Displaying publications 21 - 40 of 60 in total

Abstract:
Sort:
  1. Yuniati L, Lauriola A, Gerritsen M, Abreu S, Ni E, Tesoriero C, et al.
    Cell Rep, 2020 05 19;31(7):107664.
    PMID: 32433973 DOI: 10.1016/j.celrep.2020.107664
    Cullin-RING ligases (CRLs) control key cellular processes by promoting ubiquitylation of a multitude of soluble cytosolic and nuclear proteins. Subsets of CRL complexes are recruited and activated locally at cellular membranes; however, few CRL functions and substrates at these distinct cellular compartments are known. Here, we use a proteomic screen to identify proteins that are ubiquitylated at cellular membranes and found that Lunapark, an endoplasmic reticulum (ER)-shaping protein localized to ER three-way junctions, is ubiquitylated by the CRL3KLHL12 ubiquitin ligase. We demonstrate that Lunapark interacts with mechanistic target of rapamycin complex-1 (mTORC1), a central cellular regulator that coordinates growth and metabolism with environmental conditions. We show that mTORC1 binds Lunapark specifically at three-way junctions, and lysosomes, where mTORC1 is activated, make contact with three-way junctions where Lunapark resides. Inhibition of Lunapark ubiquitylation results in neurodevelopmental defects indicating that KLHL12-dependent ubiquitylation of Lunapark is required for normal growth and development.
    Matched MeSH terms: Endoplasmic Reticulum/metabolism*
  2. Pévet P, Yadav M
    Cell Tissue Res, 1980;210(3):417-33.
    PMID: 7407847
    The ultrastructure of the pinealocytes of the Malaysian rat (Rattus sabanus), a mammal inhabiting a zone near the equator where the annual variations of daylength are inconspicuous, was examined and compared with that of pinealocytes of other mammals. On the basis of the presence of granular vesicles, only one population of pinealocytes was found. A large number of granular vesicles and vesicle-crowned rodlets is characteristic of the pinealocytes of this equatorial species. Vesicle-crowned rodlets are especially numerous in the endings of the pinealocyte processes and; they most often found in direct topographical connection with the perivascular spaces. The physiological significance of the presence of such large amounts of vesicle-crowned rodlets and of the secretory process characterized by the formation of granular vesicles is discussed.
    Matched MeSH terms: Endoplasmic Reticulum/ultrastructure
  3. Yeo KS, Tan MC, Lim YY, Ea CK
    Sci Rep, 2017 11 13;7(1):15407.
    PMID: 29133832 DOI: 10.1038/s41598-017-15676-z
    Jumonji C (JmjC) domain-containing proteins have been shown to regulate cellular processes by hydroxylating or demethylating histone and non-histone targets. JMJD8 belongs to the JmjC domain-only family that was recently shown to be involved in angiogenesis and TNF-induced NF-κB signaling. Here, we employed bioinformatic analysis and immunofluorescence microscopy to examine the physiological properties of JMJD8. We demonstrated that JMJD8 localizes to the lumen of endoplasmic reticulum and that JMJD8 forms dimers or oligomers in vivo. Furthermore, we identified potential JMJD8-interacting proteins that are known to regulate protein complex assembly and protein folding. Taken together, this work demonstrates that JMJD8 is the first JmjC domain-containing protein found in the lumen of the endoplasmic reticulum that may function in protein complex assembly and protein folding.
    Matched MeSH terms: Endoplasmic Reticulum/metabolism*
  4. Tham SY, Loh HS, Mai CW, Fu JY
    Int J Mol Sci, 2019 Jan 16;20(2).
    PMID: 30654580 DOI: 10.3390/ijms20020372
    Malignancy often arises from sophisticated defects in the intricate molecular mechanisms of cells, rendering a complicated molecular ground to effectively target cancers. Resistance toward cell death and enhancement of cell survival are the common adaptations in cancer due to its infinite proliferative capacity. Existing cancer treatment strategies that target a single molecular pathway or cancer hallmark fail to fully resolve the problem. Hence, multitargeted anticancer agents that can concurrently target cell death and survival pathways are seen as a promising alternative to treat cancer. Tocotrienols, a minor constituent of the vitamin E family that have previously been reported to induce various cell death mechanisms and target several key survival pathways, could be an effective anticancer agent. This review puts forward the potential application of tocotrienols as an anticancer treatment from a perspective of influencing the life or death decision of cancer cells. The cell death mechanisms elicited by tocotrienols, particularly apoptosis and autophagy, are highlighted. The influences of several cell survival signaling pathways in shaping cancer cell death, particularly NF-κB, PI3K/Akt, MAPK, and Wnt, are also reviewed. This review may stimulate further mechanistic researches and foster clinical applications of tocotrienols via rational drug designs.
    Matched MeSH terms: Endoplasmic Reticulum Stress/drug effects
  5. Md Nesran ZN, Shafie NH, Ishak AH, Mohd Esa N, Ismail A, Md Tohid SF
    Biomed Res Int, 2019;2019:3480569.
    PMID: 31930117 DOI: 10.1155/2019/3480569
    Epigallocatechin-3-gallate (EGCG) is the most abundant bioactive polyphenolic compound among the green tea constituents and has been identified as a potential anticancer agent in colorectal cancer (CRC) studies. This study was aimed to determine the mechanism of actions of EGCG when targeting the endoplasmic reticulum (ER) stress pathway in CRC. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay was performed on HT-29 cell line and normal cell line (3T3) to determine the EGCG toxicity. Next, western blot was done to observe the expression of the related proteins for the ER stress pathway. The Caspase 3/7 assay was performed to determine the apoptosis induced by EGCG. The results demonstrated that EGCG treatment was toxic to the HT-29 cell line. EGCG induced ER stress in HT-29 by upregulating immunoglobulin-binding (BiP), PKR-like endoplasmic reticulum kinase (PERK), phosphorylation of eukaryotic initiation factor 2 alpha subunit (eIF2α), activating transcription 4 (ATF4), and inositol-requiring kinase 1 alpha (IRE1α). Apoptosis was induced in HT-29 cells after the EGCG treatment, as shown by the Caspase 3/7 activity. This study indicates that green tea EGCG has the potential to inhibit colorectal cancer cells through the induction of ER stress.
    Matched MeSH terms: Endoplasmic Reticulum/drug effects; Endoplasmic Reticulum/metabolism; Endoplasmic Reticulum Stress/drug effects*
  6. Suparji NS, Chan G, Sapili H, Arshad NM, In LL, Awang K, et al.
    PLoS One, 2016;11(3):e0151472.
    PMID: 26974436 DOI: 10.1371/journal.pone.0151472
    Geranylated 4-phenylcoumarins, DMDP-1 & -2 isolated from Mesua elegans were investigated for anticancer potential against human prostate cancer cells. Treatment with DMDP-1 & -2 resulted in cell death in a time and dose dependent manner in an MTT assay on all cancer cell lines tested with the exception of lung adenocarcinoma cells. DMDP-1 showed highest cytotoxic efficacy in PC-3 cells while DMDP-2 was most potent in DU 145 cells. Flow cytometry indicated that both coumarins were successful to induce programmed cell death after 24 h treatment. Elucidation on the mode-of-action via protein arrays and western blotting demonstrated death induced without any significant expressions of caspases, Bcl-2 family proteins and cleaved PARP, thus suggesting the involvement of caspase-independent pathways. In identifying autophagy, analysis of GFP-LC3 showed increased punctate in PC-3 cells pre-treated with CQ and treated with DMDP-1. In these cells decreased expression of autophagosome protein, p62 and cathepsin B further confirmed autophagy. In contrary, the DU 145 cells pre-treated with CQ and treated with DMDP-2 has reduced GFP-LC3 punctate although the number of cells with obvious GFP-LC3 puncta was significantly increased in the inhibitor-treated cells. The increase level of p62 suggested leakage of cathepsin B into the cytosol to trigger potential downstream death mediators. This correlated with increased expression of cathepsin B and reduced expression after treatment with its inhibitor, CA074. Also auto-degradation of calpain-2 upon treatment with DMDP-1 &-2 and its inhibitor alone, calpeptin compared with the combination treatment, further confirmed involvement of calpain-2 in PC-3 and DU 145 cells. Treatment with DMDP-1 & -2 also showed up-regulation of total and phosphorylated p53 levels in a time dependent manner. Hence, DMDP-1 & -2 showed ability to activate multiple death pathways involving autophagy, lysosomal and endoplasmic reticulum death proteins which could potentially be manipulated to develop anti-cancer therapy in apoptosis resistant cells.
    Matched MeSH terms: Endoplasmic Reticulum/drug effects; Endoplasmic Reticulum/metabolism
  7. Pinkham K, Park DJ, Hashemiaghdam A, Kirov AB, Adam I, Rosiak K, et al.
    Stem Cell Reports, 2019 04 09;12(4):712-727.
    PMID: 30930246 DOI: 10.1016/j.stemcr.2019.02.012
    Inherent plasticity and various survival cues allow glioblastoma stem-like cells (GSCs) to survive and proliferate under intrinsic and extrinsic stress conditions. Here, we report that GSCs depend on the adaptive activation of ER stress and subsequent activation of lipogenesis and particularly stearoyl CoA desaturase (SCD1), which promotes ER homeostasis, cytoprotection, and tumor initiation. Pharmacological targeting of SCD1 is particularly toxic due to the accumulation of saturated fatty acids, which exacerbates ER stress, triggers apoptosis, impairs RAD51-mediated DNA repair, and achieves a remarkable therapeutic outcome with 25%-100% cure rate in xenograft mouse models. Mechanistically, divergent cell fates under varying levels of ER stress are primarily controlled by the ER sensor IRE1, which either promotes SCD1 transcriptional activation or converts to apoptotic signaling when SCD1 activity is impaired. Taken together, the dependence of GSCs on fatty acid desaturation presents an exploitable vulnerability to target glioblastoma.
    Matched MeSH terms: Endoplasmic Reticulum/metabolism*; Endoplasmic Reticulum Stress
  8. Liu X, Zhang R, Shi H, Li X, Li Y, Taha A, et al.
    Mol Med Rep, 2018 05;17(5):7227-7237.
    PMID: 29568864 DOI: 10.3892/mmr.2018.8791
    Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in skin, resulting in photoaging. Natural botanicals have gained considerable attention due to their beneficial protection against the harmful effects of UV irradiation. The present study aimed to evaluate the ability of curcumin (Cur) to protect human dermal fibroblasts (HDFs) against ultraviolet A (UVA)‑induced photoaging. HDFs were treated with 0‑10 µM Cur for 2 h and subsequently exposed to various intensities of UVA irradiation. The cell viability and apoptotic rate of HDFs were investigated by MTT and flow cytometry assays, respectively. The effect of UVA and Cur on the formation of reactive oxygen species (ROS), malondialdehyde levels, which are an indicator of ROS, and the levels/activity of antioxidative defense proteins, including glutathione, superoxide dismutase and catalase, were evaluated using 2',7'-dichlorofluorescin diacetate and commercial assay kits. Furthermore, western blotting was performed to determine the levels of proteins associated with endoplasmic reticulum (ER) stress, the apoptotic pathway, inflammation and the collagen synthesis pathway. The results demonstrated that Cur reduced the accumulation of ROS and restored the activity of antioxidant defense enzymes, indicating that Cur minimized the damage induced by UVA irradiation in HDFs. Furthermore, western blot analysis demonstrated that Cur may attenuate UVA‑induced ER stress, inflammation and apoptotic signaling by downregulating the protein expression of glucose‑regulated protein 78, C/EBP‑homologous protein, nuclear factor‑κB and cleaved caspase‑3, while upregulating the expression of Bcl‑2. Additionally, it was demonstrated that Cur may regulate collagen metabolism by decreasing the protein expression of matrix metalloproteinase (MMP)‑1 and MMP‑3, and may promote the repair of cells damaged as a result of UVA irradiation through increasing the protein expression of transforming growth factor‑β (TGF‑β) and Smad2/3, and decreasing the expression of the TGF‑β inhibitor, Smad7. In conclusion, the results of the present study indicate the potential benefits of Cur for the protection of HDFs against UVA‑induced photoaging and highlight the potential for the application of Cur in skin photoprotection.
    Matched MeSH terms: Endoplasmic Reticulum Stress/drug effects; Endoplasmic Reticulum Stress/radiation effects
  9. Lim SM, Mohamad Hanif EA, Chin SF
    Cell Biosci, 2021 Mar 20;11(1):56.
    PMID: 33743781 DOI: 10.1186/s13578-021-00570-z
    Autophagy is a conserved cellular process required to maintain homeostasis. The hallmark of autophagy is the formation of a phagophore that engulfs cytosolic materials for degradation and recycling to synthesize essential components. Basal autophagy is constitutively active under normal conditions and it could be further induced by physiological stimuli such as hypoxia, nutrient starvation, endoplasmic reticulum stress,energy depletion, hormonal stimulation and pharmacological treatment. In cancer, autophagy is highly context-specific depending on the cell type, tumour microenvironment, disease stage and external stimuli. Recently, the emerging role of autophagy as a double-edged sword in cancer has gained much attention. On one hand, autophagy suppresses malignant transformation by limiting the production of reactive oxygen species and DNA damage during tumour development. Subsequently, autophagy evolved to support the survival of cancer cells and promotes the tumourigenicity of cancer stem cells at established sites. Hence, autophagy is an attractive target for cancer therapeutics and researchers have been exploiting the use of autophagy modulators as adjuvant therapy. In this review, we present a summary of autophagy mechanism and controlling pathways, with emphasis on the dual-role of autophagy (double-edged sword) in cancer. This is followed by an overview of the autophagy modulation for cancer treatment and is concluded by a discussion on the current perspectives and future outlook of autophagy exploitation for precision medicine.
    Matched MeSH terms: Endoplasmic Reticulum Stress
  10. Sicari D, Centonze FG, Pineau R, Le Reste PJ, Negroni L, Chat S, et al.
    EMBO Rep, 2021 May 05;22(5):e51412.
    PMID: 33710763 DOI: 10.15252/embr.202051412
    In the past decades, many studies reported the presence of endoplasmic reticulum (ER)-resident proteins in the cytosol. However, the mechanisms by which these proteins relocate and whether they exert cytosolic functions remain unknown. We find that a subset of ER luminal proteins accumulates in the cytosol of glioblastoma cells isolated from mouse and human tumors. In cultured cells, ER protein reflux to the cytosol occurs upon ER proteostasis perturbation. Using the ER luminal protein anterior gradient 2 (AGR2) as a proof of concept, we tested whether the refluxed proteins gain new functions in the cytosol. We find that refluxed, cytosolic AGR2 binds and inhibits the tumor suppressor p53. These data suggest that ER reflux constitutes an ER surveillance mechanism to relieve the ER from its contents upon stress, providing a selective advantage to tumor cells through gain-of-cytosolic functions-a phenomenon we name ER to Cytosol Signaling (ERCYS).
    Matched MeSH terms: Endoplasmic Reticulum
  11. AlMatar M, Makky EA
    3 Biotech, 2016 Jun;6(1):4.
    PMID: 28330073 DOI: 10.1007/s13205-015-0323-4
    Fungi are important natural product sources that have enormous potential for the production of novel compounds for use in pharmacology, agricultural applications and industry. Compared with other natural sources such as plants, fungi are highly diverse but understudied. However, research on Cladosporium cladosporioides revealed the existence of bioactive products such as p-methylbenzoic acid, ergosterol peroxide (EP) and calphostin C as well as enzymes including pectin methylesterase (PME), polygalacturonase (PG) and chlorpyrifos hydrolase. p-Methylbenzoic acid has ability to synthesise 1,5-benzodiazepine and its derivatives, polyethylene terephthalate and eicosapentaenoic acid. EP has anticancer, antiangiogenic, antibacterial, anti-oxidative and immunosuppressive properties. Calphostin C inhibits protein kinase C (PKC) by inactivating both PKC-epsilon and PKC-alpha. In addition, calphostin C stimulates apoptosis in WEHI-231 cells and vascular smooth muscle cells. Based on the stimulation of endoplasmic reticulum stress in some types of cancer, calphostin C has also been evaluated as a potential photodynamic therapeutic agent. Methylesterase (PME) and PG have garnered attention because of their usage in the food processing industry and significant physiological function in plants. Chlorpyrifos, a human, animal and plant toxin, can be degraded and eliminated by chlorpyrifos hydrolase.
    Matched MeSH terms: Endoplasmic Reticulum Stress
  12. Nuriliani A, Nakahata Y, Ahmed R, Khaidizar FD, Matsui T, Bessho Y
    Genes Cells, 2020 Aug;25(8):593-602.
    PMID: 32533606 DOI: 10.1111/gtc.12794
    A main feature of aged organisms is the accumulation of senescent cells. Accumulated senescent cells, especially stress-induced premature senescent cells, in aged organisms lead to the decline of the regenerative potential and function of tissues. We recently reported that the over-expression of NAMPT, which is the rate-limiting enzyme in mammalian NAD+ salvage pathway, delays replicative senescence in vitro. However, whether Nampt-overexpressing cells are tolerant of stress-induced premature senescence remains unknown. Here, we show that primary mouse embryonic fibroblasts derived from Nampt-overexpressing transgenic mice (Nampt Tg-MEF cells) possess resistance against stress-induced premature senescence in vitro. We found that higher oxidative or endoplasmic reticulum (ER) stress is required to induce premature senescence in Nampt Tg-MEF cells compared to wild-type cells. Moreover, we found that Nampt Tg-MEF cells show acute expression of unfolded protein response (UPR)-related genes, which in turn would have helped to restore proteostasis and avoid cellular senescence. Our results demonstrate that NAMPT/NAD+ axis functions to protect cells not only from replicative senescence, but also from stress-induced premature senescence in vitro. We anticipate that in vivo activation of NAMPT activity or increment of NAD+ would protect tissues from the accumulation of premature senescent cells, thereby maintaining healthy aging.
    Matched MeSH terms: Endoplasmic Reticulum Stress/physiology
  13. Bhowmick S, Chakravarty C, Sellathamby S, Lal SK
    Arch Virol, 2017 Apr;162(4):919-929.
    PMID: 27942972 DOI: 10.1007/s00705-016-3153-8
    The matrix protein 2 (M2) is a spliced product of segment 7 genome of influenza A virus. Previous studies indicate its role in uncoating of the viral ribonucleoprotein complex during viral entry and in membrane scission while budding. Despite its crucial role in the viral life cycle, little is known about its subcellular distribution and dynamics. In this study, we have shown that the M2 protein is translocated from the membrane to the cytoplasm by a retrograde route via endosomes and the Golgi network. It utilizes retromer cargo while moving from the endosome to the trans-Golgi network and prevents endosome fusion with the lysosome. Further, M2 interacts with the endoplasmic-reticulum-resident AAA-ATPase p97 for its release into the cytoplasm. Our study also revealed that the M2 protein in the cellular milieu does not undergo ubiquitin-mediated proteasomal degradation. The migration of M2 through this pathway inside the infected cell suggests possible new roles that the M2 protein may have in the host cytoplasm, apart from its previously described functions.
    Matched MeSH terms: Endoplasmic Reticulum/metabolism*
  14. Merlot AM, Shafie NH, Yu Y, Richardson V, Jansson PJ, Sahni S, et al.
    Biochem Pharmacol, 2016 06 01;109:27-47.
    PMID: 27059255 DOI: 10.1016/j.bcp.2016.04.001
    The endoplasmic reticulum (ER) plays a major role in the synthesis, maturation and folding of proteins and is a critical calcium (Ca(2+)) reservoir. Cellular stresses lead to an overwhelming accumulation of misfolded proteins in the ER, leading to ER stress and the activation of the unfolded protein response (UPR). In the stressful tumor microenvironment, the UPR maintains ER homeostasis and enables tumor survival. Thus, a novel strategy for cancer therapeutics is to overcome chronically activated ER stress by triggering pro-apoptotic pathways of the UPR. Considering this, the mechanisms by which the novel anti-cancer agent, Dp44mT, can target the ER stress response pathways were investigated in multiple cell-types. Our results demonstrate that the cytotoxic chelator, Dp44mT, which forms redox-active metal complexes, significantly: (1) increased ER stress-associated pro-apoptotic signaling molecules (i.e., p-eIF2α, ATF4, CHOP); (2) increased IRE1α phosphorylation (p-IRE1α) and XBP1 mRNA splicing; (3) reduced expression of ER stress-associated cell survival signaling molecules (e.g., XBP1s and p58(IPK)); (4) increased cleavage of the transcription factor, ATF6, which enhances expression of its downstream targets (i.e., CHOP and BiP); and (5) increased phosphorylation of CaMKII that induces apoptosis. In contrast to Dp44mT, the iron chelator, DFO, which forms redox-inactive iron complexes, did not affect BiP, p-IRE1α, XBP1 or p58(IPK) levels. This study highlights the ability of a novel cancer therapeutic (i.e., Dp44mT) to target the pro-apoptotic functions of the UPR via cellular metal sequestration and redox stress. Assessment of ER stress-mediated apoptosis is fundamental to the understanding of the pharmacology of chelation for cancer treatment.
    Matched MeSH terms: Endoplasmic Reticulum/drug effects; Endoplasmic Reticulum/metabolism; Endoplasmic Reticulum Stress/drug effects*; Endoplasmic Reticulum Stress/genetics
  15. Rajikin MH, Latif ES, Mar MR, Mat Top AG, Mokhtar NM
    Med Sci Monit, 2009 Dec;15(12):BR378-83.
    PMID: 19946227
    Previous studies have shown that nicotine enhances oxidative DNA damage and leads to increased lipid peroxidation, which affects embryo development. The present study investigated the effect of daily supplementation of gamma-tocotrienol on oocytes of nicotine-treated mice.
    Matched MeSH terms: Endoplasmic Reticulum, Rough/drug effects; Endoplasmic Reticulum, Rough/ultrastructure
  16. Wong WL, Brennan GP, Halton DW, Lim LH
    Parasitology, 2006 Mar;132(Pt 3):427-38.
    PMID: 16309563
    A study of the anterior adhesive apparatus (head organs) of Bravohollisia gussevi Lim, 1995 was carried out using light and electron microscopy. The anterior adhesive apparatus or head organs in B. gussevi comprise 6 circular openings or apertures in the antero-lateral region, associated pits lined with specialized microvillous tegument that differ from the general body tegument, a bundle of ducts, and uninucleate gland cells located lateral to the pharynx. The uninucleate glands of the anterior adhesive apparatus (head organs) comprise 2 types of cells, one kind of cell producing rod-like bodies (S1) and the other oval bodies (S2). The S1 bodies are filled with numerous, less electron-dense vesicles in an electron-dense matrix, while S2 bodies have no vesicles but contain a more homogeneous electron-dense matrix. Interlinking band-like structures were observed between S1 bodies. Similar band-like structures were found between S2 bodies. The formation of S1 bodies was followed by transmission electron microscopy. However, the formation of S2 bodies was unclear and could not be resolved. Uniciliated structures were also observed around the openings of the anterior adhesive apparatus. Each uniciliated structure is usually associated with an opening of a gland cell producing granular, electron-dense, secretory bodies, which differ from the secretions produced by the lateral gland cells of the anterior adhesive apparatus.
    Matched MeSH terms: Endoplasmic Reticulum, Rough/ultrastructure
  17. Tan HK, Muhammad TST, Tan ML
    Toxicol Appl Pharmacol, 2016 06 01;300:55-69.
    PMID: 27049118 DOI: 10.1016/j.taap.2016.03.017
    14-Deoxy-11,12-didehydroandrographolide (14-DDA), a major diterpenoid isolated from Andrographis paniculata (Burm.f.) Nees, is known to be cytotoxic and elicits a non-apoptotic cell death in T-47D breast carcinoma cells. In this study, the mechanistic toxicology properties of 14-DDA in T-47D cells were further investigated. 14-DDA is found to induce the formation of endoplasmic reticulum (ER) vacuoles and autophagosomes, with concurrent upregulation of LC3-II in the breast carcinoma cells. It stimulated an increase in cytosolic calcium concentration and caused a collapse in mitochondrial membrane potential in these cells. In addition, both DDIT3 and GADD45A, molecules implicated in ER stress pathway, were significantly upregulated. DDIT3 knockdown suppressed the formation of both ER vacuoles and autophagosomes, indicating that 14-DDA-induced ER stress and autophagy is dependent on this transcription factor. Collectively, it is possible that GADD45A/p38 MAPK/DDIT3 pathway is involved in the 14-DDA-induced ER-stress-mediated autophagy in T-47D cells.
    Matched MeSH terms: Endoplasmic Reticulum Stress/physiology*
  18. Yap YH, Say YH
    Cancer Lett, 2011 Jul 1;306(1):111-9.
    PMID: 21439722 DOI: 10.1016/j.canlet.2011.02.040
    Most studies have focused on the role of the cellular prion protein (PrP(C)) in neurodegenerative diseases, whereas the function of this ubiquitous protein outside the nervous system remains elusive. Therefore, the anti-apoptotic property of PrP(C) in oral squamous cell carcinoma (HSC-2) and colon adenocarcinoma (LS 174T) was evaluated in this study, by stable shRNA knockdown and overexpression, respectively. PrP(C) confers resistance against oxidative stress-apoptosis as indicated by MTT assay, Annexin V-FITC/PI and DCFH-DA staining, but this property is abolished upon N-glycosylation inhibition by tunicamycin. Our results indicate that the inhibition of glycosylation in cancer cells overexpressing PrP(C) could represent a potential therapeutic target.
    Matched MeSH terms: Endoplasmic Reticulum/metabolism
  19. Brown D, Feeney M, Ahmadi M, Lonoce C, Sajari R, Di Cola A, et al.
    J Exp Bot, 2017 Nov 02;68(18):5045-5055.
    PMID: 29036360 DOI: 10.1093/jxb/erx331
    Natural rubber (polyisoprene) from the rubber tree Hevea brasiliensis is synthesized by specialized cells called laticifers. It is not clear how rubber particles arise, although one hypothesis is that they derive from the endoplasmic reticulum (ER) membrane. Here we cloned the genes encoding four key proteins found in association with rubber particles and studied their intracellular localization by transient expression in Nicotiana benthamiana leaves. We show that, while the cis-prenyltransferase (CPT), responsible for the synthesis of long polyisoprene chains, is a soluble, cytosolic protein, other rubber particle proteins such as rubber elongation factor (REF), small rubber particle protein (SRPP) and Hevea rubber transferase 1-REF bridging protein (HRBP) are associated with the endoplasmic reticulum (ER). We also show that SRPP can recruit CPT to the ER and that interaction of CPT with HRBP leads to both proteins relocating to the plasma membrane. We discuss these results in the context of the biogenesis of rubber particles.
    Matched MeSH terms: Endoplasmic Reticulum/metabolism
  20. Choy KW, Lau YS, Murugan D, Mustafa MR
    PLoS One, 2017;12(5):e0178365.
    PMID: 28562691 DOI: 10.1371/journal.pone.0178365
    Endoplasmic reticulum (ER) stress leads to endothelial dysfunction which is commonly associated in the pathogenesis of several cardiovascular diseases. We explored the vascular protective effects of chronic treatment with paeonol (2'-hydroxy-4'-methoxyacetophenone), the major compound from the root bark of Paeonia suffruticosa on ER stress-induced endothelial dysfunction in mice. Male C57BL/6J mice were injected intraperitoneally with ER stress inducer, tunicamycin (1 mg/kg/week) for 2 weeks to induce ER stress. The animals were co-administered with or without paeonol (20 mg/kg/oral gavage), reactive oxygen species (ROS) scavenger, tempol (20 mg/kg/day) or ER stress inhibitor, tauroursodeoxycholic acid (TUDCA, 150 mg/kg/day) respectively. Blood pressure and body weight were monitored weekly and at the end of treatment, the aorta was isolated for isometric force measurement. Protein associated with ER stress (GRP78, ATF6 and p-eIF2α) and oxidative stress (NOX2 and nitrotyrosine) were evaluated using Western blotting. Nitric oxide (NO) bioavailability were determined using total nitrate/nitrite assay and western blotting (phosphorylation of eNOS protein). ROS production was assessed by en face dihydroethidium staining and lucigenin-enhanced chemiluminescence assay, respectively. Our results revealed that mice treated with tunicamycin showed an increased blood pressure, reduction in body weight and impairment of endothelium-dependent relaxations (EDRs) of aorta, which were ameliorated by co-treatment with either paeonol, TUDCA and tempol. Furthermore, paeonol reduced the ROS level in the mouse aorta and improved NO bioavailability in tunicamycin treated mice. These beneficial effects of paeonol observed were comparable to those produced by TUDCA and tempol, suggesting that the actions of paeonol may involve inhibition of ER stress-mediated oxidative stress pathway. Taken together, the present results suggest that chronic treatment with paeonol preserved endothelial function and normalized blood pressure in mice induced by tunicamycin in vivo through the inhibition of ER stress-associated ROS.
    Matched MeSH terms: Endoplasmic Reticulum Stress/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links