METHOD: Data from 1,538 women were analyzed. At the first visit for prenatal care, the 50-gram glucose challenge test was followed by the 75-gram glucose tolerance test in those who screened positive. GDM was diagnosed based on the WHO (1999) criteria. Maternal complete blood count was obtained at the first visit, hospitalization for birth, and after birth. Receiver operator characteristic curves were generated to establish thresholds. Multivariable logistic regression analyses were performed to establish independent predictors of GDM.
RESULTS: GDM was diagnosed in 182/1,538 (11.8%). GDM was associated with hemoglobin level, hematocrit and erythrocyte count at the first visit for prenatal care only. Hemoglobin threshold at the first visit was established at 11.5 g/dl. After adjustment, high hemoglobin [AOR 1.5 (95% CI 1.0-2.1); p = 0.027] remained predictive of GDM.
CONCLUSIONS: High maternal hemoglobin level at the first prenatal visit is independently predictive of GDM.
METHODS: A prospective case-control study was carried out among 100 GDM cases and 273 matched controls, attending regular antenatal clinic at two private hospitals of Karnataka. Data was collected by personal interviews using a standard questionnaire. Perceived stress was assessed using the Cohen 10-item Perceived Stress Scale. Score of ≥20 was identified as high stress. Statistical Package for the Social Sciences version 15 was used for analysis.
RESULTS: Exposure rates for high maternal perceived stress among cases during pregnancy were noted. The odds of GDM were 13 folds higher among those with high antenatal stress (≥20) compared to those with low (<20) (p
Methods: 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Ferric reducing antioxidant power assay (FRAP) were applied to evaluate the antioxidant activity of carob. In vitro cytotoxicity of carob was conducted on human hepatocytes (WRL68) and rat pancreatic β-cells (RIN-5F). Acute oral toxicity of carob was conducted on a total of 18 male and 18 female Sprague-Dawley (SD) rats, which were subdivided into three groups (n = 6), namely: high and low dose carob-treated (CS5000 and CS2000, respectively) as well as the normal control (NC) receiving a single oral dose of 5,000 mg kg-1 carob, 2,000 mg kg-1 carob and 5 mL kg-1 distilled water for 14 days, respectively. Alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, total bilirubin, creatinine and urea were assessed. Livers and kidneys were harvested for histopathology. In vitro inhibitory effect against α-amylase and α-glucosidase was evaluated. In vivo glycemic activity was conducted on 24 male SD rats which were previously intraperitoneally injected with 55 mg kg-1 streptozotocin (STZ) followed by 210 mg kg-1nicotinamide to induce type 2 diabetes mellitus. An extra non-injected group (n = 6) was added as a normal control (NC). The injected-rats were divided into four groups (n = 6), namely: diabetic control (D0), 5 mg kg-1glibenclamide-treated diabetic (GD), 500 mg kg-1 carob-treated diabetic (CS500) and 1,000 mg kg-1 carob-treated diabetic (CS1000). All groups received a single oral daily dose of their treatment for 4 weeks. Body weight, fasting blood glucose (FBG), oral glucose tolerance test, biochemistry, insulin and hemostatic model assessment were assessed. Pancreases was harvested for histopathology.
Results: Carob demonstrated a FRAP value of 3191.67 ± 54.34 µmoL Fe++ and IC50 of DPPH of 11.23 ± 0.47 µg mL-1. In vitro, carob was non-toxic on hepatocytes and pancreatic β-cells. In acute oral toxicity, liver and kidney functions and their histological sections showed no abnormalities. Carob exerted an in vitro inhibitory effect against α-amylase and α-glucosidase with IC50 of 92.99 ± 0.22 and 97.13 ± 4.11 µg mL-1, respectively. In diabetic induced rats, FBG of CS1000 was significantly less than diabetic control. Histological pancreatic sections of CS1000 showed less destruction of β-cells than CS500 and diabetic control.
Conclusion: Carob pod did not cause acute systemic toxicity and showed in vitro antioxidant effects. On the other hand, inhibiting α-amylase and α-glucosidase was evident. Interestingly, a high dose of carob exhibits an in vivo antihyperglycemic activity and warrants further in-depth study to identify the potential carob extract composition.