Displaying publications 21 - 28 of 28 in total

Abstract:
Sort:
  1. George E, Teh LK, Tan J, Lai MI, Wong L
    Pathology, 2013 01;45(1):62-5.
    PMID: 23222244 DOI: 10.1097/PAT.0b013e32835af7c1
    AIMS: Classical carriers of β-thalassaemia are identified by a raised HbA2 level. Earlier studies indicated that the Filipino β-deletion has high raised HbA2 levels. The introduction of automated high performance liquid chromatography (HPLC) for thalassaemia screening is an important advance in technology for haematology laboratories. The BioRad Variant II Hb analyser is a common instrument used to quantify HbA2 levels in thalassaemia screening. This study aimed to determine HbA2 levels in carriers of Filipino β-mutation using the BioRad Variant II Hb analyser.

    METHODS: The Filipino β-deletion was identified using gap-polymerase chain reaction (PCR) in the parents of transfusion dependent β-thalassaemia patients who were homozygous for the Filipino β-deletion in the indigenous population of Sabah, Malaysia. Hb subtypes were quantified on the BioRad Variant II Hb analyser. Concurrent α-thalassaemia was identified by multiplex gap-PCR for deletions and amplification refractory mutation system (ARMS)-PCR for non-deletional mutations.

    RESULTS: The mean HbA2 level for Filipino β-thalassaemia trait was 5.9 ± 0.47 and with coinheritance of α-thalassaemia was 6.3 ± 0.44 (-α heterozygous) and 6.7 ± 0.36 (-α homozygous). The HbA2 levels were all >4% in keeping with the findings of classical β-thalassaemia trait and significantly higher than levels seen in non-deletional forms of β-thalassaemia.

    CONCLUSION: The HbA2 level measured on the BioRad Variant II Hb analyser was lower than the level in the first description of the Filipino β-thalassaemia. β-thalassaemia trait with coinheritance of α-thalassaemia (-α) is associated with significantly higher HbA2 level.

    Matched MeSH terms: beta-Thalassemia/diagnosis
  2. Chen JJ, Tan JA, Chua KH, Tan PC, George E
    BMJ Open, 2015 Jul 22;5(7):e007648.
    PMID: 26201722 DOI: 10.1136/bmjopen-2015-007648
    OBJECTIVES: Single nucleotide polymorphism (SNP) with a mutation can be used to identify the presence of the paternally-inherited wild-type or mutant allele as result of the inheritance of either allele in the fetus and allows the prediction of the fetal genotype. This study aims to identify paternal SNPs located at the flanking regions upstream or downstream from the β-globin gene mutations at CD41/42 (HBB:c.127_130delCTTT), IVS1-5 (HBB:c.92+5G>C) and IVS2-654 (HBB:c.316-197C>T) using free-circulating fetal DNA.

    SETTING: Haematology Lab, Department of Biomedical Science, University of Malaya.

    PARTICIPANTS: Eight couples characterised as β-thalassaemia carriers where both partners posed the same β-globin gene mutations at CD41/42, IVS1-5 and IVS2-654, were recruited in this study.

    OUTCOME MEASURES: Genotyping was performed by allele specific-PCR and the locations of SNPs were identified after sequencing alignment.

    RESULTS: Genotype analysis revealed that at least one paternal SNP was present for each of the couples. Amplification on free-circulating DNA revealed that the paternal mutant allele of SNP was present in three fcDNA. Thus, the fetuses may be β-thalassaemia carriers or β-thalassaemia major. Paternal wild-type alleles of SNP were present in the remaining five fcDNA samples, thus indicating that the fetal genotypes would not be homozygous mutants.

    CONCLUSIONS: This preliminary research demonstrates that paternal allele of SNP can be used as a non-invasive prenatal diagnosis approach for at-risk couples to determine the β-thalassaemia status of the fetus.

    Matched MeSH terms: beta-Thalassemia/diagnosis*
  3. Chandran R, Ainoon O, Anson I, Anne J, Cheong SK
    Med J Malaysia, 1993 Sep;48(3):341-4.
    PMID: 8183149
    DNA analysis for the diagnosis of beta-thalassaemia is a relatively new technique in Malaysia. This, combined with chorionic villus sampling, has enabled us to offer prenatal diagnosis in the first trimester for this common condition. To the best of our knowledge, this has not hitherto been reported in Malaysia.
    Matched MeSH terms: beta-Thalassemia/diagnosis*
  4. Chan YF, Tan KL, Wong YC, Wee YC, Yap SF, Tan JAMA
    PMID: 12041567
    Molecular characterization and prenatal diagnosis for beta-thalassemia can be carried out using the Amplification Refractory Mutation System (ARMS). The ARMS is a rapid and direct molecular technique in which beta-thalassemia mutations are visualized immediately after DNA amplification by gel electrophoresis. In the University of Malaya Medical Center, molecular characterization and prenatal diagnosis for beta-thalassemia is carried out using ARMS for about 96% of the Chinese and 84.6% of the Malay patients. The remaining 4% and 15.4% of the uncharacterized mutations in the Chinese and Malay patients respectively are detected using DNA sequencing. DNA sequencing is an accurate technique but it is more time-consuming and expensive compared with the ARMS. The ARMS for the rare Chinese beta-mutations at position -29 (A-->G) and the ATG-->AGG base substitution at the initiator codon for translation in the beta-gene was developed. In the Malays, ARMS was optimized for the beta-mutations at codon 8/9 (+G), Cap (+1) (A-->C) and the AATAAA-->AATAGA base substitution in the polyadenylation region of the beta-gene. The ARMS protocols were developed by optimization of the parameters for DNA amplification to ensure sensitivity, specificity and reproducibility. ARMS primers (sequences and concentration), magnesium chloride concentration, Taq DNA polymerase and PCR cycling parameters were optimized for the specific amplification of each rare beta-thalassemia mutation. The newly-developed ARMS for the 5 rare beta-thalassemia mutations in the Chinese and Malays in Malaysia will allow for more rapid and cost-effective molecular characterization and prenatal diagnosis for beta-thalassemia in Malaysia.
    Matched MeSH terms: beta-Thalassemia/diagnosis
  5. Azma RZ, Othman A, Azman N, Alauddin H, Ithnin A, Yusof N, et al.
    Malays J Pathol, 2012 Jun;34(1):57-62.
    PMID: 22870600
    Haemoglobin Constant Spring (Hb CS) mutation and single gene deletions are common underlying genetic abnormalities for alpha thalassaemias. Co-inheritance of deletional and non-deletional alpha (alpha) thalassaemias may result in various thalassaemia syndromes. Concomitant co-inheritance with beta (beta) and delta (delta) gene abnormalities would result in improved clinical phenotype. We report here a 33-year-old male patient who was admitted with dengue haemorrhagic fever, with a background history of Grave's disease, incidentally noted to have mild hypochromic microcytic red cell indices. Physical examination revealed no thalassaemic features or hepatosplenomegaly. His full blood picture showed hypochromic microcytic red cells with normal haemoglobin (Hb) level. Quantitation of Hb using high performance liquid chromatography (HPLC) and capillary electrophoresis (CE) revealed raised Hb F, normal Hb A2 and Hb A levels. There was also small peak of Hb CS noted in CE. H inclusions was negative. Kleihauer test was positive with heterocellular distribution of Hb F among the red cells. DNA analysis for alpha globin gene mutations showed a single -alpha(-3.7) deletion and Hb CS mutation. These findings were suggestive of compound heterozygosity of Hb CS and a single -alpha(-3.7) deletion with a concomitant heterozygous deltabeta thalassaemia. Co-inheritance of Hb CS and a single -alpha(-3.7) deletion is expected to result at the very least in a clinical phenotype similar to that of two alpha genes deletion. However we demonstrate here a phenotypic modification of alpha thalassemia presumptively as a result of co-inheritance with deltabeta chain abnormality as suggested by the high Hb F level.
    Matched MeSH terms: beta-Thalassemia/diagnosis*
  6. Alauddin H, Langa M, Mohd Yusoff M, Raja Sabudin RZA, Ithnin A, Abdul Razak NF, et al.
    Malays J Pathol, 2017 Apr;39(1):17-23.
    PMID: 28413201 MyJurnal
    INTRODUCTION: Haemoglobin Bart's (Hb Bart's) level is associated with α-thalassaemia traits in neonates, enabling early diagnosis of α-thalassaemia. The study aimed to detect and quantify the Hb Bart's using Cord Blood (CB) and CE Neonat Fast Hb (NF) progammes on fresh and dried blood spot (DBS) specimen respectively by capillary electrophoresis (CE).

    METHODS: Capillarys Hemoglobin (E) Kit (for CB) and Capillarys Neonat Hb Kit (for NF) were used to detect and quantify Hb Bart's by CE in fresh cord blood and dried blood spot (DBS) specimens respectively. High performance liquid chromatography (HPLC) using the β-Thal Short Programme was also performed concurrently with CE analysis. Confirmation was obtained by multiplex ARMS Gap PCR.

    RESULTS: This study was performed on 600 neonates. 32/600 (5.3%) samples showed presence of Hb Bart's peak using the NF programme while 33/600 (5.5%) were positive with CB programme and HPLC methods. The range of Hb Bart's using NF programme and CB programme were (0.5-4.1%) and (0.5-7.1%), respectively. Molecular analysis confirmed all positive samples possessed α-thalassaemia genetic mutations, with 23/33 cases being αα/--SEA, four -α3.7/-α3.7, two αα/-α3.7 and three αα/ααCS. Fifty Hb Bart's negative samples were randomly tested for α-genotypes, three were also found to be positive for α-globin gene mutations. Thus, resulting in sensitivity of 91.7% and 88.9% and specificity of 100% for the Capillarys Cord Blood programme and Capillarys Neonat Fast programme respectively.

    CONCLUSION: Both CE programmes using fresh or dried cord blood were useful as a screening tool for α-thalassaemia in newborns. All methods show the same specificity (100%) with variable, but acceptable sensitivities in the detection of Hb Bart.
    Matched MeSH terms: beta-Thalassemia/diagnosis
  7. Abdullah UYH, Ibrahim HM, Mahmud NB, Salleh MZ, Teh LK, Noorizhab MNFB, et al.
    Hemoglobin, 2020 May;44(3):184-189.
    PMID: 32586164 DOI: 10.1080/03630269.2020.1781652
    Effective prevention of β-thalassemia (β-thal) requires strategies to detect at-risk couples. This is the first study attempting to assess the prevalence of silent β-thal carriers in the Malaysian population. Hematological and clinical parameters were evaluated in healthy blood donors and patients with β-thal trait, Hb E (HBB: c.79G>A)/β-thal and β-thal major (β-TM). β-Globin gene sequencing was carried out for 52 healthy blood donors, 48 patients with Hb E/β-thal, 34 patients with β-TM and 38 patients with β-thal trait. The prevalence of silent β-thal carrier phenotypes found in 25.0% of healthy Malaysian blood donors indicates the need for clinician's awareness of this type in evaluating β-thal in Malaysia. Patients with β-TM present at a significantly younger age at initial diagnosis and require more blood transfusions compared to those with Hb E/β-thal. The time at which genomic DNA was extracted after blood collection, particularly from patients with β-TM and Hb E/β-thal, was found to be an important determinant of the quality of the results of the β-globin sequencing. Public education and communication campaigns are recommended as apparently healthy individuals have few or no symptoms and normal or borderline hematological parameters. β-Globin gene mutation characterization and screening for silent β-thal carriers in regions prevalent with β-thal are recommended to develop more effective genetic counseling and management of β-thal.
    Matched MeSH terms: beta-Thalassemia/diagnosis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links