Displaying publications 21 - 40 of 57 in total

Abstract:
Sort:
  1. Shardiwal RK, Sohrab SS
    Int J Bioinform Res Appl, 2010;6(3):223-9.
    PMID: 20615831
    Relative Synonymous Codon Usage (RSCU) and Relative Adaptiveness of a Codon (RAC) table bias importance in gene expression are well documented in the literature. However, to improve the gene expression we need to figure out which codons are optimal for the expression in order to synthesise an appropriate DNA sequence. An alternative to the manual approach, which is obviously a tedious task, is to set up software on your computer to perform this. Though such kinds of programs are available on the internet, none of them are open-source libraries. Here, one can use our Perl program to do his or her task more easily and efficiently. It is free for everyone.
    Matched MeSH terms: Genomics/methods*
  2. Doni F, Suhaimi NSM, Mispan MS, Fathurrahman F, Marzuki BM, Kusmoro J, et al.
    Int J Mol Sci, 2022 Jan 10;23(2).
    PMID: 35054923 DOI: 10.3390/ijms23020737
    Rice, the main staple food for about half of the world's population, has had the growth of its production stagnate in the last two decades. One of the ways to further improve rice production is to enhance the associations between rice plants and the microbiome that exists around, on, and inside the plant. This article reviews recent developments in understanding how microorganisms exert positive influences on plant growth, production, and health, focusing particularly on rice. A variety of microbial species and taxa reside in the rhizosphere and the phyllosphere of plants and also have multiple roles as symbiotic endophytes while living within plant tissues and even cells. They alter the morphology of host plants, enhance their growth, health, and yield, and reduce their vulnerability to biotic and abiotic stresses. The findings of both agronomic and molecular analysis show ways in which microorganisms regulate the growth, physiological traits, and molecular signaling within rice plants. However, many significant scientific questions remain to be resolved. Advancements in high-throughput multi-omics technologies can be used to elucidate mechanisms involved in microbial-rice plant associations. Prospectively, the use of microbial inoculants and associated approaches offers some new, cost-effective, and more eco-friendly practices for increasing rice production.
    Matched MeSH terms: Genomics/methods
  3. Ma NL, Rahmat Z, Lam SS
    Int J Mol Sci, 2013 Apr 08;14(4):7515-41.
    PMID: 23567269 DOI: 10.3390/ijms14047515
    Physiological and ecological constraints that cause the slow growth and depleted production of crops have raised a major concern in the agriculture industry as they represent a possible threat of short food supply in the future. The key feature that regulates the stress signaling pathway is always related to the reactive oxygen species (ROS). The accumulation of ROS in plant cells would leave traces of biomarkers at the genome, proteome, and metabolome levels, which could be identified with the recent technological breakthrough coupled with improved performance of bioinformatics. This review highlights the recent breakthrough in molecular strategies (comprising transcriptomics, proteomics, and metabolomics) in identifying oxidative stress biomarkers and the arising opportunities and obstacles observed in research on biomarkers in rice. The major issue in incorporating bioinformatics to validate the biomarkers from different omic platforms for the use of rice-breeding programs is also discussed. The development of powerful techniques for identification of oxidative stress-related biomarkers and the integration of data from different disciplines shed light on the oxidative response pathways in plants.
    Matched MeSH terms: Genomics/methods*
  4. Kanniappan P, Ahmed SA, Rajasekaram G, Marimuthu C, Ch'ng ES, Lee LP, et al.
    J Cell Mol Med, 2017 10;21(10):2276-2283.
    PMID: 28756649 DOI: 10.1111/jcmm.13148
    Technological advances in RNA biology greatly improved transcriptome profiling during the last two decades. Besides the discovery of many small RNAs (sRNA) that are involved in the physiological and pathophysiological regulation of various cellular circuits, it becomes evident that the corresponding RNA genes might also serve as potential biomarkers to monitor the progression of disease and treatment. sRNA gene candidate npcTB_6715 was previously identified via experimental RNomic (unpublished data), and we report its application as potential biomarker for the detection of Mycobacterium tuberculosis (MTB) in patient samples. For proof of principle, we developed a multiplex PCR assay and report its validation with 500 clinical cultures, positive for Mycobacteria. The analysis revealed 98.9% sensitivity, 96.1% specificity, positive and negative predictive values of 98.6% and 96.8%, respectively. These results underscore the diagnostic value of the sRNA gene as diagnostic marker for the specific detection of MTB in clinical samples. Its successful application and the general ease of PCR-based detection compared to standard bacterial culture techniques might be the first step towards 'point-of-care' diagnostics of Mycobacteria. To the best of our knowledge, this is the first time for the design of diagnostic applications based on sRNA genes, in Mycobacteria.
    Matched MeSH terms: Genomics/methods
  5. Lee BKB, Gan CP, Chang JK, Tan JL, Fadlullah MZ, Abdul Rahman ZA, et al.
    J Dent Res, 2018 07;97(8):909-916.
    PMID: 29512401 DOI: 10.1177/0022034518759038
    Head and neck cancer (HNC)-derived cell lines represent fundamental models for studying the biological mechanisms underlying cancer development and precision therapies. However, mining the genomic information of HNC cells from available databases requires knowledge on bioinformatics and computational skill sets. Here, we developed a user-friendly web resource for exploring, visualizing, and analyzing genomics information of commonly used HNC cell lines. We populated the current version of GENIPAC with 44 HNC cell lines from 3 studies: ORL Series, OPC-22, and H Series. Specifically, the mRNA expressions for all the 3 studies were derived with RNA-seq. The copy number alterations analysis of ORL Series was performed on the Genome Wide Human Cytoscan HD array, while copy number alterations for OPC-22 were derived from whole exome sequencing. Mutations from ORL Series and H Series were derived from RNA-seq information, while OPC-22 was based on whole exome sequencing. All genomic information was preprocessed with customized scripts and underwent data validation and correction through data set validator tools provided by cBioPortal. The clinical and genomic information of 44 HNC cell lines are easily assessable in GENIPAC. The functional utility of GENIPAC was demonstrated with some of the genomic alterations that are commonly reported in HNC, such as TP53, EGFR, CCND1, and PIK3CA. We showed that these genomic alterations as reported in The Cancer Genome Atlas database were recapitulated in the HNC cell lines in GENIPAC. Importantly, genomic alterations within pathways could be simultaneously visualized. We developed GENIPAC to create access to genomic information on HNC cell lines. This cancer omics initiative will help the research community to accelerate better understanding of HNC and the development of new precision therapeutic options for HNC treatment. GENIPAC is freely available at http://genipac.cancerresearch.my/ .
    Matched MeSH terms: Genomics/methods*
  6. Asnet MJ, Rubia AG, Ramya G, Nagalakshmi RN, Shenbagarathai R
    J Vector Borne Dis, 2014 Jun;51(2):82-5.
    PMID: 24947213
    DENVirDB is a web portal that provides the sequence information and computationally curated information of dengue viral proteins. The advent of genomic technology has increased the sequences available in the public databases. In order to create relevant concise information on Dengue Virus (DENV), the genomic sequences were collected, analysed with the bioinformatics tools and presented as DENVirDB. It provides the comprehensive information of complete genome sequences of dengue virus isolates of Southeast Asia, viz. India, Bangladesh, Sri Lanka, East Timor, Philippines, Malaysia, Papua New Guinea, Brunei and China. DENVirDB also includes the structural and non-structural protein sequences of DENV. It intends to provide the integrated information on the physicochemical properties, topology, secondary structure, domain and structural properties for each protein sequences. It contains over 99 entries in complete genome sequences and 990 entries in protein sequences, respectively. Therefore, DENVirDB could serve as a user friendly database for researchers in acquiring sequences and proteomic information in one platform.
    Matched MeSH terms: Genomics/methods
  7. Jelen MM, Chen Z, Kocjan BJ, Burt FJ, Chan PK, Chouhy D, et al.
    J Virol, 2014 Jul;88(13):7307-16.
    PMID: 24741079 DOI: 10.1128/JVI.00621-14
    Human papillomavirus type 6 (HPV6) is the major etiological agent of anogenital warts and laryngeal papillomas and has been included in both the quadrivalent and nonavalent prophylactic HPV vaccines. This study investigated the global genomic diversity of HPV6, using 724 isolates and 190 complete genomes from six continents, and the association of HPV6 genomic variants with geographical location, anatomical site of infection/disease, and gender. Initially, a 2,800-bp E5a-E5b-L1-LCR fragment was sequenced from 492/530 (92.8%) HPV6-positive samples collected for this study. Among them, 130 exhibited at least one single nucleotide polymorphism (SNP), indel, or amino acid change in the E5a-E5b-L1-LCR fragment and were sequenced in full. A global alignment and maximum likelihood tree of 190 complete HPV6 genomes (130 fully sequenced in this study and 60 obtained from sequence repositories) revealed two variant lineages, A and B, and five B sublineages: B1, B2, B3, B4, and B5. HPV6 (sub)lineage-specific SNPs and a 960-bp representative region for whole-genome-based phylogenetic clustering within the L2 open reading frame were identified. Multivariate logistic regression analysis revealed that lineage B predominated globally. Sublineage B3 was more common in Africa and North and South America, and lineage A was more common in Asia. Sublineages B1 and B3 were associated with anogenital infections, indicating a potential lesion-specific predilection of some HPV6 sublineages. Females had higher odds for infection with sublineage B3 than males. In conclusion, a global HPV6 phylogenetic analysis revealed the existence of two variant lineages and five sublineages, showing some degree of ethnogeographic, gender, and/or disease predilection in their distribution.

    IMPORTANCE: This study established the largest database of globally circulating HPV6 genomic variants and contributed a total of 130 new, complete HPV6 genome sequences to available sequence repositories. Two HPV6 variant lineages and five sublineages were identified and showed some degree of association with geographical location, anatomical site of infection/disease, and/or gender. We additionally identified several HPV6 lineage- and sublineage-specific SNPs to facilitate the identification of HPV6 variants and determined a representative region within the L2 gene that is suitable for HPV6 whole-genome-based phylogenetic analysis. This study complements and significantly expands the current knowledge of HPV6 genetic diversity and forms a comprehensive basis for future epidemiological, evolutionary, functional, pathogenicity, vaccination, and molecular assay development studies.

    Matched MeSH terms: Genomics/methods
  8. Yu G, Hatta A, Periyannan S, Lagudah E, Wulff BBH
    Methods Mol Biol, 2017;1659:207-213.
    PMID: 28856653 DOI: 10.1007/978-1-4939-7249-4_18
    DNA is widely used in plant genetic and molecular biology studies. In this chapter, we describe how to extract DNA from wheat tissues. The tissue samples are ground to disrupt the cell wall. Then cetyltrimethylammonium bromide (CTAB) or sodium dodecyl sulfate (SDS) is used to disrupt the cell and nuclear membranes to release the DNA into solution. A reducing agent, β-mercaptoethanol, is added to break the disulfide bonds between the cysteine residues and to help remove the tanins and polyphenols. A high concentration of salt is employed to remove polysaccharides. Ethylenediaminetetraacetic acid (EDTA) stops DNase activity by chelating the magnesium ions. The nucleic acid solution is extracted with chloroform-isoamyl alcohol (24:1) or 6 M ammonium acetate. The DNA in aqueous phase is precipated with ethanol or isopropanol, which makes DNA less hydrophilic in the presence of sodium ions (Na+).
    Matched MeSH terms: Genomics/methods
  9. Yap PSX, Ahmad Kamar A, Chong CW, Ngoi ST, Teh CSJ
    Microb Drug Resist, 2020 Mar;26(3):190-203.
    PMID: 31545116 DOI: 10.1089/mdr.2019.0199
    Background:
    Klebsiella pneumoniae is a major opportunistic pathogen frequently associated with nosocomial infections, and often poses a major threat to immunocompromised patients. In our previous study, two K. pneumoniae (K36 and B13), which displayed resistance to almost all major antibiotics, including colistin, were isolated. Both isolates were not associated with infection and isolated from the stools of two preterm neonates admitted to the neonatal intensive care unit (NICU) during their first week of life.
    Materials and Methods:
    In this study, whole genome sequencing was performed on these two clinical multidrug resistant K. pneumoniae. We aimed to determine the genetic factors that underline the antibiotic-resistance phenotypes of these isolates.
    Results:
    The strains harbored blaSHV-27, blaSHV-71, and oqxAB genes conferring resistance to cephalosporins, carbapenems, and fluoroquinolones, respectively, but not harboring any known plasmid-borne colistin resistance determinants such as mcr-1. However, genome analysis discovered interruption of mgrB gene by insertion sequences gaining insight into the development of colistin resistance.
    Conclusion:
    The observed finding that points to a scenario of potential gut-associated resistance genes to Gram negative (K. pneumoniae) host in the NICU environment warrants attention and further investigation.
    Matched MeSH terms: Genomics/methods
  10. Swain A, Gnanasekar P, Prava J, Rajeev AC, Kesarwani P, Lahiri C, et al.
    Microb Drug Resist, 2021 Feb;27(2):212-226.
    PMID: 32936741 DOI: 10.1089/mdr.2020.0161
    Many members of nontuberculous mycobacteria (NTM) are opportunistic pathogens causing several infections in animals. The incidence of NTM infections and emergence of drug-resistant NTM strains are rising worldwide, emphasizing the need to develop novel anti-NTM drugs. The present study is aimed to identify broad-spectrum drug targets in NTM using a comparative genomics approach. The study identified 537 core proteins in NTM of which 45 were pathogen specific and essential for the survival of pathogens. Furthermore, druggability analysis indicated that 15 were druggable among those 45 proteins. These 15 proteins, which were core proteins, pathogen-specific, essential, and druggable, were considered as potential broad-spectrum candidates. Based on their locations in cytoplasm and membrane, targets were classified as drug and vaccine targets. The identified 15 targets were different enzymes, carrier proteins, transcriptional regulator, two-component system protein, ribosomal, and binding proteins. The identified targets could further be utilized by researchers to design inhibitors for the discovery of antimicrobial agents.
    Matched MeSH terms: Genomics/methods
  11. Choo SW, Rishik S, Wee WY
    Microb Genom, 2020 12;6(12).
    PMID: 33295861 DOI: 10.1099/mgen.0.000495
    Mycobacteroides immunogenum is an emerging opportunistic pathogen implicated in nosocomial infections. Comparative genome analyses may provide better insights into its genomic structure, functions and evolution. The present analysis showed that M. immunogenum has an open pan-genome. Approximately 36.8% of putative virulence genes were identified in the accessory regions of M. immunogenum. Phylogenetic analyses revealed two potential novel subspecies of M. immunogenum, supported by evidence from ANIb (average nucleotide identity using blast) and GGDC (Genome to Genome Distance Calculator) analyses. We identified 74 genomic islands (GIs) in Subspecies 1 and 23 GIs in Subspecies 2. All Subspecies 2-harboured GIs were not found in Subspecies 1, indicating that they might have been acquired by Subspecies 2 after their divergence. Subspecies 2 has more defence genes than Subspecies 1, suggesting that it might be more resistant to the insertion of foreign DNA and probably explaining why Subspecies 2 has fewer GIs. Positive selection analysis suggest that M. immunogenum has a lower selection pressure compared to non-pathogenic mycobacteria. Thirteen genes were positively selected and many were involved in virulence.
    Matched MeSH terms: Genomics/methods*
  12. Sahebi M, Hanafi MM, Azizi P, Hakim A, Ashkani S, Abiri R
    Mol Biotechnol, 2015 Oct;57(10):880-903.
    PMID: 26271955 DOI: 10.1007/s12033-015-9884-z
    Suppression subtractive hybridization (SSH) is an effective method to identify different genes with different expression levels involved in a variety of biological processes. This method has often been used to study molecular mechanisms of plants in complex relationships with different pathogens and a variety of biotic stresses. Compared to other techniques used in gene expression profiling, SSH needs relatively smaller amounts of the initial materials, with lower costs, and fewer false positives present within the results. Extraction of total RNA from plant species rich in phenolic compounds, carbohydrates, and polysaccharides that easily bind to nucleic acids through cellular mechanisms is difficult and needs to be considered. Remarkable advancement has been achieved in the next-generation sequencing (NGS) field. As a result of progress within fields related to molecular chemistry and biology as well as specialized engineering, parallelization in the sequencing reaction has exceptionally enhanced the overall read number of generated sequences per run. Currently available sequencing platforms support an earlier unparalleled view directly into complex mixes associated with RNA in addition to DNA samples. NGS technology has demonstrated the ability to sequence DNA with remarkable swiftness, therefore allowing previously unthinkable scientific accomplishments along with novel biological purposes. However, the massive amounts of data generated by NGS impose a substantial challenge with regard to data safe-keeping and analysis. This review examines some simple but vital points involved in preparing the initial material for SSH and introduces this method as well as its associated applications to detect different novel genes from different plant species. This review evaluates general concepts, basic applications, plus the probable results of NGS technology in genomics, with unique mention of feasible potential tools as well as bioinformatics.
    Matched MeSH terms: Genomics/methods
  13. Jasper M, Schmidt TL, Ahmad NW, Sinkins SP, Hoffmann AA
    Mol Ecol Resour, 2019 Sep;19(5):1254-1264.
    PMID: 31125998 DOI: 10.1111/1755-0998.13043
    Understanding past dispersal and breeding events can provide insight into ecology and evolution and can help inform strategies for conservation and the control of pest species. However, parent-offspring dispersal can be difficult to investigate in rare species and in small pest species such as mosquitoes. Here, we develop a methodology for estimating parent-offspring dispersal from the spatial distribution of close kin, using pairwise kinship estimates derived from genome-wide single nucleotide polymorphisms (SNPs). SNPs were scored in 162 Aedes aegypti (yellow fever mosquito) collected from eight close-set, high-rise apartment buildings in an area of Malaysia with high dengue incidence. We used the SNPs to reconstruct kinship groups across three orders of kinship. We transformed the geographical distances between all kin pairs within each kinship category into axial standard deviations of these distances, then decomposed these into components representing past dispersal events. From these components, we isolated the axial standard deviation of parent-offspring dispersal and estimated neighbourhood area (129 m), median parent-offspring dispersal distance (75 m) and oviposition dispersal radius within a gonotrophic cycle (36 m). We also analysed genetic structure using distance-based redundancy analysis and linear regression, finding isolation by distance both within and between buildings and estimating neighbourhood size at 268 individuals. These findings indicate the scale required to suppress local outbreaks of arboviral disease and to target releases of modified mosquitoes for mosquito and disease control. Our methodology is readily implementable for studies of other species, including pests and species of conservation significance.
    Matched MeSH terms: Genomics/methods*
  14. Feng S, Stiller J, Deng Y, Armstrong J, Fang Q, Reeve AH, et al.
    Nature, 2020 11;587(7833):252-257.
    PMID: 33177665 DOI: 10.1038/s41586-020-2873-9
    Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity1-4. Sparse taxon sampling has previously been proposed to confound phylogenetic inference5, and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species.
    Matched MeSH terms: Genomics/methods*
  15. Rhie A, McCarthy SA, Fedrigo O, Damas J, Formenti G, Koren S, et al.
    Nature, 2021 Apr;592(7856):737-746.
    PMID: 33911273 DOI: 10.1038/s41586-021-03451-0
    High-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are available for only a few non-microbial species1-4. To address this issue, the international Genome 10K (G10K) consortium5,6 has worked over a five-year period to evaluate and develop cost-effective methods for assembling highly accurate and nearly complete reference genomes. Here we present lessons learned from generating assemblies for 16 species that represent six major vertebrate lineages. We confirm that long-read sequencing technologies are essential for maximizing genome quality, and that unresolved complex repeats and haplotype heterozygosity are major sources of assembly error when not handled correctly. Our assemblies correct substantial errors, add missing sequence in some of the best historical reference genomes, and reveal biological discoveries. These include the identification of many false gene duplications, increases in gene sizes, chromosome rearrangements that are specific to lineages, a repeated independent chromosome breakpoint in bat genomes, and a canonical GC-rich pattern in protein-coding genes and their regulatory regions. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an international effort to generate high-quality, complete reference genomes for all of the roughly 70,000 extant vertebrate species and to help to enable a new era of discovery across the life sciences.
    Matched MeSH terms: Genomics/methods*
  16. Chaisson MJP, Sanders AD, Zhao X, Malhotra A, Porubsky D, Rausch T, et al.
    Nat Commun, 2019 04 16;10(1):1784.
    PMID: 30992455 DOI: 10.1038/s41467-018-08148-z
    The incomplete identification of structural variants (SVs) from whole-genome sequencing data limits studies of human genetic diversity and disease association. Here, we apply a suite of long-read, short-read, strand-specific sequencing technologies, optical mapping, and variant discovery algorithms to comprehensively analyze three trios to define the full spectrum of human genetic variation in a haplotype-resolved manner. We identify 818,054 indel variants (<50 bp) and 27,622 SVs (≥50 bp) per genome. We also discover 156 inversions per genome and 58 of the inversions intersect with the critical regions of recurrent microdeletion and microduplication syndromes. Taken together, our SV callsets represent a three to sevenfold increase in SV detection compared to most standard high-throughput sequencing studies, including those from the 1000 Genomes Project. The methods and the dataset presented serve as a gold standard for the scientific community allowing us to make recommendations for maximizing structural variation sensitivity for future genome sequencing studies.
    Matched MeSH terms: Genomics/methods*
  17. Wu D, Shen E, Jiang B, Feng Y, Tang W, Lao S, et al.
    Nat Commun, 2022 02 03;13(1):689.
    PMID: 35115514 DOI: 10.1038/s41467-022-28359-9
    As one of the great survivors of the plant kingdom, barnyard grasses (Echinochloa spp.) are the most noxious and common weeds in paddy ecosystems. Meanwhile, at least two Echinochloa species have been domesticated and cultivated as millets. In order to better understand the genomic forces driving the evolution of Echinochloa species toward weed and crop characteristics, we assemble genomes of three Echinochloa species (allohexaploid E. crus-galli and E. colona, and allotetraploid E. oryzicola) and re-sequence 737 accessions of barnyard grasses and millets from 16 rice-producing countries. Phylogenomic and comparative genomic analyses reveal the complex and reticulate evolution in the speciation of Echinochloa polyploids and provide evidence of constrained disease-related gene copy numbers in Echinochloa. A population-level investigation uncovers deep population differentiation for local adaptation, multiple target-site herbicide resistance mutations of barnyard grasses, and limited domestication of barnyard millets. Our results provide genomic insights into the dual roles of Echinochloa species as weeds and crops as well as essential resources for studying plant polyploidization, adaptation, precision weed control and millet improvements.
    Matched MeSH terms: Genomics/methods*
  18. Pearson RD, Amato R, Auburn S, Miotto O, Almagro-Garcia J, Amaratunga C, et al.
    Nat Genet, 2016 Aug;48(8):959-964.
    PMID: 27348299 DOI: 10.1038/ng.3599
    The widespread distribution and relapsing nature of Plasmodium vivax infection present major challenges for the elimination of malaria. To characterize the genetic diversity of this parasite in individual infections and across the population, we performed deep genome sequencing of >200 clinical samples collected across the Asia-Pacific region and analyzed data on >300,000 SNPs and nine regions of the genome with large copy number variations. Individual infections showed complex patterns of genetic structure, with variation not only in the number of dominant clones but also in their level of relatedness and inbreeding. At the population level, we observed strong signals of recent evolutionary selection both in known drug resistance genes and at new loci, and these varied markedly between geographical locations. These findings demonstrate a dynamic landscape of local evolutionary adaptation in the parasite population and provide a foundation for genomic surveillance to guide effective strategies for control and elimination of P. vivax.
    Matched MeSH terms: Genomics/methods*
  19. Bhalla R, Narasimhan K, Swarup S
    Plant Cell Rep, 2005 Dec;24(10):562-71.
    PMID: 16220342
    A natural shift is taking place in the approaches being adopted by plant scientists in response to the accessibility of systems-based technology platforms. Metabolomics is one such field, which involves a comprehensive non-biased analysis of metabolites in a given cell at a specific time. This review briefly introduces the emerging field and a range of analytical techniques that are most useful in metabolomics when combined with computational approaches in data analyses. Using cases from Arabidopsis and other selected plant systems, this review highlights how information can be integrated from metabolomics and other functional genomics platforms to obtain a global picture of plant cellular responses. We discuss how metabolomics is enabling large-scale and parallel interrogation of cell states under different stages of development and defined environmental conditions to uncover novel interactions among various pathways. Finally, we discuss selected applications of metabolomics.
    Matched MeSH terms: Genomics/methods
  20. Heydari H, Siow CC, Tan MF, Jakubovics NS, Wee WY, Mutha NV, et al.
    PLoS One, 2014;9(1):e86318.
    PMID: 24466021 DOI: 10.1371/journal.pone.0086318
    Corynebacteria are used for a wide variety of industrial purposes but some species are associated with human diseases. With increasing number of corynebacterial genomes having been sequenced, comparative analysis of these strains may provide better understanding of their biology, phylogeny, virulence and taxonomy that may lead to the discoveries of beneficial industrial strains or contribute to better management of diseases. To facilitate the ongoing research of corynebacteria, a specialized central repository and analysis platform for the corynebacterial research community is needed to host the fast-growing amount of genomic data and facilitate the analysis of these data. Here we present CoryneBase, a genomic database for Corynebacterium with diverse functionality for the analysis of genomes aimed to provide: (1) annotated genome sequences of Corynebacterium where 165,918 coding sequences and 4,180 RNAs can be found in 27 species; (2) access to comprehensive Corynebacterium data through the use of advanced web technologies for interactive web interfaces; and (3) advanced bioinformatic analysis tools consisting of standard BLAST for homology search, VFDB BLAST for sequence homology search against the Virulence Factor Database (VFDB), Pairwise Genome Comparison (PGC) tool for comparative genomic analysis, and a newly designed Pathogenomics Profiling Tool (PathoProT) for comparative pathogenomic analysis. CoryneBase offers the access of a range of Corynebacterium genomic resources as well as analysis tools for comparative genomics and pathogenomics. It is publicly available at http://corynebacterium.um.edu.my/.
    Matched MeSH terms: Genomics/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links