Displaying publications 21 - 40 of 535 in total

Abstract:
Sort:
  1. Yee W
    World J Microbiol Biotechnol, 2016 Apr;32(4):64.
    PMID: 26931604 DOI: 10.1007/s11274-016-2023-6
    Over the years, microalgae have been identified to be a potential source of commercially important products such as pigments, polysaccharides, polyunsaturated fatty acids and in particular, biofuels. Current demands for sustainable fuel sources and bioproducts has led to an extensive search for promising strains of microalgae for large scale cultivation. Prospective strains identified for these purposes were among others, mainly from the genera Hematococcus, Dunaliella, Botryococcus, Chlorella, Scenedesmus and Nannochloropsis. Recently, microalgae from the Selenastraceae emerged as potential candidates for biodiesel production. Strains from the Selenastraceae such as Monoraphidium sp. FXY-10, M. contortum SAG 47.80, Ankistrodesmus sp. SP2-15 and M. minutum were high biomass and lipid producers when cultivated under optimal conditions. A number of Selenastraceae strains were also reported to be suitable for cultivation in wastewater. This review highlights recent reports on potential strains from the Selenastraceae for biodiesel production and contrasts their biomass productivity, lipid productivity as well as fatty acid profile. Cultivation strategies employed to enhance their biomass and lipid productivity as well as to reduce feedstock cost are also discussed in this paper.
    Matched MeSH terms: Waste Water/microbiology
  2. Khan MB, Nisar H, Ng CA, Lo PK, Yap VV
    Environ Technol, 2018 Jan;39(1):24-34.
    PMID: 28278778 DOI: 10.1080/09593330.2017.1293166
    The state of activated sludge wastewater treatment process (AS WWTP) is conventionally identified by physico-chemical measurements which are costly, time-consuming and have associated environmental hazards. Image processing and analysis-based linear regression modeling has been used to monitor the AS WWTP. But it is plant- and state-specific in the sense that it cannot be generalized to multiple plants and states. Generalized classification modeling for state identification is the main objective of this work. By generalized classification, we mean that the identification model does not require any prior information about the state of the plant, and the resultant identification is valid for any plant in any state. In this paper, the generalized classification model for the AS process is proposed based on features extracted using morphological parameters of flocs. The images of the AS samples, collected from aeration tanks of nine plants, are acquired through bright-field microscopy. Feature-selection is performed in context of classification using sequential feature selection and least absolute shrinkage and selection operator. A support vector machine (SVM)-based state identification strategy was proposed with a new agreement solver module for imbalanced data of the states of AS plants. The classification results were compared with state-of-the-art multiclass SVMs (one-vs.-one and one-vs.-all), and ensemble classifiers using the performance metrics: accuracy, recall, specificity, precision, F measure and kappa coefficient (κ). The proposed strategy exhibits better results by identification of different states of different plants with accuracy 0.9423, and κ 0.6681 for the minority class data of bulking.
    Matched MeSH terms: Waste Water/chemistry
  3. Wong JKH, Lee KK, Tang KHD, Yap PS
    Sci Total Environ, 2020 Jun 01;719:137512.
    PMID: 32229011 DOI: 10.1016/j.scitotenv.2020.137512
    The ubiquitous occurrences of microplastics in the environment have raised much concern and resulted in voluminous studies related to microplastics. Studies on microplastics pollution of the marine environment have received significantly higher attention compared to those of the freshwater and terrestrial environments. With the impetus to better understand microplastics in the freshwater and terrestrial environments, this review elucidates the findings of >100 articles related to the prevalence, fates and impacts of microplastics therein and the sustainable solutions, mostly in the past 10 years. This review shows the interconnection between terrestrial and freshwater microplastics with wastewater and sewage treatment plants as the most significant contributors of environmental microplastics via sludge and effluent discharges. Microplastics in both ecosystems comprise the primary and secondary forms with the latter resulted from weathering of the former. Besides retaining in soil and infiltrating with rainwater underground, terrestrial microplastics also enter the freshwater environment. The environmental microplastics interact with the biotic and abiotic components resulting in entrainment, settlement, biofouling, degradation, fragmentation and entry into the food chain, with subsequent transfer across the food chain. The abundance of environmental microplastics is attributed to population density and urbanization though tidal cycle, storms, floods and human activities can affect their distribution. The leaching of additives from microplastics poses major health concern and sustainable solutions target at reduction of plastics use and disposal, substitution with bioplastics and wastewater treatment innovations. Further studies on classification, detection, characterization and toxicity of microplastics are necessary to permit more effective formulation of solutions.
    Matched MeSH terms: Waste Water
  4. Teoh TP, Ong SA, Ho LN, Wong YS, Lutpi NA, Oon YL, et al.
    Environ Sci Pollut Res Int, 2023 Feb;30(7):17546-17563.
    PMID: 36197611 DOI: 10.1007/s11356-022-23101-w
    The treatment of single and binary azo dyes, as well as the effect of the circuit connection, aeration, and plant on the performance of UFCW-MFC, were explored in this study. The decolorization efficiency of Remazol Yellow FG (RY) (single dye: 98.2 %; binary dye: 92.3 %) was higher than Reactive Black 5 (RB5) (single: 92.3 %; binary: 86.7 %), which could be due to monoazo dye (RY) requiring fewer electrons to break the azo bond compared to the diazo dye (RB5). In contrast, the higher decolorization rate of RB5 in binary dye indicated the removal rate was affected by the electron-withdrawing groups in the dye structure. The closed circuit enhanced about 2% of color and 4% of COD removal. Aeration improved the COD removal by 6%, which could be contributed by the mineralization of intermediates. The toxicity of azo dyes was reduced by 11-26% and the degradation pathways were proposed. The dye removal by the plants was increased with a higher contact time. RB5 was more favorable to be uptook by the plant as RB5 holds a higher partial positive charge. 127.39 (RY), 125.82 (RB5), and 58.66 mW/m3 (binary) of maximum power density were generated. The lower power production in treating the binary dye could be due to more electrons being utilized for the degradation of higher dye concentration. Overall, the UFCW-MFC operated in a closed circuit, aerated, and planted conditions achieved the optimum performance in treating binary azo dyes containing wastewater (dye: 87-92%; COD: 91%) compared to the other conditions (dye: 83-92%; COD: 78-87%).
    Matched MeSH terms: Waste Water
  5. Teoh TP, Ong SA, Ho LN, Wong YS, Lutpi NA, Tan SM, et al.
    Environ Sci Pollut Res Int, 2023 Jul;30(35):84397-84411.
    PMID: 37358771 DOI: 10.1007/s11356-023-28362-7
    The enhancement of up-flow constructed wetland-microbial fuel cell (UFCW-MFC) performance in energy retrieval from caffeine containing wastewater has been explored via various operating conditions (hydraulic retention time (HRT), multianode (MA), multicathode current collector (MC), external resistance). The anaerobic decaffeination and COD removal improved by 37 and 12% as the HRT extended from 1 to 5 d. The increment in contact time between the microbes and organic substrates promoted the degradation and contributed to higher power output (3.4-fold), CE (eightfold), and NER (14-16-fold). The MA and MC connections facilitated the electron transfer rate and the degradation rate of organic substrates in the multiple anodic zones, which enhanced the removal efficiency in the anaerobic compartment (Caffeine: 4.2%; COD: 7.4%) and led to higher electricity generation (Power: 4.7-fold) and energy recovery (CE: 1.4-fold; NER: 2.3-2.5-fold) compared to SA. The lower external resistance favored the growth of electrogens and induced higher electron flux, where the best treatment performance and electricity production was obtained when the external resistance approached the internal resistance. Overall, it was noteworthy that the optimum operating conditions were achieved with 5 d HRT, MA, and MC connection along with external resistance of 200 Ω, which significantly outperformed the initial conditions (1 d HRT, SA connection, and 1000 Ω) by 43.7 and 29.8% of caffeine and COD removal in the anaerobic compartment, respectively as well as 14-fold of power generation.
    Matched MeSH terms: Waste Water
  6. Aida AA, Hatamoto M, Yamamoto M, Ono S, Nakamura A, Takahashi M, et al.
    J Biosci Bioeng, 2014 Nov;118(5):540-5.
    PMID: 24930844 DOI: 10.1016/j.jbiosc.2014.04.011
    A novel wastewater treatment system consisting of an up-flow anaerobic sludge blanket (UASB) reactor and a down-flow hanging sponge (DHS) reactor with sulfur-redox reaction was developed for treatment of municipal sewage under low-temperature conditions. In the UASB reactor, a novel phenomenon of anaerobic sulfur oxidation occurred in the absence of oxygen, nitrite and nitrate as electron acceptors. The microorganisms involved in anaerobic sulfur oxidation have not been elucidated. Therefore, in this study, we studied the microbial communities existing in the UASB reactor that probably enhanced anaerobic sulfur oxidation. Sludge samples collected from the UASB reactor before and after sulfur oxidation were used for cloning and terminal restriction fragment length polymorphism (T-RFLP) analysis of the 16S rRNA genes of the bacterial and archaeal domains. The microbial community structures of bacteria and archaea indicated that the genus Smithella and uncultured bacteria within the phylum Caldiserica were the dominant bacteria groups. Methanosaeta spp. was the dominant group of the domain archaea. The T-RFLP analysis, which was consistent with the cloning results, also yielded characteristic fingerprints for bacterial communities, whereas the archaeal community structure yielded stable microbial community. From these results, it can be presumed that these major bacteria groups, genus Smithella and uncultured bacteria within the phylum Caldiserica, probably play an important role in sulfur oxidation in UASB reactors.
    Matched MeSH terms: Waste Water/microbiology; Waste Water/chemistry
  7. Nur Syuhaidah Mohd Aris, Shariff Ibrahim, Borhannuddin Arifin, Yahaya Hawari
    MyJurnal
    Electrocoagulation has proven to be an effective method in the treatment of wastewater. This study evaluated the decolourisation of Palm Oil Mill Effluent (POME) using electrocoagulation (EC) batch reactor by utilising aluminium as sacrificial electrode. POME sample source from a final discharged pond at a palm oil mill was characterised for its colour, chemical oxygen demand (COD), pH, conductivity and turbidity; were found to be 2707 PtCo, 3909 mg/L, 7.63, 12.82 mS/cm and 755 NTU respectively. The respective effects of operating parameters such as pH (3 to 11), applied voltage (5 V to 20 V), plate gap (7.5 to 11.5 cm) and operating time (1 to 8 hours) were investigated. The decolourisation of POME was observed to increase with increasing voltage and operating time. Highest removal efficiency was observed at pH 5, 20 V applied voltage, 9.5 cm plate gap and at 8-hour operating time with colour removal efficiency of 89, 79, 78 and 64% respectively. From the findings, it can be concluded that electrocoagulation process using aluminium electrodes is a reliable technique for the removal of colour from POME.
    Matched MeSH terms: Waste Water
  8. Yaqoob AA, Guerrero-Barajas C, Ibrahim MNM, Umar K, Yaakop AS
    Environ Sci Pollut Res Int, 2022 May;29(22):32913-32928.
    PMID: 35020140 DOI: 10.1007/s11356-021-17444-z
    The present work focused on the utilization of three local wastes, i.e., rambutan (Nephelium lappaceum), langsat (Lansium parasiticum), and mango (Mangifera indica) wastes, as organic substrates in a benthic microbial fuel cell (BMFC) to reduce the cadmium and lead concentrations from synthetic water. Out of the three wastes, the mango waste promoted a maximum current density (87.71 mA/m2) along with 78% and 80% removal efficiencies for Cd2+ and Pb2+, respectively. The bacterial identification proved that Klebsiella pneumoniae, Enterobacter, and Citrobacter were responsible for metal removal and energy generation. In the present work, the BMFC mechanism, current challenges, and future recommendations are also enclosed.
    Matched MeSH terms: Waste Water
  9. Huang L, Wen X, Wang Y, Zou Y, Ma B, Liao X, et al.
    J Environ Sci (China), 2014 Oct 1;26(10):2001-6.
    PMID: 25288543 DOI: 10.1016/j.jes.2014.07.012
    Effects of antibiotic residues on methane production in anaerobic digestion are commonly studied using the following two antibiotic addition methods: (1) adding manure from animals that consume a diet containing antibiotics, and (2) adding antibiotic-free animal manure spiked with antibiotics. This study used chlortetracycline (CTC) as a model antibiotic to examine the effects of the antibiotic addition method on methane production in anaerobic digestion under two different swine wastewater concentrations (0.55 and 0.22mg CTC/g dry manure). The results showed that CTC degradation rate in which manure was directly added at 0.55mg CTC/g (HSPIKE treatment) was lower than the control values and the rest of the treatment groups. Methane production from the HSPIKE treatment was reduced (p<0.05) by 12% during the whole experimental period and 15% during the first 7days. The treatments had no significant effect on the pH and chemical oxygen demand value of the digesters, and the total nitrogen of the 0.55mg CTC/kg manure collected from mediated swine was significantly higher than the other values. Therefore, different methane production under different antibiotic addition methods might be explained by the microbial activity and the concentrations of antibiotic intermediate products and metabolites. Because the primary entry route of veterinary antibiotics into an anaerobic digester is by contaminated animal manure, the most appropriate method for studying antibiotic residue effects on methane production may be using manure from animals that are given a particular antibiotic, rather than adding the antibiotic directly to the anaerobic digester.
    Matched MeSH terms: Waste Water*
  10. Wen X, Mi J, Wang Y, Ma B, Zou Y, Liao X, et al.
    Ecotoxicol Environ Saf, 2019 May 30;173:96-102.
    PMID: 30769208 DOI: 10.1016/j.ecoenv.2019.02.023
    Livestock farms are commonly regarded as the main sources of antibiotic resistance genes (ARGs), emerging pollutants with potential implications for human health, in the environment. This study investigated the occurrence and contamination profiles of nine ARGs of three types from swine manure to receiving environments (soil and water) in Guangdong Province, southern China. All ARGs occurred in 100% of swine manure samples. Moreover, the absolute concentration of total ARGs varied from 3.01 × 108 to 7.18 × 1014 copies/g, which was significantly higher than that in wastewater and manured soil (p  0.05). However, the number of ARGs (ermB, qnrS, acc(6')-Ib, tetM, tetO and tetQ) decreased but were not eliminated by wastewater treatment components (p 
    Matched MeSH terms: Waste Water/microbiology*
  11. Arni LA, Hapiz A, Jawad AH, Abdulhameed AS, ALOthman ZA, Wilson LD
    Int J Biol Macromol, 2023 Sep 01;248:125943.
    PMID: 37482164 DOI: 10.1016/j.ijbiomac.2023.125943
    Herein, a novel nanohybrid composite of magnetic chitosan-salicylaldehyde/nanoclay (MCH-SAL/NCLA) was hydrothermally synthesized for removal of azo dye (acid red 88, AR88) from simulated wastewater. Response surface methodology combined with the Box-Behnken design (RSM-BBD) was applied with 29 experiments to assess the impact of adsorption variables, that include A: % NCLA loading (0-50), B: MCH-SAL/NCLA dose (0.02-0.1 g/100 mL), C: pH (4-10), and time D: (10-90 min) on AR88 dye adsorption. The highest AR88 removal (75.16 %) as per desirability function was attained at the optimum conditions (NCLA loading = 41.8 %, dosage = 0.06 g/100 mL, solution pH = 4, and time = 86. 17 min). The kinetic and equilibrium adsorption results of AR88 by MCH-SAL/NCLA reveal that the process follows the pseudo-first-order and Temkin models. The MCH-SAL/NCLA composite has a maximum adsorption capacity (173.5 mg/g) with the AR88 dye. The adsorption of AR88 onto the MCH-SAL/NCLA surface is determined by a variety of processes, including electrostatic, hydrogen bonding, n-π, and n-π interactions. This research revealed that MCH-SAL/NCLA can be used as a versatile and efficient bio-adsorbent for azo dye removal from contaminated wastewater.
    Matched MeSH terms: Waste Water
  12. Teow YH, Zulkifli E, Wikramasinghe SR
    Water Sci Technol, 2023 Mar;87(5):1056-1071.
    PMID: 36919733 DOI: 10.2166/wst.2023.034
    This research aims to evaluate the performance of PolyCera® Titan membrane for different wastewater treatment. Membrane filtration of several cycles was conducted in understanding the fouling mechanism, fouling propensity, and defouling potential of the PolyCera® Titan which had not been studied by any other researcher before. The PolyCera® Titan membrane is effective for the treatment of textile industry wastewater, palm oil mill effluent (POME), leachate, and semiconductor-industry wastewater. Rejection of methylene blue (MB) and Congo red (CR) was in the range of 78.76-86.04% and 88.89-93.71%, respectively; 94.72-96.50% NaCl, 96.07-97.62% kaolin, and 97.26-97.73% glucose were rejected from synthetic leachate indicating the removal of TDS, TSS, and COD from the leachate, respectively. Standard blocking and complete model were the best models used to explain the PolyCera® Titan membrane fouling mechanism in all types of wastewater treatment processes with a high R2 value. Physical cleaning with the use of distilled water was able to recover the permeate flux with the flux recovery ratio (FRR) value in the range of 79.2-95.22% in the first cycle, 81.20-98.16% in the second cycle, and 86.09-95.96% in the third cycle.
    Matched MeSH terms: Waste Water*
  13. Chiao YH, Sengupta A, Ang MBMY, Chen ST, Haan TY, Almodovar J, et al.
    Polymers (Basel), 2021 Feb 15;13(4).
    PMID: 33672026 DOI: 10.3390/polym13040583
    Forward osmosis (FO) is an important desalination method to produce potable water. It was also used to treat different wastewater streams, including industrial as well as municipal wastewater. Though FO is environmentally benign, energy intensive, and highly efficient; it still suffers from four types of fouling namely: organic fouling, inorganic scaling, biofouling and colloidal fouling or a combination of these types of fouling. Membrane fouling may require simple shear force and physical cleaning for sufficient recovery of membrane performance. Severe fouling may need chemical cleaning, especially when a slimy biofilm or severe microbial colony is formed. Modification of FO membrane through introducing zwitterionic moieties on the membrane surface has been proven to enhance antifouling property. In addition, it could also significantly improve the separation efficiency and longevity of the membrane. Zwitterion moieties can also incorporate in draw solution as electrolytes in FO process. It could be in a form of a monomer or a polymer. Hence, this review comprehensively discussed several methods of inclusion of zwitterionic moieties in FO membrane. These methods include atom transfer radical polymerization (ATRP); second interfacial polymerization (SIP); coating and in situ formation. Furthermore, an attempt was made to understand the mechanism of improvement in FO performance by zwitterionic moieties. Finally, the future prospective of the application of zwitterions in FO has been discussed.
    Matched MeSH terms: Waste Water
  14. Dalu T, Wasserman RJ, Tonkin JD, Mwedzi T, Magoro ML, Weyl OLF
    Sci Total Environ, 2017 Dec 31;607-608:317-325.
    PMID: 28692901 DOI: 10.1016/j.scitotenv.2017.06.267
    Water pollution is a critical management issue, with many rivers and streams draining urban areas being polluted by the disposal of untreated solid waste and wastewater discharge, storm water and agricultural runoff. This has implications for biodiversity, and many rivers in the developing world are now considered compromised. We investigated benthic macroinvertebrate community structure and composition in relation to physico-chemical conditions of the water column and sediments. The study was conducted in an Austral catchment subject to both urban and agricultural pollutants in two different seasons. We assessed whether sediment characteristics were more important drivers of macroinvertebrate community composition than water column characteristics. We expected clear differences in macroinvertebrate community composition and in the associated community metrics due to distinct flow conditions between the two seasons. A combination of multivariate analyses (canonical correspondence analysis (CCA)) and biological indicator analysis were used to examine these patterns. Chironomidae was the most abundant family (>60%) in the upper mainstem river and stream sites. Stream sites were positively associated with CCA axis 2, being characterised by high turbidity and lower pH, salinity, phosphate concentration, channel width and canopy cover. Canopy cover, channel width, substrate embeddedness, phosphate concentration, pH, salinity and turbidity all had a significant effect on macroinvertebrate community composition. Using CCA variation partitioning, water quality was, however, a better predictor of benthic macroinvertebrate composition than sediment chemical conditions. Furthermore, our results suggest that seasonality had little effect on structuring benthic macroinvertebrate communities in this south-eastern zone of South Africa, despite clear changes in sediment chemistry. This likely reflects the relative lack of major variability in water chemistry compared to sediment chemistry between seasons and the relatively muted variability in precipitation between seasons than the more classic Austral temperate climates.
    Matched MeSH terms: Waste Water
  15. Wang CT, Sangeetha T, Yan WM, Chong WT, Saw LH, Zhao F, et al.
    J Environ Sci (China), 2019 Jan;75:163-168.
    PMID: 30473281 DOI: 10.1016/j.jes.2018.03.013
    Single-chamber sediment microbial fuel cells (SSMFCs) have received considerable attention nowadays because of their unique dual-functionality of power generation and enhancement of wastewater treatment performance. Thus, scaling up or upgrading SSMFCs for enhanced and efficient performance is a highly crucial task. Therefore, in order to achieve this goal, an innovative physical technique of using interface layers with four different pore sizes embedded in the middle of SSMFCs was utilized in this study. Experimental results showed that the performance of SSMFCs employing an interface layer was improved regardless of the pore size of the interface material, compared to those without such layers. The use of an interface layer resulted in a positive and significant effect on the performance of SSMFCs because of the effective prevention of oxygen diffusion from the cathode to the anode. Nevertheless, when a smaller pore size interface was utilized, better power performance and COD degradation were observed. A maximum power density of 0.032mW/m2 and COD degradation of 47.3% were obtained in the case of an interface pore size of 0.28μm. The findings in this study are of significance to promote the future practical application of SSMFCs in wastewater treatment plants.
    Matched MeSH terms: Waste Water
  16. Raba’atun Adawiyah Shamsuddin, Wan Ramli Wan Daud, Kim BH, Jamaliah Md. Jahim, Mimi Hani Abu Bakar, Wan Syaidatul Aqma Wan Mohd Noor
    Sains Malaysiana, 2018;47:3043-3049.
    Microbial fuel cells (MFCs) have a high potential application for simultaneous wastewater treatment and electricity
    generation. However, the choice of the electrode material and its design is critical and directly affect their performance.
    As an electrode of MFCs, the anode material with surface modifications is an attractive strategy to improve the power
    output. In this study, stainless steel (SS) and carbon steel (CS) was chosen as a metal anode, while graphite felt (GF)
    was used as a common anode. Heat treatment was performed to convert SS, CS and GF into efficient anodes for MFCs.
    The maximum current density and power density of the MFC-SS were achieved up till 762.14 mA/m2
    and 827.25 mW/m2
    ,
    respectively, which were higher than MFC-CS (641.95 mA/m2
    and 260.14 mW/m2
    ) and MFC-GF (728.30 mA/m2
    and 307.89
    mW/m2
    ). Electrochemical impedance spectroscopy of MFC-SS showed better catalytic activity compared to MFC-CS and
    MFC-GF anode, also supported by cyclic voltammetry test.
    Matched MeSH terms: Waste Water
  17. Mohd Hanafiah Z, Wan Mohtar WHM, Abd Manan TSB, Bachi' NA, Abdullah NA, Abd Hamid HH, et al.
    Chemosphere, 2022 Jan;287(Pt 2):132134.
    PMID: 34517236 DOI: 10.1016/j.chemosphere.2021.132134
    The water stream has been reported to contain non-steroidal anti-inflammatory drugs (NSAIDs), released from households and premises through discharge from Sewage Treatment Plant (STP). This research identifies commonly consumed NSAIDs namely ibuprofen (IBU), diclofenac (DIC), ketoprofen (KET) and naproxen (NAP) in the influent wastewater from two urban catchments (i.e. 2 STPs). We expand our focus to assess the efficiency of monomer (C18) and dimer (HLB) types of sorbents in the solid phase extraction method followed by gas chromatography mass spectrometry (GCMS) analysis and optimize model prediction of NSAIDs in the influent wastewater using I-Optimal design. The ecological risk assessment of the NSAIDs was evaluated. The HLB produced reliable analysis for all NSAIDs under study (STP1: 6.7 × 10-3 mg L-1 to 2.21 × 10-1 mg L-1, STP2: 1.40 × 10-4 mg L-1 to 9.72 × 10-2 mg L-1). The C18 however, selective to NAP. Based on the Pearson proximity matrices, the DICHLB can be a good indicator for IBUHLB (0.565), NAPC18 (0.721), NAPHLB (0.566), and KETHLB (0.747). The optimized model prediction for KET and NAP based on DIC are successfully validated. The risk quotients (RQ) values of NSAIDs were classified as high (RQ > 1), medium (RQ, 0.1-1) and low (RQ, 0.01-0.1) risks. The optimized models are beneficial for major NSAIDs (KET and NAP) monitoring in the influent wastewater of urban domestic area. An upgrade on the existing wastewater treatment infrastructure is recommended to counteract current water security situation.
    Matched MeSH terms: Waste Water
  18. Balaji R, Lee Siang H, Yaakob O, Koh KK, Adnan FAB, Ismail NB, et al.
    Environ Technol, 2018 May;39(9):1102-1114.
    PMID: 28425309 DOI: 10.1080/09593330.2017.1321691
    Waste heat recovery from shipboard machineries could be a potential source for heat treatment of ballast water. Similar to a shipboard schematic arrangement, a laboratory-scale engine-heat exchanger set-up harvesting waste heat from jacket water and exhaust gases was erected to test the level of species' mortalities. Mortalities were also assessed under experimental conditions for cultured and natural plankton communities at laboratory level. Effect of pump impellers on species' mortalities were also tested. Exposures between 60°C and 70°C for 60 sec resulted in 80-100% mortalities. Mortalities due to pump impeller effects were observed in the range of 70-100% for zooplankton. On the laboratory-scale arrangement, >95% mortalities of phytoplankton, zooplankton and bacteria were recorded. It was demonstrated that the temperature of tropical sea waters used as secondary coolant can be raised to cause species' mortalities, employing engine exhaust gases. The results also indicated that pump impeller effects will enhance species' mortalities. The limitations of the shipboard application of this method would be the large ballast volumes, flow rates and time for treatment.
    Matched MeSH terms: Waste Water*
  19. Mohammed JN, Wan Dagang WRZ
    Water Sci Technol, 2019 Nov;80(10):1807-1822.
    PMID: 32144213 DOI: 10.2166/wst.2020.025
    The biodegradability and safety of the bioflocculants make them a potential alternative to non-biodegradable chemical flocculants for wastewater treatment. However, low yield and production cost has been reported to be the limiting factor for large scale bioflocculant production. Although the utilization of cheap nutrient sources is generally appealing for large scale bioproduct production, exploration to meet the demand for them is still low. Although much progress has been achieved at laboratory scale, Industrial production and application of bioflocculant is yet to be viable due to cost of the production medium and low yield. Thus, the prospects of bioflocculant application as an alternative to chemical flocculants is linked to evaluation and utilization of cheap alternative and renewable nutrient sources. This review evaluates the latest literature on the utilization of waste/wastewater as an alternative substitute for conventional expensive nutrient sources. It focuses on the mechanisms and metabolic pathways involved in microbial flocculant synthesis, culture conditions and nutrient requirements for bioflocculant production, pre-treatment, and also optimization of waste substrate for bioflocculant synthesis and bioflocculant production from waste and their efficiencies. Utilization of wastes as a microbial nutrient source drastically reduces the cost of bioflocculant production and increases the appeal of bioflocculant as a cost-effective alternative to chemical flocculants.
    Matched MeSH terms: Waste Water*
  20. Nor Habibah Mohd Rosli, Wan Azlina Ahmad
    Science Letters, 2018;12(1):30-43.
    MyJurnal
    Wastewater from industrial plants such as textile, electroplating and petroleum refineries contains various substances that tend to increase the chemical oxygen demand (COD) of the wastewater. Therefore, it is desired to develop a process suitable for treating the wastewater to meet the regulatory limits. This work was conducted to investigate the potential of adapted single culture of A. baumannii, A.calcoaceticus and C.cellulans in reducing COD in real textile wastewater. The study was carried out by adapting each single culture (10% inoculums) to increasing concentration (1%, 2.5 %, 5%, 7.5 % and 10%) of textile wastewater. Then it was introduced to the textile effluent without pH adjustment for five days and the COD values were measured. The textile wastewater was supplemented with pineapple waste for bacterial growth and metabolism. Results obtained showed that pineapple waste was a good nutrient supply for the growth of the bacteria and the best concentration of textile wastewater for adaptation was at 2.5%. The results also showed that A.calcoaceticus shows highest COD reduction with 67% removal whereas A. baumannii and C.cellulans with 60% and 58% removal respectively. The outcome supported that the single culture used in this study showed considerably high reduction of COD from real textile wastewater.
    Matched MeSH terms: Waste Water
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links