (MPSR) and elastic plastic deformation (EPD) models while the R-curve behaviour was analysed by the fractional power law. The Meyer's index of both materials was less than 2, strongly confirming the ISE existence. The HK, PSR and NG models were only suitable to determine intrinsic Vickers hardness for Li2O-2SiO2 glass ceramic while the MPSR and EPD models were successful for both materials. The fractional power law gave higher R-curve steepness for Li2O-2SiO2 than Li2O-SiO2 glass ceramics. Also, material and brittleness indices predicted, respectively, higher quasi-plasticity and better machinability for Li2O-2SiO2 than Li2O-SiO2 glass ceramics indicating superior performance in the former to the latter. Finally, this study presents a new significant insight into the micro-mechanisms of fracture tolerance behaviour of these glass ceramics which is critical to their functional performance as structural ceramics.
    Matched MeSH terms: Silicon Dioxide*
  18. Oresegun A, Tarif ZH, Ghassan L, Zin H, Abdul-Rashid HA, Bradley DA
    Appl Radiat Isot, 2021 Oct;176:109812.
    PMID: 34166948 DOI: 10.1016/j.apradiso.2021.109812
    Investigation has been made of the radioluminescence dose response of Ge-doped silica flat and cylindrical fibers subjected to 6 and 10 MV photon beams. The fibers have been custom fabricated, obtaining Ge dopant concentrations of 6 and 10 mol%, subsequently cut into 20 mm lengths. Each sample has been exposed under a set of similar conditions, with use made of a fixed field size and source to surface distance (SSD). Investigation of dosimetric performance has involved radioluminescence linearity, dose-rate dependence, energy dependence, and reproducibility. Mass for mass, the 6 mol% Ge-doped samples provided the greater radioluminescence yield, with both flat and cylindrical fibers responding linearly to the absorbed dose. Further found has been that the cylindrical fibers provided a yield some 38% greater than that of the flat fibers. At 6 MV, the cylindrical fibers were also found to exhibit repeatability variation of <1%, superior to that of the flat fibers, offering strong potential for use in real-time dosimetry applications.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  19. Aziz FFA, Jalil AA, Hassan NS, Fauzi AA, Azami MS
    Environ Pollut, 2021 Sep 15;285:117490.
    PMID: 34091265 DOI: 10.1016/j.envpol.2021.117490
    The co-existence of heavy metals and organic compounds including Cr(VI) and p-cresol (pC) in water environment becoming a challenge in the treatment processes. Herein, the synchronous photocatalytic reduction of Cr(VI) and oxidation of pC by silver oxide decorated on fibrous silica zirconia (AgO/FSZr) was reported. In this study, the catalysts were successfully developed using microemulsion and electrochemical techniques with various AgO loading (1, 5 and 10 wt%) and presented as 1, 5 and 10-AgO/FSZr. Catalytic activity was tested towards simultaneous photoredox of hexavalent chromium and p-cresol (Cr(VI)/pC) and was ranked as followed: 5-AgO/FSZr (96/78%) > 10-AgO/FSZr (87/61%) > 1-AgO/FSZr (47/24%) > FSZr (34/20%). The highest photocatalytic activity of 5-AgO/FSZr was established due to the strong interaction between FSZr and AgO and the lowest band gap energy, which resulted in less electron-hole recombination and further enhanced the photoredox activity. Cr(VI) ions act as a bridge between the positive charge of catalyst and cationic pC in pH 1 solution which can improve the photocatalytic reduction and oxidation of Cr(VI) and pC, respectively. The scavenger experiments further confirmed that the photogenerated electrons (e-) act as the main species for Cr(VI) to be reduced to Cr(III) while holes (h+) and hydroxyl radicals are domain for photooxidation of pC. The 5-AgO/FSZr was stable after 5 cycles of reaction, suggesting its potential for removal of Cr(VI) and pC simultaneously in the chemical industries.
    Matched MeSH terms: Silicon Dioxide*
  20. Kumar R, Shafiq N, Kumar A, Jhatial AA
    Environ Sci Pollut Res Int, 2021 Sep;28(35):49074-49088.
    PMID: 33928510 DOI: 10.1007/s11356-021-13918-2
    Research for alternative binders has become a necessity due to cement's embodied carbon, climate change, and depletion of natural resources. These binders could potentially reduce our reliance on cement as the sole binder for concrete while simultaneously enhancing the functional characteristics of concrete. Theoretically, the use of finer particles in the cement matrix densifies the pore structure of concrete and results in improved properties. To validate this hypothesis, current research was designed to investigate how the value-added benefits of nano-silica (NS) and metakaolin (MK) in fly ash (FA)-blended cement affect the mechanical and durability characteristics of concrete when used as ternary and quaternary blends. Additionally, the cost-benefit analysis and environmental impact assessment were conducted. It was observed that the synergy of MK and NS used in FA-blended cement had a greater impact on enhancing the functional characteristics of concrete, while 10% MK as ordinary Portland cement (OPC) replacement and 1% NS as an additive in FA-blended OPC concrete was the optimum combination which achieved 94-MPa compressive strength at the age of 91 days and showed more than 25% increment in the flexural and splitting tensile strengths compared to the control mix (MS00). The ultrasonic pulse velocity and dynamic modulus of elasticity were significantly improved, while a significant reduction in chloride migration of 50% was observed. In terms of environmental impact, MS100 (30% FA and 10% MK) exhibited the least embodied CO2 emissions of 319.89 kgCO2/m3, while the highest eco-strength efficiency of 0.268 MPa/kgCO2·m-3 with respect to 28-day compressive strength was exhibited by MS101. In terms of cost-benefit, MS00 was determined the cheapest, while the addition of MK and NS increased the cost. The lowest cost of producing 1 MPa was exhibited by MS01 with a merely 0.04-$/MPa/m3 reduction compared to MS00.
    Matched MeSH terms: Silicon Dioxide
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links