Displaying publications 21 - 36 of 36 in total

Abstract:
Sort:
  1. Zawawi NK, Taha M, Ahmat N, Ismail NH, Wadood A, Rahim F
    Bioorg Chem, 2017 02;70:184-191.
    PMID: 28043716 DOI: 10.1016/j.bioorg.2016.12.009
    Thiourea derivatives having benzimidazole 1-17 have been synthesized, characterized by 1H NMR, 13C NMR and EI-MS and evaluated for α-glucosidase inhibition. Identification of potential α-glucosidase inhibitors were done by in vitro screening of 17 thiourea bearing benzimidazole derivatives using Baker's yeast α-glucosidase enzyme. Compounds 1-17 exhibited a varying degree of α-glucosidase inhibitory activity with IC50 values between 35.83±0.66 and 297.99±1.20μM which are more better than the standard acarbose (IC50=774.5±1.94μM). Compound 10 and 14 showed significant inhibitory effects with IC50 value 50.57±0.81 and 35.83±0.66μM, respectively better than the rest of the series. Structure activity relationships were established. Molecular docking studies were performed to understand the binding interaction of the compounds.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis
  2. Nafeesa K, Aziz-Ur-Rehman -, Abbasi MA, Siddiqui SZ, Rasool S, Ali Shah SA, et al.
    Pak J Pharm Sci, 2019 Nov;32(6):2651-2658.
    PMID: 31969298
    A series of 1, 2, 4-triazole derivatives bearing piperidine moiety has been introduced as new anti-diabetic drug candidates with least cytotoxicity. p-Chlorophenylsulfonyl chloride (1) and ethyl nipecotate (2) were the starting reagents that resulted into corresponding 3,4,5-trisubstituted-1,2,4-triazole (6) through a series of steps. A series of electrophiles, 9a-e, were synthesized by reacting 4-bromobutyryl chloride (7) with differently substituted aromatic amines (8a-e) under basic aqueous medium. Target derivatives, 10a-e, were synthesized by the reaction of compound 6 with N-aryl-4-bromobutanamides (9a-e) in an aprotic solvent. Structures of all the derivatives were verified by spectroscopic analysis using IR, 1H-NMR, 13C-NMR and EIMS. Most of the derivatives revealed moderate to good α-glucosidase inhibitory activity with reference to acarbose. The moderate hemolytic potential demonstrated least toxicity.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis*
  3. Taha M, Imran S, Rahim F, Wadood A, Khan KM
    Bioorg Chem, 2018 02;76:273-280.
    PMID: 29223804 DOI: 10.1016/j.bioorg.2017.12.001
    Inhibition of α-glucosidase is an effective strategy for controlling post-prandial hyperglycemia in diabetic patients. Beside these α-glucosidase inhibitors has been also used as anti-obesity and anti-viral drugs. Keeping in view the greater importance of α-glucosidase inhibitors here in this study we are presenting oxindole based oxadiazoles hybrid analogs (1-20) synthesis, characterized by different spectroscopic techniques including 1H NMR and EI-MS and their α-glucosidase inhibitory activity. All compounds were found potent inhibitors for the enzyme with IC50 values ranging between 1.25 ± 0.05 and 268.36 ± 4.22 µM when compared with the standard drug acarbose having IC50 value 895.09 ± 2.04 µM. Our study identifies novel series of potent α-glucosidase inhibitors and further investigation on this may led to the lead compounds. A structure activity relationship has been established for all compounds. The interactions of the active compounds and enzyme active site were established with the help of molecular docking studies.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis
  4. Taha M, Shah SAA, Afifi M, Imran S, Sultan S, Rahim F, et al.
    Bioorg Chem, 2018 04;77:586-592.
    PMID: 29477126 DOI: 10.1016/j.bioorg.2018.01.033
    We have synthesized seventeen Coumarin based derivatives (1-17), characterized by 1HNMR, 13CNMR and EI-MS and evaluated for α-glucosidase inhibitory potential. Among the series, all derivatives exhibited outstanding α-glucosidase inhibition with IC50 values ranging between 1.10 ± 0.01 and 36.46 ± 0.70 μM when compared with the standard inhibitor acarbose having IC50 value 39.45 ± 0.10 μM. The most potent derivative among the series is derivative 3 having IC50 value 1.10 ± 0.01 μM, which are many folds better than the standard acarbose. The structure activity relationship (SAR) was mainly based upon by bring about difference of substituent's on phenyl part. Molecular docking studies were carried out to understand the binding interaction of the most active compounds.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis
  5. Ali F, Khan KM, Salar U, Taha M, Ismail NH, Wadood A, et al.
    Eur J Med Chem, 2017 Sep 29;138:255-272.
    PMID: 28672278 DOI: 10.1016/j.ejmech.2017.06.041
    Acarbose, miglitol, and voglibose are the inhibitors of α-glucosidase enzyme and being clinically used for the management of type-II diabetes mellitus. However, many adverse effects are also associated with them. So, the development of new therapeutic agents is an utmost interest in medicinal chemistry research. Current study is based on the identification of new α-glucosidase inhibitors. For that purpose, hydrazinyl arylthiazole based pyridine derivatives 1-39 were synthesized via two step reaction and fully characterized by spectroscopic techniques EI-MS, HREI-MS, (1)H-, and (13)C NMR. However, stereochemistry of the iminic bond was confirmed by NOESY. All compounds were subjected to in vitro α-glucosidase inhibitory activity and found many folds active (IC50 = 1.40 ± 0.01-236.10 ± 2.20 μM) as compared to the standard acarbose having IC50 value of 856.45 ± 5.60 μM. A limited structure-activity relationship was carried out in order to make a presumption about the substituent's effect on inhibitory activity which predicted that substituents of more negative inductive effect played important role in the activity as compared to the substituents of less negative inductive effect. However, in order to have a good understanding of ligand enzyme interactions, molecular docking study was also conducted. In silico study was confirmed that substituents like halogens (Cl) and nitro (NO2) which have negative inductive effect were found to make important interactions with active site residues.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis
  6. Adegboye AA, Khan KM, Salar U, Aboaba SA, Kanwal, Chigurupati S, et al.
    Eur J Med Chem, 2018 Apr 25;150:248-260.
    PMID: 29533872 DOI: 10.1016/j.ejmech.2018.03.011
    Despite of many diverse biological activities exhibited by benzimidazole scaffold, it is rarely explored for the α-amylase inhibitory activity. For that purpose, 2-aryl benzimidazole derivatives 1-45 were synthesized and screened for in vitro α-amylase inhibitory activity. Structures of all synthetic compounds were deduced by various spectroscopic techniques. All compounds revealed inhibition potential with IC50 values of 1.48 ± 0.38-2.99 ± 0.14 μM, when compared to the standard acarbose (IC50 = 1.46 ± 0.26 μM). Limited SAR suggested that the variation in the inhibitory activities of the compounds are the result of different substitutions on aryl ring. In order to rationalize the binding interactions of most active compounds with the active site of α-amylase enzyme, in silico study was conducted.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis
  7. Zawawi NK, Taha M, Ahmat N, Wadood A, Ismail NH, Rahim F, et al.
    Bioorg Chem, 2016 Feb;64:29-36.
    PMID: 26637946 DOI: 10.1016/j.bioorg.2015.11.006
    Newly synthesized benzimidazole hydrazone derivatives 1-26 were evaluated for their α-glucosidase inhibitory activity. Compounds 1-26 exhibited varying degrees of yeast α-glucosidase inhibitory activity with IC50 values between 8.40 ± 0.76 and 179.71 ± 1.11 μM when compared with standard acarbose. In this assay, seven compounds that showed highest inhibitory effects than the rest of benzimidazole series were identified. All the synthesized compounds were characterized by different spectroscopic methods adequately. We further evaluated the interaction of the active compounds with enzyme with the help of docking studies.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis
  8. Taha M, Ismail NH, Lalani S, Fatmi MQ, Atia-Tul-Wahab, Siddiqui S, et al.
    Eur J Med Chem, 2015 Mar 6;92:387-400.
    PMID: 25585009 DOI: 10.1016/j.ejmech.2015.01.009
    In an effort to design and synthesize a new class of α-glucosidase inhibitor, we synthesized benzothiazole hybrid having benzohydrazide moiety (5). Compound 5 was reacted with various substituted aryl aldehyde to generate a small library of compounds 6-35. Synthesis of compounds was confirmed by the spectral information. These compounds were screened for their α-glucosidase activity. They showed a varying degree of α-glucosidase inhibition with IC50 values ranging between 5.31 and 53.34 μM. Compounds 6, 7, 9-16, 19, 21-30, 32-35 showed superior activity as compared to standard acarbose (IC50 = 906 ± 6.3 μM). This has identified a new class of α-glucosidase inhibitors. The predicted physico-chemical properties indicated the drug appropriateness for most of these compounds, as they obey Lipinski's rule of five (RO5). A hybrid B3LYP density functional theory (DFT) was employed for energy, minimization of 3D structures for all synthetic compounds using 6-311 + G(d,p) basis sets followed by molecular docking to explore their interactions with human intestinal C- and N-terminal domains of α-glucosidase. All compounds bind to the prospective allosteric site of the C- terminal domain, and consequently, may be considered as mixed inhibitors. It was hypothesized that both the dipole moment and H-bond interactions govern the biological activation of these compounds.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis*
  9. Rahim F, Ullah K, Ullah H, Wadood A, Taha M, Ur Rehman A, et al.
    Bioorg Chem, 2015 Feb;58:81-7.
    PMID: 25528720 DOI: 10.1016/j.bioorg.2014.12.001
    A new series of triazinoindole analogs 1-11 were synthesized, characterized by EI-MS and (1)H NMR, evaluated for α-glucosidase inhibitory potential. All eleven (11) analogs showed different range of α-glucosidase inhibitory potential with IC50 value ranging between 2.46±0.008 and 312.79±0.06 μM when compared with the standard acarbose (IC50, 38.25±0.12 μM). Among the series, compounds 1, 3, 4, 5, 7, 8, and 11 showed excellent inhibitory potential with IC50 values 2.46±0.008, 37.78±0.05, 28.91±0.0, 38.12±0.04, 37.43±0.03, 36.89±0.06 and 37.11±0.05 μM respectively. All other compounds also showed good enzyme inhibition. The binding modes of these analogs were confirmed through molecular docking.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis
  10. Khan KM, Rahim F, Wadood A, Kosar N, Taha M, Lalani S, et al.
    Eur J Med Chem, 2014 Jun 23;81:245-52.
    PMID: 24844449 DOI: 10.1016/j.ejmech.2014.05.010
    In our effort directed toward the discovery of new anti-diabetic agent for the treatment of diabetes, a library of biscoumarin derivative 1-18 was synthesized and evaluated for α-glucosidase inhibitory potential. All eighteen (18) compounds displayed assorted α-glucosidase activity with IC50 values 16.5-385.9 μM, if compared with the standard acarbose (IC50 = 906 ± 6.387 μM). In addition, molecular docking studies were carried out to explore the binding interactions of biscoumarin derivatives with the enzyme. This study has identified a new class of potent α-glucosidase inhibitors.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis
  11. Taha M, Ismail NH, Imran S, Rokei MQB, Saad SM, Khan KM
    Bioorg Med Chem, 2015 Aug 01;23(15):4155-4162.
    PMID: 26183542 DOI: 10.1016/j.bmc.2015.06.060
    Oxadiazole derivatives (6-28) having hydrazone linkage, were synthesized through condensation reaction between benzohydrazide 5 with various benzaldehydes. The oxadiazoles derivatives (6-28) were evaluated for their α-glucosidase inhibitory activity. The IC50 values for inhibition activity vary in the range between 2.64 ± 0.05 and 460.14 ± 3.25 μM. The IC50 values were being compared to the standard acarbose (IC50=856.45 ± 5.60 μM) and it was found that compounds 6-9, 12, 13, 16, 18, 20, 22-28 were found to be more active than acarbose, while other compounds showed no activity. Structure-activity relationship (SAR) studies suggest that oxadiazole benzohydrazones (6-28) inhibitory potential is dependent on substitution of the N-benzylidene part. Compound 18 (IC50=2.64 ± 0.05 μM), which has trihydroxy substitution at C-2', C-4', and C-5' on N-benzylidene moiety, recorded the highest inhibition activity that is three-hundred times more active than the standard drug, acarbose (IC50=856.45 ± 5.60 μM). Compound 23 (IC50=34.64 ± 0.35 μM) was found to be the most active among compounds having single hydroxyl substitution. Shifting hydroxyl from C-2' to C-4' (6) and C-3' (7) reduces inhibitory activity significantly. Compounds with chlorine substituent (compounds 16, 28, and 27) showed potent activities but lower as compared to hydroxyl analogs. Substituent like nitro or methyl groups at any position suppresses enzyme inhibition activity. This reveals the important presence of hydroxyl and halo groups to have enzyme inhibitory potential.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis*
  12. Leong SW, Abas F, Lam KW, Yusoff K
    Bioorg Med Chem Lett, 2018 02 01;28(3):302-309.
    PMID: 29292226 DOI: 10.1016/j.bmcl.2017.12.048
    A series of thirty-four diarylpentanoids derivatives were synthesized and evaluated for their α-glucosidase inhibitory activity. Eleven compounds (19, 20, 21, 24, 27, 28, 29, 31, 32, 33 and 34) were found to significantly inhibit α-glucosidase in which compounds 28, 31 and 32 demonstrated the highest activity with IC50 values ranging from 14.1 to 15.1 µM. Structure-activity comparison shows that multiple hydroxy groups are essential for α-glucosidase inhibitory activity. Meanwhile, 3,4-dihydroxyphenyl and furanyl moieties were found to be crucial in improving α-glucosidase inhibition. Molecular docking analyses further confirmed the critical role of both 3,4-dihydroxyphenyl and furanyl moieties as they bound to α-glucosidase active site in different mode. Overall result suggests that diarylpentanoids with both five membered heterocyclic ring and polyhydroxyphenyl moiety could be a new lead design in the search of novel α-glucosidase inhibitor.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis
  13. Noreen T, Taha M, Imran S, Chigurupati S, Rahim F, Selvaraj M, et al.
    Bioorg Chem, 2017 06;72:248-255.
    PMID: 28482265 DOI: 10.1016/j.bioorg.2017.04.010
    Twenty five derivatives of indole carbohydrazide (1-25) had been synthesized. These compounds were characterized using 1H NMR and EI-MS, and further evaluated for their α-amylase inhibitory potential. The analogs (1-25) showed varying degree of α-amylase inhibitory potential. ranging between 9.28 and 599.0µM when compared with standard acarbose having IC50 value 8.78±0.16µM. Six analogs, 25 (IC50=9.28±0.153µM), 22 (IC50=9.79±0.43µM), 4 (IC50=11.08±0.357µM), 1 (IC50=12.65±0.169µM), 8 (IC50=21.37±0.07µM) and 14 (IC50=43.21±0.14µM) showed potent α-amylase inhibition as compared to the standard acarbose (IC50=8.78±0.16µM). All other analogs displayed good to moderate inhibitory potential. Structure-activity relationship was established through the interaction of the active compounds with enzyme active site with the help of docking studies.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis
  14. Al-Salahi R, Ahmad R, Anouar E, Iwana Nor Azman NI, Marzouk M, Abuelizz HA
    Future Med Chem, 2018 08 01;10(16):1889-1905.
    PMID: 29882426 DOI: 10.4155/fmc-2018-0141
    AIM: Using a simple modification on a previously reported synthetic route, 3-benzyl(phenethyl)-2-thioxobenzo[g]quinazolin-4(3H)-ones (1 and 2) were synthesized with high yields. Further transformation of 1 and 2 produced derivatives 3-26, which were structurally characterized based on NMR and MS data, and their in vitro α-glucosidase inhibitory activity was evaluated using Baker's yeast α-glucosidase enzyme.

    RESULTS: Compounds 2, 4, 8, 12 and 20 exhibited the highest activity (IC50 = 69.20, 59.60, 49.40, 50.20 and 83.20 μM, respectively) compared with the standard acarbose (IC50 = 143.54 μM).

    CONCLUSION: A new class of potent α-glucosidase inhibitors was identified, and the molecular docking predicted plausible binding interaction of the targets in the binding pocket of α-glucosidase and rationalized the structure-activity relationship (SARs) of the target compounds.

    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis*
  15. Javid MT, Rahim F, Taha M, Rehman HU, Nawaz M, Wadood A, et al.
    Bioorg Chem, 2018 08;78:201-209.
    PMID: 29597114 DOI: 10.1016/j.bioorg.2018.03.022
    α-Glucosidase is a catabolic enzyme that regulates the body's plasma glucose levels by providing energy sources to maintain healthy functioning. 2-Amino-thiadiazole (1-13) and 2-amino-thiadiazole based Schiff bases (14-22) were synthesized, characterized by 1H NMR and HREI-MS and screened for α-glucosidase inhibitory activity. All twenty-two (22) analogs exhibit varied degree of α-glucosidase inhibitory potential with IC50 values ranging between 2.30 ± 0.1 to 38.30 ± 0.7 μM, when compare with standard drug acarbose having IC50 value of 39.60 ± 0.70 μM. Among the series eight derivatives 1, 2, 6, 7, 14, 17, 19 and 20 showed outstanding α-glucosidase inhibitory potential with IC50 values of 3.30 ± 0.1, 5.80 ± 0.2, 2.30 ± 0.1, 2.70 ± 0.1, 2.30 ± 0.1, 5.50 ± 0.1, 4.70 ± 0.2, and 5.50 ± 0.2 μM respectively, which is many fold better than the standard drug acarbose. The remaining analogs showed good to excellent α-glucosidase inhibition. Structure activity relationship has been established for all compounds. The binding interactions of these compounds were confirmed through molecular docking.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis
  16. Taha M, Rahim F, Zaman K, Selvaraj M, Uddin N, Farooq RK, et al.
    Bioorg Chem, 2020 01;95:103555.
    PMID: 31911306 DOI: 10.1016/j.bioorg.2019.103555
    A series of twenty-six analogs of benzimidazole based oxadiazole have been synthesized and evaluated against alpha-glycosidase enzyme. Most the analogs showed excellent to good inhibitory potential. Among the screened analogs, analog 1, 2, 3 and 14 with IC50 values 4.6 ± 0.1, 9.50 ± 0.3, 2.6 ± 0.1 and 9.30 ± 0.4 µM respectively showedexcellent inhibitory potential than reference drug acarbose (IC50 = 38.45 ± 0.80 µM). Some of the analogs like 19, 21, 22 and 23 with methyl and methoxy substituent on phenyl ring show hydrophobic interaction and were found with no inhibitory potential. The binding interactions between synthesized analogs and ligands protein were confirmed through molecular docking study. Various spectroscopic techniques like 1H NMR, 13C NMR, and EI-MS were used for characterization of all synthesized analogs. These derivatives were synthesized by simple mode of synthesis like heterocyclic ring formation.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/chemical synthesis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links