Displaying publications 21 - 40 of 380 in total

Abstract:
Sort:
  1. Dančák M, Hroneš M, Sochor M, Sochorová Z
    PLoS One, 2018;13(10):e0203443.
    PMID: 30281609 DOI: 10.1371/journal.pone.0203443
    Thismia kelabitiana, a new unique species from the Sarawak state of Malaysia in the island of Borneo is described and illustrated. This new species is not similar to any species of Thismia described so far especially by having a unique form of mitre and outer perianth lobes deeply divided into 8-10 acute lobes and forming striking fringe around perianth tube opening. The species appears to be critically endangered due to ongoing logging activities in the region. It may potentially become a surrogate species for lower montane forests of the region and thus help protect them against further destruction.
    Matched MeSH terms: Forests
  2. Tuck SL, O'Brien MJ, Philipson CD, Saner P, Tanadini M, Dzulkifli D, et al.
    Proc Biol Sci, 2016 Dec 14;283(1844).
    PMID: 27928046
    One of the main environmental threats in the tropics is selective logging, which has degraded large areas of forest. In southeast Asia, enrichment planting with seedlings of the dominant group of dipterocarp tree species aims to accelerate restoration of forest structure and functioning. The role of tree diversity in forest restoration is still unclear, but the 'insurance hypothesis' predicts that in temporally and spatially varying environments planting mixtures may stabilize functioning owing to differences in species traits and ecologies. To test for potential insurance effects, we analyse the patterns of seedling mortality and growth in monoculture and mixture plots over the first decade of the Sabah biodiversity experiment. Our results reveal the species differences required for potential insurance effects including a trade-off in which species with denser wood have lower growth rates but higher survival. This trade-off was consistent over time during the first decade, but growth and mortality varied spatially across our 500 ha experiment with species responding to changing conditions in different ways. Overall, average survival rates were extreme in monocultures than mixtures consistent with a potential insurance effect in which monocultures of poorly surviving species risk recruitment failure, whereas monocultures of species with high survival have rates of self-thinning that are potentially wasteful when seedling stocks are limited. Longer-term monitoring as species interactions strengthen will be needed to more comprehensively test to what degree mixtures of species spread risk and use limited seedling stocks more efficiently to increase diversity and restore ecosystem structure and functioning.
    Matched MeSH terms: Forests*
  3. Blanton A, Mohan M, Galgamuwa GAP, Watt MS, Montenegro JF, Mills F, et al.
    J Environ Manage, 2024 Feb 14;352:119921.
    PMID: 38219661 DOI: 10.1016/j.jenvman.2023.119921
    Tropical rainforests of Latin America (LATAM) are one of the world's largest carbon sinks, with substantial future carbon sequestration potential and contributing a major proportion of the global supply of forest carbon credits. LATAM is poised to contribute predominantly towards high-quality forest carbon offset projects designed to reduce emissions from deforestation and forest degradation, halt biodiversity loss, and provide equitable conservation benefits to people. Thus, carbon markets, including compliance carbon markets and voluntary carbon markets continue to expand in LATAM. However, the extent of the growth and status of forest carbon markets, pricing initiatives, stakeholders, amongst others, are yet to be explored and extensively reviewed for the entire LATAM region. Against this backdrop, we reviewed a total of 299 articles, including peer-reviewed and non-scientific gray literature sources, from January 2010 to March 2023. Herein, based on the extensive literature review, we present the results and provide perspectives classified into five categories: (i) the status and recent trends of forest carbon markets (ii) the interested parties and their role in the forest carbon markets, (iii) the measurement, reporting and verification (MRV) approaches and role of remote sensing, (iv) the challenges, and (v) the benefits, opportunities, future directions and recommendations to enhance forest carbon markets in LATAM. Despite the substantial challenges, better governance structures for forest carbon markets can increase the number, quality and integrity of projects and support the carbon sequestration capacity of the rainforests of LATAM. Due to the complex and extensive nature of forest carbon projects in LATAM, emerging technologies like remote sensing can enable scale and reduce technical barriers to MRV, if properly benchmarked. The future directions and recommendations provided are intended to improve upon the existing infrastructure and governance mechanisms, and encourage further participation from the public and private sectors in forest carbon markets in LATAM.
    Matched MeSH terms: Forests
  4. Moore JH, Gibson L, Amir Z, Chanthorn W, Ahmad AH, Jansen PA, et al.
    Biol Rev Camb Philos Soc, 2023 Oct;98(5):1829-1844.
    PMID: 37311559 DOI: 10.1111/brv.12985
    In many disturbed terrestrial landscapes, a subset of native generalist vertebrates thrives. The population trends of these disturbance-tolerant species may be driven by multiple factors, including habitat preferences, foraging opportunities (including crop raiding or human refuse), lower mortality when their predators are persecuted (the 'human shield' effect) and reduced competition due to declines of disturbance-sensitive species. A pronounced elevation in the abundance of disturbance-tolerant wildlife can drive numerous cascading impacts on food webs, biodiversity, vegetation structure and people in coupled human-natural systems. There is also concern for increased risk of zoonotic disease transfer to humans and domestic animals from wildlife species with high pathogen loads as their abundance and proximity to humans increases. Here we use field data from 58 landscapes to document a supra-regional phenomenon of the hyperabundance and community dominance of Southeast Asian wild pigs and macaques. These two groups were chosen as prime candidates capable of reaching hyperabundance as they are edge adapted, with gregarious social structure, omnivorous diets, rapid reproduction and high tolerance to human proximity. Compared to intact interior forests, population densities in degraded forests were 148% and 87% higher for wild boar and macaques, respectively. In landscapes with >60% oil palm coverage, wild boar and pig-tailed macaque estimated abundances were 337% and 447% higher than landscapes with <1% oil palm coverage, respectively, suggesting marked demographic benefits accrued by crop raiding on calorie-rich food subsidies. There was extreme community dominance in forest landscapes with >20% oil palm cover where two pig and two macaque species accounted for >80% of independent camera trap detections, leaving <20% for the other 85 mammal species >1 kg considered. Establishing the population trends of pigs and macaques is imperative since they are linked to cascading impacts on the fauna and flora of local forest ecosystems, disease and human health, and economics (i.e., crop losses). The severity of potential negative cascading effects may motivate control efforts to achieve ecosystem integrity, human health and conservation objectives. Our review concludes that the rise of native generalists can be mediated by specific types of degradation, which influences the ecology and conservation of natural areas, creating both positive and detrimental impacts on intact ecosystems and human society.
    Matched MeSH terms: Forests
  5. Ditzer T, Glauner R, Förster M, Köhler P, Huth A
    Tree Physiol, 2000 Mar;20(5_6):367-381.
    PMID: 12651452
    Managing tropical rain forests is difficult because few long-term field data on forest growth and the impact of harvesting disturbance are available. Growth models may provide a valuable tool for managers of tropical forests, particularly if applied to the extended forest areas of up to 100,000 ha that typically constitute the so-called forest management units (FMUs). We used a stand growth model in a geographic information system (GIS) environment to simulate tropical rain forest growth at the FMU level. We applied the process-based rain forest growth model Formix 3-Q to the 55,000 ha Deramakot Forest Reserve (DFR) in Sabah, Malaysia. The FMU was considered to be composed of single and independent small-scale stands differing in site conditions and forest structure. Field data, which were analyzed with a GIS, comprised a terrestrial forest inventory, site and soil analyses (water, nutrients, slope), the interpretation of aerial photographs of the present vegetation and topographic maps. Different stand types were determined based on a classification of site quality (three classes), slopes (four classes), and present forest structure (four strata). The effects of site quality on tree allometry (height-diameter curve, biomass allometry, leaf area) and growth (increment size) are incorporated into Formix 3-Q. We derived allometric relations and growth factors for different site conditions from the field data. Climax forest structure at the stand level was shown to depend strongly on site conditions. Simulated successional pattern and climax structure were compared with field observations. Based on the current management plan for the DFR, harvesting scenarios were simulated for stands on different sites. The effects of harvesting guidelines on forest structure and the implications for sustainable forest management at Deramakot were analyzed. Based on the stand types and GIS analysis, we also simulated undisturbed regeneration of the logged-over forest in the DFR at the FMU level. The simulations predict slow recovery rates, and regeneration times far exceeding 100 years.
    Matched MeSH terms: Forests
  6. Russo SE, McMahon SM, Detto M, Ledder G, Wright SJ, Condit RS, et al.
    Nat Ecol Evol, 2021 Feb;5(2):174-183.
    PMID: 33199870 DOI: 10.1038/s41559-020-01340-9
    Resource allocation within trees is a zero-sum game. Unavoidable trade-offs dictate that allocation to growth-promoting functions curtails other functions, generating a gradient of investment in growth versus survival along which tree species align, known as the interspecific growth-mortality trade-off. This paradigm is widely accepted but not well established. Using demographic data for 1,111 tree species across ten tropical forests, we tested the generality of the growth-mortality trade-off and evaluated its underlying drivers using two species-specific parameters describing resource allocation strategies: tolerance of resource limitation and responsiveness of allocation to resource access. Globally, a canonical growth-mortality trade-off emerged, but the trade-off was strongly observed only in less disturbance-prone forests, which contained diverse resource allocation strategies. Only half of disturbance-prone forests, which lacked tolerant species, exhibited the trade-off. Supported by a theoretical model, our findings raise questions about whether the growth-mortality trade-off is a universally applicable organizing framework for understanding tropical forest community structure.
    Matched MeSH terms: Forests*
  7. Mansor MS, Sah SA
    Trop Life Sci Res, 2012 May;23(1):1-14.
    PMID: 24575221 MyJurnal
    Bird surveys were conducted in the Bukit Kepala Gajah limestone area in Lenggong, Perak from July 2010 to January 2011. The study area was divided into three zones: forest edge, forest intermediate and forest interior. A point-count distance sampling method was used in the bird surveys. The study recorded 7789 detections, representing 100 bird species belonging to 28 families. Pycnonotidae, Timaliidae and Nectariniidae were the dominant families overall and showed the highest number of observations recorded in the study area whereas Motacillidae showed the fewest observations. The bird species were grouped into three feeding guilds: insectivores, frugivores and others (omnivores, carnivores, nectarivores and granivores). The species richness of insectivorous birds differed significantly among the forest zones sampled (Kruskal-Wallis: α=0.05, H=10.979, d.f.=2, p=0.004), with more insectivorous birds occurring in the forest interior. No significant differences were found among the zones in the species richness of either the frugivore guild or the composite others guild.
    Matched MeSH terms: Forests
  8. Tripathi BM, Edwards DP, Mendes LW, Kim M, Dong K, Kim H, et al.
    Mol Ecol, 2016 May;25(10):2244-57.
    PMID: 26994316 DOI: 10.1111/mec.13620
    Selective logging and forest conversion to oil palm agriculture are rapidly altering tropical forests. However, functional responses of the soil microbiome to these land-use changes are poorly understood. Using 16S rRNA gene and shotgun metagenomic sequencing, we compared composition and functional attributes of soil biota between unlogged, once-logged and twice-logged rainforest, and areas converted to oil palm plantations in Sabah, Borneo. Although there was no significant effect of logging history, we found a significant difference between the taxonomic and functional composition of both primary and logged forests and oil palm. Oil palm had greater abundances of genes associated with DNA, RNA, protein metabolism and other core metabolic functions, but conversely, lower abundance of genes associated with secondary metabolism and cell-cell interactions, indicating less importance of antagonism or mutualism in the more oligotrophic oil palm environment. Overall, these results show a striking difference in taxonomic composition and functional gene diversity of soil microorganisms between oil palm and forest, but no significant difference between primary forest and forest areas with differing logging history. This reinforces the view that logged forest retains most features and functions of the original soil community. However, networks based on strong correlations between taxonomy and functions showed that network complexity is unexpectedly increased due to both logging and oil palm agriculture, which suggests a pervasive effect of both land-use changes on the interaction of soil microbes.
    Matched MeSH terms: Forests
  9. Kerfahi D, Tripathi BM, Lee J, Edwards DP, Adams JM
    PLoS One, 2014;9(11):e111525.
    PMID: 25405609 DOI: 10.1371/journal.pone.0111525
    Tropical forests are being rapidly altered by logging, and cleared for agriculture. Understanding the effects of these land use changes on soil fungi, which play vital roles in the soil ecosystem functioning and services, is a major conservation frontier. Using 454-pyrosequencing of the ITS1 region of extracted soil DNA, we compared communities of soil fungi between unlogged, once-logged, and twice-logged rainforest, and areas cleared for oil palm, in Sabah, Malaysia. Overall fungal community composition differed significantly between forest and oil palm plantation. The OTU richness and Chao 1 were higher in forest, compared to oil palm plantation. As a proportion of total reads, Basidiomycota were more abundant in forest soil, compared to oil palm plantation soil. The turnover of fungal OTUs across space, true β-diversity, was also higher in forest than oil palm plantation. Ectomycorrhizal (EcM) fungal abundance was significantly different between land uses, with highest relative abundance (out of total fungal reads) observed in unlogged forest soil, lower abundance in logged forest, and lowest in oil palm. In their entirety, these results indicate a pervasive effect of conversion to oil palm on fungal community structure. Such wholesale changes in fungal communities might impact the long-term sustainability of oil palm agriculture. Logging also has more subtle long term effects, on relative abundance of EcM fungi, which might affect tree recruitment and nutrient cycling. However, in general the logged forest retains most of the diversity and community composition of unlogged forest.
    Matched MeSH terms: Forests*
  10. Ma H, Crowther TW, Mo L, Maynard DS, Renner SS, van den Hoogen J, et al.
    Nat Plants, 2023 Nov;9(11):1795-1809.
    PMID: 37872262 DOI: 10.1038/s41477-023-01543-5
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.
    Matched MeSH terms: Forests
  11. JaŁoszyŃski P
    Zootaxa, 2018 Sep 04;4471(1):185-188.
    PMID: 30313426 DOI: 10.11646/zootaxa.4471.1.11
    Loeblites Franz, 1986 is a genus of Glandulariini with adults sharing a very similar body form and most taxonomically important structures with Syndicus Motschulsky, 1851. One of the most conspicuous differences between these genera is the antennal structure. In Syndicus, the antennomere XI is strongly reduced, much shorter than X and lacks the basal stalk, so that the two terminal antennomeres are compactly assembled. They either form one oval structure that appears as a single antennomere because the base of subconical antennomere XI is as broad as apex of X (Syndicus s. str.) or the antennomere XI forms a distinct small 'papilla' on top of X (subgen. Semisyndicus Jałoszyński, 2004) because the base of antennomere XI is much narrower than apex of X. Adults of Loeblites have unmodified antennae, with the antennomere XI strongly elongate and with a narrow basal stalk; additionally the antennae are strikingly slender, nearly filiform. Morphological structures of both genera were described and illustrated by Jałoszyński (2004, 2005). While Syndicus is species-rich, often abundant in leaf litter and under bark in subtropical forests (Jałoszyński 2004, 2006, 2008, 2009, 2011, 2014; Jałoszyński Nomura 2006; Yin Li 2015; Yin et al. 2014; Yin Zhou 2016; Zhou Yin 2017), and broadly distributed from southeastern Australia, through Southeast Asia, Yunnan (China) and Ryukyus (Japan), up to Sri Lanka, India and the Himalayas, Loeblites comprises merely four species known to occur in Malaysia, Thailand and China (Jałoszyński 2005; Zhou Li 2015). Loeblites mastigicornis Franz, 1986 is known to occur in Chiang Mai (northern Thailand), L. sabahensis Franz, 1992 and L. minor Jałoszyński, 2005 in Sabah (northern Borneo), and L. chinensis Zhou Li, 2015 in Yunnan (southwest China). Two females representing an undescribed species were also recorded from Yunnan by Zhou Li (2015). Specimens of this interesting genus are found rarely, in small numbers and they are typically sifted from leaf litter in subtropical forests.
    Matched MeSH terms: Forests
  12. Wang WY, Foster WA
    Ecol Evol, 2015 Aug;5(15):3159-70.
    PMID: 26356831 DOI: 10.1002/ece3.1592
    Beta diversity - the variation in species composition among spatially discrete communities - and sampling grain - the size of samples being compared - may alter our perspectives of diversity within and between landscapes before and after agricultural conversion. Such assumptions are usually based on point comparisons, which do not accurately capture actual differences in total diversity. Beta diversity is often not rigorously examined. We investigated the beta diversity of ground-foraging ant communities in fragmented oil palm and forest landscapes in Sabah, Malaysia, using diversity metrics transformed from Hill number equivalents to remove dependences on alpha diversity. We compared the beta diversities of oil palm and forest, across three hierarchically nested sampling grains. We found that oil palm and forest communities had a greater percentage of total shared species when larger samples were compared. Across all grains and disregarding relative abundances, there was higher beta diversity of all species among forest communities. However, there were higher beta diversities of common and very abundant (dominant) species in oil palm as compared to forests. Differences in beta diversities between oil palm and forest were greatest at the largest sampling grain. Larger sampling grains in oil palm may generate bigger species pools, increasing the probability of shared species with forest samples. Greater beta diversity of all species in forest may be attributed to rare species. Oil palm communities may be more heterogeneous in common and dominant species because of variable community assembly events. Rare and also common species are better captured at larger grains, boosting differences in beta diversity between larger samples of forest and oil palm communities. Although agricultural landscapes support a lower total diversity than natural forests, diversity especially of abundant species is still important for maintaining ecosystem stability. Diversity in agricultural landscapes may be greater than expected when beta diversity is accounted for at large spatial scales.
    Matched MeSH terms: Forests
  13. Luke SH, Barclay H, Bidin K, Chey VK, Ewers RM, Foster WA, et al.
    Ecohydrology, 2017 06;10(4):e1827.
    PMID: 28706573 DOI: 10.1002/eco.1827
    Freshwaters provide valuable habitat and important ecosystem services but are threatened worldwide by habitat loss and degradation. In Southeast Asia, rainforest streams are particularly threatened by logging and conversion to oil palm, but we lack information on the impacts of this on freshwater environmental conditions, and the relative importance of catchment versus riparian-scale disturbance. We studied 16 streams in Sabah, Borneo, including old-growth forest, logged forest, and oil palm sites. We assessed forest quality in riparian zones and across the whole catchment and compared it with stream environmental conditions including water quality, structural complexity, and organic inputs. We found that streams with the highest riparian forest quality were nearly 4 °C cooler, over 20 cm deeper, had over 40% less sand, greater canopy cover, more stored leaf litter, and wider channels than oil palm streams with the lowest riparian forest quality. Other variables were significantly related to catchment-scale forest quality, with streams in the highest quality forest catchments having 40% more bedrock and 20 times more dead wood, along with higher phosphorus, and lower nitrate-N levels compared to streams with the lowest catchment-scale forest quality. Although riparian buffer strips went some way to protecting waterways, they did not maintain fully forest-like stream conditions. In addition, logged forest streams still showed signs of disturbance 10-15 years after selective logging. Our results suggest that maintenance and restoration of buffer strips can help to protect healthy freshwater ecosystems but logging practices and catchment-scale forest management also need to be considered.
    Matched MeSH terms: Forests
  14. Juperi S, Zakaria R, Mansor A
    Trop Life Sci Res, 2012 May;23(1):35-44.
    PMID: 24575224 MyJurnal
    To investigate the distribution of Anacardiaceae in Teluk Bahang Permanent Forest Reserve (TBPFR) in Pulau Pinang, all trees with a diameter at breast high (DBH) ≥ 5 cm were enumerated in a study site constituting 0.4 ha of the reserve. Seventy five individuals of Anacardiaceae (14% of all trees) are recorded. These individuals represent 4 genera and 5 species, namely, Mangifera pentandra, Mangifera macrocarpa, Gluta elegans, Campnosperma auriculatum and Swintonia floribunda. The mean density of Anacardiaceae within the study plots is 7.50±8.14 (mean±S.D.) per ha whereas the basal area (BA) calculated is 0.97 m(2)/0.40 ha. The importance value (IVi) for Anacardiaceae is 81%. The estimated total aboveground biomass (TAGB) for Anacardiaceae is 24.24 ton/0.40 ha. A total of 333 Anacardiaceae saplings with a DBH < 5 cm are recorded. These saplings have been identified as juveniles of the genera Gluta (9.99%), Swintonia (84.90%) and Mangifera (5.11%).
    Matched MeSH terms: Forests
  15. Matsuda I, Ihobe H, Tashiro Y, Yumoto T, Baranga D, Hashimoto C
    Primates, 2020 May;61(3):473-484.
    PMID: 32026152 DOI: 10.1007/s10329-020-00794-6
    One of the goals for primate feeding ecology is to understand the factors that affect inter- and intra-specific variations. Therefore, a detailed description of basic feeding ecology in as many populations as possible is necessary and warrants further understanding. The black-and-white colobus (Colobus guereza) or guereza is widely distributed in Africa and is one of the well-studied colobines in terms of their feeding; they demonstrate considerable variation in their diets in response to local conditions. We studied the diet of a group of guerezas in the Kalinzu Forest, Uganda, for over 30 consecutive months using behavioral observation (4308 h in total), phenology, and vegetation surveys. A total of 31 plant species were consumed by the study group. This study group was predominantly folivorous; the majority of their feeding time was involved in feeding on young leaves (87%). However, during certain times of the year, fruits and seeds accounted for 45% of monthly feeding time. Young leaves of Celtis durandii were by far the most important food, which constituted 58% of the total feeding records. There was a significant increase in the consumption of fruits and flowers once young leaf availability was low, but their consumption of fruits did not significantly increase even when fruit availability was high. Their monthly dietary diversity increased as the number of available plants with young leaves declined, suggesting that much of the dietary diversity in the study group may be attributable to the young leaf portion of their diet. Our findings may help contribute to a better understanding of the dietary adaptations and feeding ecology of guerezas in response to local environmental conditions.
    Matched MeSH terms: Forests
  16. Guerrero-Sanchez S, Goossens B, Saimin S, Orozco-terWengel P
    PLoS One, 2021;16(10):e0257814.
    PMID: 34614000 DOI: 10.1371/journal.pone.0257814
    In Borneo, oil palm plantations have replaced much of natural resources, where generalist species tend to be the principal beneficiaries, due to the abundant food provided by oil palm plantations. Here, we analyse the distribution of the Asian water monitor lizard (Varanus salvator) population within an oil palm-dominated landscape in the Kinabatangan floodplain, Malaysian Borneo. By using mark-recapture methods we estimated its population size, survival, and growth in forest and plantation habitats. We compared body measurements (i.e. body weight and body length) of individuals living in forest and oil palm habitats as proxy for the population's health status, and used general least squares estimation models to evaluate its response to highly fragmented landscapes in the absence of intensive hunting pressures. Contrary to previous studies, the abundance of lizards was higher in the forest than in oil palm plantations. Recruitment rates were also higher in the forest, suggesting that these areas may function as a source of new individuals into the landscape. While there were no morphometric differences among plantation sites, we found significant differences among forested areas, where larger lizards were found inhabiting forest adjacent to oil palm plantations. Although abundant in food resources, the limited availability of refugia in oil palm plantations may intensify intra-specific encounters and competition, altering the body size distribution in plantation populations, contrary to what happens in the forest. We conclude that large patches of forest, around and within oil palm plantations, are essential for the dynamics of the monitor lizard population in the Kinabatangan floodplain, as well as a potential source of individuals to the landscape. We recommend assessing this effect in other generalist species, as well as the impact on the prey communities, especially to reinforce the establishment of buffer zones and corridors as a conservation strategy within plantations.
    Matched MeSH terms: Forests*
  17. Seibold S, Rammer W, Hothorn T, Seidl R, Ulyshen MD, Lorz J, et al.
    Nature, 2021 Sep;597(7874):77-81.
    PMID: 34471275 DOI: 10.1038/s41586-021-03740-8
    The amount of carbon stored in deadwood is equivalent to about 8 per cent of the global forest carbon stocks1. The decomposition of deadwood is largely governed by climate2-5 with decomposer groups-such as microorganisms and insects-contributing to variations in the decomposition rates2,6,7. At the global scale, the contribution of insects to the decomposition of deadwood and carbon release remains poorly understood7. Here we present a field experiment of wood decomposition across 55 forest sites and 6 continents. We find that the deadwood decomposition rates increase with temperature, and the strongest temperature effect is found at high precipitation levels. Precipitation affects the decomposition rates negatively at low temperatures and positively at high temperatures. As a net effect-including the direct consumption by insects and indirect effects through interactions with microorganisms-insects accelerate the decomposition in tropical forests (3.9% median mass loss per year). In temperate and boreal forests, we find weak positive and negative effects with a median mass loss of 0.9 per cent and -0.1 per cent per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesized from empirical and remote-sensing data, obtaining an estimate of 10.9 ± 3.2 petagram of carbon per year released from deadwood globally, with 93 per cent originating from tropical forests. Globally, the net effect of insects may account for 29 per cent of the carbon flux from deadwood, which suggests a functional importance of insects in the decomposition of deadwood and the carbon cycle.
    Matched MeSH terms: Forests*
  18. Nagymihály M, Vásarhelyi BM, Barrière Q, Chong TM, Bálint B, Bihari P, et al.
    Stand Genomic Sci, 2017;12:75.
    PMID: 29255570 DOI: 10.1186/s40793-017-0298-3
    Strain CCMM B554, also known as FSM-MA, is a soil dwelling and nodule forming, nitrogen-fixing bacterium isolated from the nodules of the legume Medicago arborea L. in the Maamora Forest, Morocco. The strain forms effective nitrogen fixing nodules on species of the Medicago, Melilotus and Trigonella genera and is exceptional because it is a highly effective symbiotic partner of the two most widely used accessions, A17 and R108, of the model legume Medicago truncatula Gaertn. Based on 16S rRNA gene sequence, multilocus sequence and average nucleotide identity analyses, FSM-MA is identified as a new Ensifer meliloti strain. The genome is 6,70 Mbp and is comprised of the chromosome (3,64 Mbp) harboring 3574 predicted genes and two megaplasmids, pSymA (1,42 Mbp) and pSymB (1,64 Mbp) with respectively 1481 and 1595 predicted genes. The average GC content of the genome is 61.93%. The FSM-MA genome structure is highly similar and co-linear to other E. meliloti strains in the chromosome and the pSymB megaplasmid while, in contrast, it shows high variability in the pSymA plasmid. The large number of strain-specific sequences in pSymA as well as strain-specific genes on pSymB involved in the biosynthesis of the lipopolysaccharide and capsular polysaccharide surface polysaccharides may encode novel symbiotic functions explaining the high symbiotic performance of FSM-MA.
    Matched MeSH terms: Forests
  19. Lee SY, Ng WL, Mohamed R, Terhem R
    Mitochondrial DNA B Resour, 2018 Oct 29;3(2):1120-1121.
    PMID: 33474439 DOI: 10.1080/23802359.2018.1519382
    Known for its valuable agarwood, Aquilaria malaccensis Lam. is an evergreen tropical forest tree species endemic to the Indo-malesian region. Indiscriminate damaging and harvesting of the trees in the wild have resulted in it being listed in the CITES Appendix II for controlled trade and in the IUCN Red List as 'Vulnerable (VU)'. In this study, the complete chloroplast genome of A. malaccensis was assembled using data from high-throughput Illumina sequencing. The chloroplast genome was 174,832 bp in size, which included two inverted repeat regions of 42,091 bp each, separated by a large single copy region of 87,302 bp and a small single copy region of 3,348 bp. A total of 139 genes were predicted, including 39 tRNA, 8 rRNA, and 92 protein-coding genes. Phylogenetic analysis placed A. malaccensis within the family Thymelaeaceae. The chloroplast genome sequence of A. malaccensis offers a useful resource for future studies on the taxonomy and conservation of the threatened Aquilaria trees.
    Matched MeSH terms: Forests
  20. Granados A, Bernard H, Brodie JF
    Proc Biol Sci, 2018 02 28;285(1873).
    PMID: 29491176 DOI: 10.1098/rspb.2017.2882
    Animals can have both positive (e.g. via seed dispersal) and negative (e.g. via herbivory) impacts on plants. The net effects of these interactions remain difficult to predict and may be affected by overhunting and habitat disturbance, two widespread threats to tropical forests. Recent studies have documented their separate effects on plant recruitment but our understanding of how defaunation and logging interact to influence tropical tree communities is limited. From 2013 to 2016, we followed the fate of marked tree seedlings (n = 1489) from 81 genera in and outside experimental plots. Our plots differentially excluded small, medium and large-bodied mammal herbivores in logged and unlogged forest in Malaysian Borneo. We assessed the effects of experimental defaunation and logging on taxonomic diversity and plant trait (wood density, specific leaf area, fruit size) composition of seedling communities. Although seedling mortality was highest in the presence of all mammal herbivores (44%), defaunation alone did not alter taxonomic diversity nor plant trait composition. However, herbivores (across all body sizes) significantly reduced mean fruit size across the seedling community over time (95% confidence interval (CI): -0.09 to -0.01), particularly in logged forest (95% CI: -0.12 to -0.003). Our findings suggest that impacts of mammal herbivores on plant communities may be greater in forests with a history of disturbance and could subsequently affect plant functional traits and ecological processes associated with forest regeneration.
    Matched MeSH terms: Forests
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links