Displaying publications 21 - 38 of 38 in total

Abstract:
Sort:
  1. Surendran A, Siddiqui Y, Ali NS, Manickam S
    J Appl Microbiol, 2018 Jun;124(6):1544-1555.
    PMID: 29405525 DOI: 10.1111/jam.13717
    AIM: Ganoderma sp, the causal pathogen of the basal stem rot (BSR) disease of oil palm, secretes extracellular hydrolytic enzymes. These play an important role in the pathogenesis of BSR by nourishing the pathogen through the digestion of cellulose and hemicellulose of the host tissue. Active suppression of hydrolytic enzymes secreted by Ganoderma boninense by various naturally occurring phenolic compounds and estimation of their efficacy on pathogen suppression is focused in this study.

    METHODS AND RESULTS: Ten naturally occurring phenolic compounds were assessed for their inhibitory effect on the hydrolytic enzymes of G. boninense. The enzyme kinetics (Vmax and Km ) and the stability of the hydrolytic enzymes were also characterized. The selected compounds had shown inhibitory effect at various concentrations. Two types of inhibitions namely uncompetitive and noncompetitive were observed in the presence of phenolic compounds. Among all the phenolic compounds tested, benzoic acid was the most effective compound suppressive to the growth and production of hydrolytic enzymes secreted by G. boninense. The phenolic compounds as inhibitory agents can be a better replacement for the metal ions which are known as conventional inhibitors till date. The three hydrolytic enzymes were stable in a wide range of pH and temperature.

    CONCLUSION: These findings highlight the efficacy of the applications of phenolic compounds to control Ganoderma.

    SIGNIFICANCE AND IMPACT OF THE STUDY: The study has proved a replacement for chemical controls of G. boninense with naturally occurring phenolic compounds.

    Matched MeSH terms: Fungal Proteins/chemistry
  2. Illiyin MR, Marikkar JM, Loke MK, Shuhaimi M, Mahiran B, Miskandar MS
    J Oleo Sci, 2014;63(1):39-46.
    PMID: 24389796
    A study was carried out to compare the composition and thermal properties of lard (LD) and engkabang fat (EF) - canola oil (CaO) blend interesterified with Candida antartica lipase (C. antartica). A fat blend EF-4 (40% EF in CaO) was prepared and interesterified using C. antartica lipase at 60°C for different time intervals (6 h, 12 h and 24 h) with 200 rpm agitation. The fat blends before and after interesterification were compared to LD with respect to their slip melting points (SMP), fatty acid and triacyglycerol (TAG) compositions, melting, solidification and polymorphic properties. Result showed that the slip melting point (SMP) of the fat blend interesterified for 6 h was the closest to that of LD. The solid fat content (SFC) values of fat blends interesterified for 12 and 24 h were found to become equal to those of LD within the temperature range of 0 to 20°C. In addition, all three interesterified blends had SFC values similar to those of LD within the temperature range of 30-40°C. According to thermal analysis, the transition of the fat blend interesterified for 24 h appearing at -2.39°C was similar to the low melting thermal transition of LD and the transition of the fat blend interesterified for 12 h appearing at 26.25°C was similar to the high melting thermal transition of LD. However, there is no compatibility between LD and all three interesterified blends with regard to polymorphic behaviour.
    Matched MeSH terms: Fungal Proteins/chemistry*
  3. Mohamad Ansor N, Abdullah N, Aminudin N
    PMID: 24093919 DOI: 10.1186/1472-6882-13-256
    Ganoderma lucidum has been purported as a potent remedy in the treatment and prevention of several ailments, including hypertension. This study aimed to explore the anti-ACE potential of protein fractions from the mycelia of G. lucidum.
    Matched MeSH terms: Fungal Proteins/chemistry
  4. Lau BF, Aminudin N, Abdullah N
    J Microbiol Methods, 2011 Oct;87(1):56-63.
    PMID: 21801760 DOI: 10.1016/j.mimet.2011.07.005
    Mushrooms are considered as important source of biologically active compounds which include low-molecular-mass protein/peptides (LMMP). In this study, we attempted to profile the LMMP from Lignosus rhinocerus, a wild medicinal mushroom, grown by static cultures (SC) and in stirred tank reactor (STR). Crude water extract (CWE) and protein fractions were profiled using H50 ProteinChip® arrays and SELDI-TOF-MS. Three protein peaks of 5.8, 6.9 and 9.1 kDa were found to be common to spectra of L. rhinocerus CWE from both culture conditions. Partial protein purification has resulted in detection of more peaks in the spectra of protein fractions. For protein fractions of L. rhinocerus cultured in STR, most peaks were observed in the range of 3-8 kDa whereas some peaks with molecular mass up to 14.3 kDa were noted in spectra of protein fractions from SC. Our results have demonstrated the optimization of profiling method using SELDI-TOF-MS for fungal LMMP.
    Matched MeSH terms: Fungal Proteins/chemistry
  5. Mohamad SB, Ong AL, Khairuddin RF, Ripen AM
    In Silico Biol. (Gedrukt), 2010;10(3):145-53.
    PMID: 22430288 DOI: 10.3233/ISB-2010-0423
    Laccases are industrially attractive enzymes and their applications have expanded to the field of bioremediation. The challenge of today's biotechnology in enzymatic studies is to design enzymes that not only have a higher activity but are also more stable and could fit well with the condition requirements. Laccases are known to oxidize non-natural substrates like polycyclic aromatic hydrocarbons (PAHs). We suppose by increasing the hydrophobicity of laccase, it would increase the chance of the enzyme to meet the hydrophobic substrates in a contamination site, therefore increasing the bioremediation efficacy of PAHs from environment. In this attempt, the applications of evolutionary trace (ET), molecular surface accessibility and hydrophobicity analysis on laccase sequences and laccase's crystal structure (1KYA) are described for optimal design of an enzyme with higher hydrophobicity. Our analysis revealed that Q23A, Q45I, N141A, Q237V, N262L, N301V, N331A, Q360L and Q482A could be promising exchanges to be tested in mutagenesis experiments.
    Matched MeSH terms: Fungal Proteins/chemistry*
  6. Serri NA, Kamaruddin AH, Long WS
    Bioprocess Biosyst Eng, 2006 Oct;29(4):253-60.
    PMID: 16868763
    Immobilized Candida rugosa lipase was used for the synthesis of citronellyl laurate from citronellol and lauric acid. Screening of different types of support (Amberlite MB-1 and Celite) for immobilization of lipase and solvent (n-hexane, n-heptane, and iso-octane) and optimization of reaction conditions, such as catalyst loading, effect of substrates molar ratio and temperature, have been studied. The maximum enzyme activity was obtained at 310 K. The immobilized C. rugosa lipase onto Amberlite MB-1 support was found to be the best support with a conversion of 89% of citronellyl laurate ester in iso-octane compared to Celite 545. Deactivation of C. rugosa lipase at 313, 318 and 323 K were observed. Ordered bi bi mechanism with dead end complex of lauric acid was found to fit the initial rate data and the kinetic parameters were obtained by non-linear regression analysis.
    Matched MeSH terms: Fungal Proteins/chemistry*
  7. Shah SH, Kar RK, Asmawi AA, Rahman MB, Murad AM, Mahadi NM, et al.
    PLoS One, 2012;7(11):e49788.
    PMID: 23209600 DOI: 10.1371/journal.pone.0049788
    Exotic functions of antifreeze proteins (AFP) and antifreeze glycopeptides (AFGP) have recently been attracted with much interest to develop them as commercial products. AFPs and AFGPs inhibit ice crystal growth by lowering the water freezing point without changing the water melting point. Our group isolated the Antarctic yeast Glaciozyma antarctica that expresses antifreeze protein to assist it in its survival mechanism at sub-zero temperatures. The protein is unique and novel, indicated by its low sequence homology compared to those of other AFPs. We explore the structure-function relationship of G. antarctica AFP using various approaches ranging from protein structure prediction, peptide design and antifreeze activity assays, nuclear magnetic resonance (NMR) studies and molecular dynamics simulation. The predicted secondary structure of G. antarctica AFP shows several α-helices, assumed to be responsible for its antifreeze activity. We designed several peptide fragments derived from the amino acid sequences of α-helical regions of the parent AFP and they also showed substantial antifreeze activities, below that of the original AFP. The relationship between peptide structure and activity was explored by NMR spectroscopy and molecular dynamics simulation. NMR results show that the antifreeze activity of the peptides correlates with their helicity and geometrical straightforwardness. Furthermore, molecular dynamics simulation also suggests that the activity of the designed peptides can be explained in terms of the structural rigidity/flexibility, i.e., the most active peptide demonstrates higher structural stability, lower flexibility than that of the other peptides with lower activities, and of lower rigidity. This report represents the first detailed report of downsizing a yeast AFP into its peptide fragments with measurable antifreeze activities.
    Matched MeSH terms: Fungal Proteins/chemistry*
  8. Rafiqul IS, Sakinah AM, Zularisam AW
    Appl Biochem Biotechnol, 2015 Jun;176(4):1071-83.
    PMID: 25904039 DOI: 10.1007/s12010-015-1630-2
    Xylose-rich sawdust hydrolysate can be an economic substrate for the enzymatic production of xylitol, a specialty product. It is important to identify the process factors influencing xylitol production. This research aimed to screen the parameters significantly affecting bioxylitol synthesis from wood sawdust by xylose reductase (XR). Enzymatic bioxylitol production was conducted to estimate the effect of different variables reaction time (2-18 h), temperature (20-70 °C), pH (4.0-9.0), NADPH (1.17-5.32 g/L), and enzyme concentration (2-6 %) on the yield of xylitol. Fractional factorial design was followed to identify the key process factors. The screening design identified that time, temperature, and pH are the most significant factors influencing bioxylitol production among the variables with the values of 12 h, 35 °C, and 7.0, respectively. These conditions led to a xylitol yield of 71 % (w/w). This is the first report on the statistical screening of process variables influencing enzyme-based bioxylitol production from lignocellulosic biomass.
    Matched MeSH terms: Fungal Proteins/chemistry*
  9. Lian W, Li D, Zhang L, Wang W, Faiza M, Tan CP, et al.
    Enzyme Microb Technol, 2018 Oct;117:56-63.
    PMID: 30037552 DOI: 10.1016/j.enzmictec.2018.06.007
    Conjugated linoleic acid (CLA)-rich triacylglycerols (TAG) have received significant attention owing to their health promoting properties. In this study, CLA-rich TAG were successfully synthesized by an immobilized mutant lipase (MAS1-H108A)-catalyzed esterification of CLA-rich fatty acids and glycerol under vacuum. MAS1-H108A was first immobilized onto ECR1030 resin. Results showed that the lipase/support ratio of 41 mg/g was suitable for the immobilization and the thermostability of immobilized MAS1-H108A was greatly enhanced. Subsequently, the immobilized MAS1-H108A was employed for the synthesis of CLA-rich TAG and 95.21% TAG with 69.19% CLA was obtained under the optimized conditions. The TAG content (95.21%) obtained by immobilized MAS1-H108A is the reported highest value thus far, which was significantly higher than that (9.26%) obtained by Novozym 435 under the same conditions. Although the TAG content comparable to the results obtained in this study could also be obtained by Novozym 435, the used enzyme amount is approximately 5-fold of the immobilized MAS1-H108A. Additionally, the immobilized MAS1-H108A exhibited excellent recyclability during esterification retaining 95.11% of its initial activity after 10 batches. Overall, such immobilized mutant lipase with superior esterification activity and recyclability has the potential to be used in oils and fats industry.
    Matched MeSH terms: Fungal Proteins/chemistry
  10. Alhelli AM, Abdul Manap MY, Mohammed AS, Mirhosseini H, Suliman E, Shad Z, et al.
    Int J Mol Sci, 2016 Nov 11;17(11).
    PMID: 27845736
    Penicillium candidum (PCA 1/TT031) synthesizes different types of extracellular proteases. The objective of this study is to optimize polyethylene glycol (PEG)/citrate based on an aqueous two-phase system (ATPS) and Response Surface Methodology (RSM) to purify protease from Penicillium candidum (PCA 1/TT031). The effects of different PEG molecular weights (1500-10,000 g/mol), PEG concentration (9%-20%), concentrations of NaCl (0%-10%) and the citrate buffer (8%-16%) on protease were also studied. The best protease purification could be achieved under the conditions of 9.0% (w/w) PEG 8000, 5.2% NaCl, and 15.9% sodium citrate concentration, which resulted in a one-sided protease partitioning for the bottom phase with a partition coefficient of 0.2, a 6.8-fold protease purification factor, and a yield of 93%. The response surface models displayed a significant (p ≤ 0.05) response which was fit for the variables that were studied as well as a high coefficient of determination (R²). Similarly, the predicted and observed values displayed no significant (p > 0.05) differences. In addition, our enzyme characterization study revealed that Penicillium candidum (PCA 1/TT031) produced a slight neutral protease with a molecular weight between 100 and 140 kDa. The optimal activity of the purified enzyme occurred at a pH of 6.0 and at a temperature of 50 °C. The stability between different pH and temperature ranges along with the effect of chemical metal ions and inhibitors were also studied. Our results reveal that the purified enzyme could be used in the dairy industry such as in accelerated cheese ripening.
    Matched MeSH terms: Fungal Proteins/chemistry
  11. Mohamad Nor N, Hashim NHF, Quay DHX, Mahadi NM, Illias RM, Abu Bakar FD, et al.
    Int J Biol Macromol, 2020 Feb 01;144:231-241.
    PMID: 31843615 DOI: 10.1016/j.ijbiomac.2019.12.099
    Genome data mining of the Antarctic yeast, Glaciozyma antarctica PI12 revealed an expansin-like protein encoding sequence (GaEXLX1). The GaEXLX1 protein is 24.8 kDa with a high alkaline pI of 9.81. Homology modeling of GaEXLX1 showed complete D1 and D2 domains of a conventional expansin. The protein exhibited 36% sequence similarity to Clavibacter michiganensis EXLX1 (PDB: 4JCW). Subsequently, a recombinant GaEXLX1 protein was produced using Escherichia coli expression system. Incubation with Avicel, filter paper and cotton fiber showed that the protein can disrupt the surface of crystalline and pure cellulose, suggesting a cell wall modification activity usually exhibited by expansin-like proteins. Binding assays displayed that GaEXLX1 can bind to polymeric substrates, including those postulated to be present in the sea ice ecosystem such as crab chitin and moss lichenan. GaEXLX1 may assist in the recognition and loosening of these substrates in the sea ice prior to hydrolysis by other extracellular enzymes. Similar loosening mechanism to classical expansin-like protein has been postulated for this psychrophilic protein based on several conserved residues of GaEXLX1 involved in binding interaction identified by docking analyses.
    Matched MeSH terms: Fungal Proteins/chemistry
  12. Azman AR, Mahat NA, Abdul Wahab R, Abdul Razak FI, Hamzah HH
    Int J Mol Sci, 2018 May 25;19(6).
    PMID: 29799469 DOI: 10.3390/ijms19061576
    Waterways are popular locations for the disposition of criminal evidence because the recovery of latent fingerprints from such evidence is difficult. Currently, small particle reagent is a method often used to visualize latent fingerprints containing carcinogenic and hazardous compounds. This study proposes an eco-friendly, safranin-tinted Candida rugosa lipase (triacylglycerol ester hydrolysis EC 3.1.1.3) with functionalized carbon nanotubes (CRL-MWCNTS/GA/SAF) as an alternative reagent to the small particle reagent. The CRL-MWCNTS/GA/SAF reagent was compared with the small particle reagent to visualize groomed, full fingerprints deposited on stainless steel knives which were immersed in a natural outdoor pond for 30 days. The quality of visualized fingerprints using the new reagent was similar (modified-Centre for Applied Science and Technology grade: 4; p > 0.05) to small particle reagent, even after 15 days of immersion. Despite the slight decrease in quality of visualized fingerprints using the CRL-MWCNTS/GA/SAF on the last three immersion periods, the fingerprints remained forensically identifiable (modified-Centre for Applied Science and Technology grade: 3). The possible chemical interactions that enabled successful visualization is also discussed. Thus, this novel reagent may provide a relatively greener alternative for the visualization of latent fingerprints on immersed non-porous objects.
    Matched MeSH terms: Fungal Proteins/chemistry*
  13. Yusof NA, Hashim NH, Beddoe T, Mahadi NM, Illias RM, Bakar FD, et al.
    Cell Stress Chaperones, 2016 Jul;21(4):707-15.
    PMID: 27154490 DOI: 10.1007/s12192-016-0696-2
    The ability of eukaryotes to adapt to an extreme range of temperatures is critically important for survival. Although adaptation to extreme high temperatures is well understood, reflecting the action of molecular chaperones, it is unclear whether these molecules play a role in survival at extremely low temperatures. The recent genome sequencing of the yeast Glaciozyma antarctica, isolated from Antarctic sea ice near Casey Station, provides an opportunity to investigate the role of molecular chaperones in adaptation to cold temperatures. We isolated a G. antarctica homologue of small heat shock protein 20 (HSP20), GaSGT1, and observed that the GaSGT1 mRNA expression in G. antarctica was markedly increased following culture exposure at low temperatures. Additionally, we demonstrated that GaSGT1 overexpression in Escherichia coli protected these bacteria from exposure to both high and low temperatures, which are lethal for growth. The recombinant GaSGT1 retained up to 60 % of its native luciferase activity after exposure to luciferase-denaturing temperatures. These results suggest that GaSGT1 promotes cell thermotolerance and employs molecular chaperone-like activity toward temperature assaults.
    Matched MeSH terms: Fungal Proteins/chemistry
  14. Ramli AN, Mahadi NM, Rabu A, Murad AM, Bakar FD, Illias RM
    Microb Cell Fact, 2011;10:94.
    PMID: 22050784 DOI: 10.1186/1475-2859-10-94
    Cold-adapted enzymes are proteins produced by psychrophilic organisms that display a high catalytic efficiency at extremely low temperatures. Chitin consists of the insoluble homopolysaccharide β-(1, 4)-linked N-acetylglucosamine, which is the second most abundant biopolymer found in nature. Chitinases (EC 3.2.1.14) play an important role in chitin recycling in nature. Biodegradation of chitin by the action of cold-adapted chitinases offers significant advantages in industrial applications such as the treatment of chitin-rich waste at low temperatures, the biocontrol of phytopathogens in cold environments and the biocontrol of microbial spoilage of refrigerated food.
    Matched MeSH terms: Fungal Proteins/chemistry*
  15. Khairudin N, Basri M, Fard Masoumi HR, Samson S, Ashari SE
    Molecules, 2018 Feb 13;23(2).
    PMID: 29438284 DOI: 10.3390/molecules23020397
    Azelaic acid (AzA) and its derivatives have been known to be effective in the treatment of acne and various cutaneous hyperpigmentary disorders. The esterification of azelaic acid with lauryl alcohol (LA) to produce dilaurylazelate using immobilized lipase B from Candida antarctica (Novozym 435) is reported. Response surface methodology was selected to optimize the reaction conditions. A well-fitting quadratic polynomial regression model for the acid conversion was established with regards to several parameters, including reaction time and temperature, enzyme amount, and substrate molar ratios. The regression equation obtained by the central composite design of RSM predicted that the optimal reaction conditions included a reaction time of 360 min, 0.14 g of enzyme, a reaction temperature of 46 °C, and a molar ratio of substrates of 1:4.1. The results from the model were in good agreement with the experimental data and were within the experimental range (R² of 0.9732).The inhibition zone can be seen at dilaurylazelate ester with diameter 9.0±0.1 mm activities against Staphylococcus epidermidis S273. The normal fibroblasts cell line (3T3) was used to assess the cytotoxicity activity of AzA and AzA derivative, which is dilaurylazelate ester. The comparison of the IC50 (50% inhibition of cell viability) value for AzA and AzA derivative was demonstrated. The IC50 value for AzA was 85.28 μg/mL, whereas the IC50 value for AzA derivative was more than 100 μg/mL. The 3T3 cell was still able to survive without any sign of toxicity from the AzA derivative; thus, it was proven to be non-toxic in this MTT assay when compared with AzA.
    Matched MeSH terms: Fungal Proteins/chemistry*
  16. Rahnama N, Foo HL, Abdul Rahman NA, Ariff A, Md Shah UK
    BMC Biotechnol, 2014;14:103.
    PMID: 25496491 DOI: 10.1186/s12896-014-0103-y
    Rice straw has shown to be a promising agricultural by-product in the bioconversion of biomass to value-added products. Hydrolysis of cellulose, a main constituent of lignocellulosic biomass, is a requirement for fermentable sugar production and its subsequent bioconversion to biofuels such as biobutanol. The high cost of commercial enzymes is a major impediment to the industrial application of cellulases. Therefore, the use of local microbial enzymes has been suggested. Trichoderma harzianum strains are potential CMCase and β-glucosidase producers. However, few researches have been reported on cellulase production by T. harzianum and the subsequent use of the crude cellulase for cellulose enzymatic hydrolysis. For cellulose hydrolysis to be efficiently performed, the presence of the whole set of cellulase components including exoglucanase, endoglucanase, and β-glucosidase at a considerable concentration is required. Biomass recalcitrance is also a bottleneck in the bioconversion of agricultural residues to value-added products. An effective pretreatment could be of central significance in the bioconversion of biomass to biofuels.
    Matched MeSH terms: Fungal Proteins/chemistry*
  17. Ramli AN, Azhar MA, Shamsir MS, Rabu A, Murad AM, Mahadi NM, et al.
    J Mol Model, 2013 Aug;19(8):3369-83.
    PMID: 23686283 DOI: 10.1007/s00894-013-1861-5
    A novel α-amylase was isolated successfully from Glaciozyma antarctica PI12 using DNA walking and reverse transcription-polymerase chain reaction (RT-PCR) methods. The structure of this psychrophilic α-amylase (AmyPI12) from G. antarctica PI12 has yet to be studied in detail. A 3D model of AmyPI12 was built using a homology modelling approach to search for a suitable template and to generate an optimum target-template alignment, followed by model building using MODELLER9.9. Analysis of the AmyPI12 model revealed the presence of binding sites for a conserved calcium ion (CaI), non-conserved calcium ions (CaII and CaIII) and a sodium ion (Na). Compared with its template-the thermostable α-amylase from Bacillus stearothermophilus (BSTA)-the binding of CaII, CaIII and Na ions in AmyPI12 was observed to be looser, which suggests that the low stability of AmyPI12 allows the protein to work at different temperature scales. The AmyPI12 amino acid sequence and model were compared with thermophilic α-amylases from Bacillus species that provided the highest structural similarities with AmyPI12. These comparative studies will enable identification of possible determinants of cold adaptation.
    Matched MeSH terms: Fungal Proteins/chemistry*
  18. Jaafar NR, Littler D, Beddoe T, Rossjohn J, Illias RM, Mahadi NM, et al.
    Acta Crystallogr F Struct Biol Commun, 2016 11 01;72(Pt 11):831-839.
    PMID: 27827354
    Fuculose-1-phosphate aldolase (FucA) catalyses the reversible cleavage of L-fuculose 1-phosphate to dihydroxyacetone phosphate (DHAP) and L-lactaldehyde. This enzyme from mesophiles and thermophiles has been extensively studied; however, there is no report on this enzyme from a psychrophile. In this study, the gene encoding FucA from Glaciozyma antarctica PI12 (GaFucA) was cloned and the enzyme was overexpressed in Escherichia coli, purified and crystallized. The tetrameric structure of GaFucA was determined to 1.34 Å resolution. The overall architecture of GaFucA and its catalytically essential histidine triad are highly conserved among other fuculose aldolases. Comparisons of structural features between GaFucA and its mesophilic and thermophilic homologues revealed that the enzyme has typical psychrophilic attributes, indicated by the presence of a high number of nonpolar residues at the surface and a lower number of arginine residues.
    Matched MeSH terms: Fungal Proteins/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links