Displaying publications 21 - 40 of 53 in total

Abstract:
Sort:
  1. Fazhan H, Waiho K, Quinitio E, Baylon JC, Fujaya Y, Rukminasari N, et al.
    PeerJ, 2020;8:e8066.
    PMID: 31915566 DOI: 10.7717/peerj.8066
    There are four species of mud crabs within the genus Scylla, and most of them live sympatrically in the equatorial region. Apart from a report in Japan about the finding of a natural Scylla hybrid more than a decade ago after the division of genus Scylla into four species by Keenan, Davie & Mann (1998), no subsequent sighting was found. Thus, this study investigates the possible natural occurrence of potential hybridization among Scylla species in the wild. A total of 76,211 individuals from mud crab landing sites around the Malacca Straits, South China Sea and Sulu Sea were screened. In addition to the four-purebred species, four groups (SH 1, n = 2, 627; SH 2, n = 136; SH 3, n = 1; SH 4, n = 2) with intermediate characteristics were found, mostly at Sulu Sea. Discriminant Function Analysis revealed that all Scylla species, including SH 1 - 4, are distinguishable via their morphometric ratios. The most powerful discriminant ratios for each character and the top five discriminant ratios of males and females were suggested. The carapace width of SH 1 males and females were significantly smaller than pure species. Based on the discriminant ratios and the description of morphological characters, we hypothesize that the additional four groups of Scylla with intermediate characteristics could be presumed hybrids. Future work at the molecular level is urgently needed to validate this postulate.
    Matched MeSH terms: Hybridization, Genetic
  2. Khan FA, Phillips CD, Baker RJ
    Syst Biol, 2014 Jan 1;63(1):96-110.
    PMID: 24149076 DOI: 10.1093/sysbio/syt062
    Phylogenetic comparisons of the different mammalian genetic transmission elements (mtDNA, X-, Y-, and autosomal DNA) is a powerful approach for understanding the process of speciation in nature. Through such comparisons the unique inheritance pathways of each genetic element and gender-biased processes can link genomic structure to the evolutionary process, especially among lineages which have recently diversified, in which genetic isolation may be incomplete. Bulldog bats of the genus Noctilio are an exemplar lineage, being a young clade, widely distributed, and exhibiting unique feeding ecologies. In addition, currently recognized species are paraphyletic with respect to the mtDNA gene tree and contain morphologically identifiable clades that exhibit mtDNA divergences as great as among many species. To test taxonomic hypotheses and understand the contribution of hybridization to the extant distribution of genetic diversity in Noctilio, we used phylogenetic, coalescent stochastic modeling, and divergence time estimates using sequence data from cytochrome-b, cytochrome c oxidase-I, zinc finger Y, and zinc finger X, as well as evolutionary reconstructions based on amplified fragment length polymorphisms (AFLPs) data. No evidence of ongoing hybridization between the two currently recognized species was identified. However, signatures of an ancient mtDNA capture were recovered in which an mtDNA lineage of one species was captured early in the noctilionid radiation. Among subspecific mtDNA clades, which were generally coincident with morphology and statistically definable as species, signatures of ongoing hybridization were observed in sex chromosome sequences and AFLP. Divergence dating of genetic elements corroborates the diversification of extant Noctilio beginning about 3 Ma, with ongoing hybridization between mitochondrial lineages separated by 2.5 myr. The timeframe of species' divergence within Noctilio supports the hypothesis that shifts in the dietary strategies of gleaning insects (N. albiventris) or fish (N. leporinus) are among the most rapid instances of dietary evolution observed in mammals. This study illustrates the complex evolutionary dynamics shaping gene pools in nature, how comparisons of genetic elements can serve for understanding species boundaries, and the complex considerations for accurate taxonomic assignment.
    Matched MeSH terms: Hybridization, Genetic*
  3. Valdiani A, Kadir MA, Saad MS, Talei D, Tan SG
    Gene, 2012 Aug 15;505(1):23-36.
    PMID: 22683537 DOI: 10.1016/j.gene.2012.05.056
    Andrographis paniculata (AP) has been stated as a low-diverse, endangered and red-listed plant species. Self-pollinated mating system, being an introduced species and experiencing a bottleneck as well as over exploitation cause such a consequence. Inter and intra-specific hybridizations have been suggested as essential techniques for generating genetic diversity. To test the effect of intra-specific hybridization on diversification and heterosis of AP, seven accessions were outcrossed manually in all 21 possible combinations. Three types of markers including morphological, phytochemical and RAPD markers were employed to evaluate the mentioned hypothesis. The results revealed that hybridization acted as a powerful engine for diversification of AP as it caused heterotic expression of the studied traits, simultaneously. Initially, it seems that additive and non-additive gene effects both can be considered as the genetic basis of heterosis in AP for the investigated traits. Agronomic and morphological traits were differentiated from each other, while positive heterosis was recorded mainly for agronomic traits but not for the morphological traits. Intra-specific hybridization increased the genetic diversity in AP population. Nevertheless, a part of this variation could also be attributed to the negative heterosis. The current exploration demonstrated the first ever conducted manual intra-specific hybridization among AP accessions in a mass scale. However, the 17 RAPD primers produced a monomorph pattern, but perhaps increasing the number of markers can feature a new genetic profile in this plant.
    Matched MeSH terms: Hybridization, Genetic/physiology*
  4. Bänfer G, Moog U, Fiala B, Mohamed M, Weising K, Blattner FR
    Mol Ecol, 2006 Dec;15(14):4409-24.
    PMID: 17107473
    Macaranga (Euphorbiaceae) includes about 280 species with a palaeotropic distribution. The genus not only comprises some of the most prominent pioneer tree species in Southeast Asian lowland dipterocarp forests, it also exhibits a substantial radiation of ant-plants (myrmecophytes). Obligate ant-plant mutualisms are formed by about 30 Macaranga species and 13 ant species of the genera Crematogaster or Camponotus. To improve our understanding of the co-evolution of the ants and their host plants, we aim at reconstructing comparative organellar phylogeographies of both partners across their distributional range. Preliminary evidence indicated that chloroplast DNA introgression among closely related Macaranga species might occur. We therefore constructed a comprehensive chloroplast genealogy based on DNA sequence data from the noncoding ccmp2, ccmp6, and atpB-rbcL regions for 144 individuals from 41 Macaranga species, covering all major evolutionary lineages within the three sections that contain myrmecophytes. A total of 88 chloroplast haplotypes were identified, and grouped into a statistical parsimony network that clearly distinguished sections and well-defined subsectional groups. Within these groups, the arrangement of haplotypes followed geographical rather than taxonomical criteria. Thus, up to six chloroplast haplotypes were found within single species, and up to seven species shared a single haplotype. The spatial distribution of the chloroplast types revealed several dispersals between the Malay Peninsula and Borneo, and a deep split between Sabah and the remainder of Borneo. Our large-scale chloroplast genealogy highlights the complex history of migration, hybridization, and speciation in the myrmecophytes of the genus Macaranga. It will serve as a guideline for adequate sampling and data interpretation in phylogeographic studies of individual Macaranga species and species groups.
    Matched MeSH terms: Hybridization, Genetic*
  5. Wong MM, Cannon CH, Wickneswari R
    BMC Genomics, 2012;13:726.
    PMID: 23265623 DOI: 10.1186/1471-2164-13-726
    Next Generation Sequencing has provided comprehensive, affordable and high-throughput DNA sequences for Single Nucleotide Polymorphism (SNP) discovery in Acacia auriculiformis and Acacia mangium. Like other non-model species, SNP detection and genotyping in Acacia are challenging due to lack of genome sequences. The main objective of this study is to develop the first high-throughput SNP genotyping assay for linkage map construction of A. auriculiformis x A. mangium hybrids.
    Matched MeSH terms: Hybridization, Genetic*
  6. Rosnina AG, Tan YS, Abdullah N, Vikineswary S
    World J Microbiol Biotechnol, 2016 Feb;32(2):18.
    PMID: 26745978 DOI: 10.1007/s11274-015-1959-2
    Pleurotus citrinopileatus (yellow oyster mushroom) has an attractive shape and yellow colour but the fragile texture complicates packaging, and its strong aroma is unappealing to consumers. This study aimed to improve the characteristics and yield of P. citrinopileatus by interspecies mating between monokaryotic cultures of P. citrinopileatus and P. pulmonarius. Ten monokaryon cultures of the parental lines were crossed in all combinations to obtain hybrids. Eleven compatible mating pairs were obtained and cultivated to observe their sporophore morphology and yield. The selected hybrid, i.e. P1xC9, was beige in colour while hybrid P3xC8 was yellow in colour. Their sporophores had less offensive aroma, improved texture and higher yield. The DNA sequences of these hybrids were found to be in the same clade as the P. citrinopileatus parent with a bootstrap value of 99%. High bootstrap values indicate high genetic homology between hybrids and the P. citrinopileatus parent. The biological efficiencies of these hybrids P1xC9 (70.97%) and P3xC8 (52.14%) were also higher than the P. citrinopileatus parent (35.63%). Interspecies hybrids obtained by this mating technique can lead to better strains of mushrooms for genetic improvement of the Pleurotus species.
    Matched MeSH terms: Hybridization, Genetic*
  7. Rosazlina R, Jacobsen N, Ørgaard M, Othman AS
    PLoS One, 2021;16(1):e0239499.
    PMID: 33476321 DOI: 10.1371/journal.pone.0239499
    Natural hybridization has been considered a source of taxonomic complexity in Cryptocoryne. A combined study of DNA sequencing data from the internal transcribed spacer (ITS) of nuclear ribosomal DNA and the trnK-matK region of chloroplast DNA was used to identify the parents of Cryptocoryne putative hybrids from Peninsular Malaysia. Based on the intermediate morphology and sympatric distribution area, the plants were tentatively identified as the hybrid Cryptocoryne ×purpurea nothovar. purpurea. The plants were pollen sterile and had long been considered as hybrids, supposedly between two related and co-existing species, C. cordata var. cordata and C. griffithii. The status of C. ×purpurea nothovar. purpurea was independently confirmed by the presence of an additive ITS sequence pattern from these two parental species in hybrid individuals. An analysis of the chloroplast trnK-matK sequences showed that the hybridization is bidirectional with the putative hybrids sharing identical sequences from C. cordata var. cordata and C. griffithii, indicating that both putative parental species had been the maternal parent in different accessions.
    Matched MeSH terms: Hybridization, Genetic/genetics
  8. Ting NC, Sherbina K, Khoo JS, Kamaruddin K, Chan PL, Chan KL, et al.
    Sci Rep, 2020 10 01;10(1):16296.
    PMID: 33004875 DOI: 10.1038/s41598-020-73170-5
    Evaluation of transcriptome data in combination with QTL information has been applied in many crops to study the expression of genes responsible for specific phenotypes. In oil palm, the mesocarp oil extracted from E. oleifera × E. guineensis interspecific hybrids is known to have lower palmitic acid (C16:0) content compared to pure African palms. The present study demonstrates the effectiveness of transcriptome data in revealing the expression profiles of genes in the fatty acid (FA) and triacylglycerol (TAG) biosynthesis processes in interspecific hybrids. The transcriptome assembly yielded 43,920 putative genes of which a large proportion were homologous to known genes in the public databases. Most of the genes encoding key enzymes involved in the FA and TAG synthesis pathways were identified. Of these, 27, including two candidate genes located within the QTL associated with C16:0 content, showed differential expression between developmental stages, populations and/or palms with contrasting C16:0 content. Further evaluation using quantitative real-time PCR revealed that differentially expressed patterns are generally consistent with those observed in the transcriptome data. Our results also suggest that different isoforms are likely to be responsible for some of the variation observed in FA composition of interspecific hybrids.
    Matched MeSH terms: Hybridization, Genetic/genetics
  9. Moretti B, Al-Sheikhly OF, Guerrini M, Theng M, Gupta BK, Haba MK, et al.
    Sci Rep, 2017 Jan 27;7:41611.
    PMID: 28128366 DOI: 10.1038/srep41611
    We investigated the phylogeography of the smooth-coated otter (Lutrogale perspicillata) to determine its spatial genetic structure for aiding an adaptive conservation management of the species. Fifty-eight modern and 11 archival (dated 1882-1970) otters sampled from Iraq to Malaysian Borneo were genotyped (mtDNA Cytochrome-b, 10 microsatellite DNA loci). Moreover, 16 Aonyx cinereus (Asian small-clawed otter) and seven Lutra lutra (Eurasian otter) were sequenced to increase information available for phylogenetic reconstructions. As reported in previous studies, we found that L. perspicillata, A. cinereus and A. capensis (African clawless otter) grouped in a clade sister to the genus Lutra, with L. perspicillata and A. cinereus being reciprocally monophyletic. Within L. perspicillata, we uncovered three Evolutionarily Significant Units and proved that L. p. maxwelli is not only endemic to Iraq but also the most recent subspecies. We suggest a revision of the distribution range limits of easternmost L. perspicillata subspecies. We show that smooth-coated otters in Singapore are L. perspicillata x A. cinereus hybrids with A. cinereus mtDNA, the first reported case of hybridization in the wild among otters. This result also provides evidence supporting the inclusion of L. perspicillata and A. cinereus in the genus Amblonyx, thus avoiding the paraphyly of the genus Aonyx.
    Matched MeSH terms: Hybridization, Genetic*
  10. Flot JF, Blanchot J, Charpy L, Cruaud C, Licuanan WY, Nakano Y, et al.
    BMC Ecol, 2011 Oct 04;11:22.
    PMID: 21970706 DOI: 10.1186/1472-6785-11-22
    BACKGROUND: Morphological data suggest that, unlike most other groups of marine organisms, scleractinian corals of the genus Stylophora are more diverse in the western Indian Ocean and in the Red Sea than in the central Indo-Pacific. However, the morphology of corals is often a poor predictor of their actual biodiversity: hence, we conducted a genetic survey of Stylophora corals collected in Madagascar, Okinawa, the Philippines and New Caledonia in an attempt to find out the true number of species in these various locations.

    RESULTS: A molecular phylogenetic analysis of the mitochondrial ORF and putative control region concurs with a haploweb analysis of nuclear ITS2 sequences in delimiting three species among our dataset: species A and B are found in Madagascar whereas species C occurs in Okinawa, the Philippines and New Caledonia. Comparison of ITS1 sequences from these three species with data available online suggests that species C is also found on the Great Barrier Reef, in Malaysia, in the South China Sea and in Taiwan, and that a distinct species D occurs in the Red Sea. Shallow-water morphs of species A correspond to the morphological description of Stylophora madagascarensis, species B presents the morphology of Stylophora mordax, whereas species C comprises various morphotypes including Stylophora pistillata and Stylophora mordax.

    CONCLUSIONS: Genetic analysis of the coral genus Stylophora reveals species boundaries that are not congruent with morphological traits. Of the four hypotheses that may explain such discrepancy (phenotypic plasticity, morphological stasis, morphological convergence, and interspecific hybridization), the first two appear likely to play a role but the fourth one is rejected since mitochondrial and nuclear markers yield congruent species delimitations. The position of the root in our molecular phylogenies suggests that the center of origin of Stylophora is located in the western Indian Ocean, which probably explains why this genus presents a higher biodiversity in the westernmost part of its area of distribution than in the "Coral Triangle".

    Matched MeSH terms: Hybridization, Genetic*
  11. Kwong PJ, Abdullah RB, Wan Khadijah WE
    Theriogenology, 2012 Sep 1;78(4):921-9.
    PMID: 22704387 DOI: 10.1016/j.theriogenology.2012.04.009
    This study was conducted to evaluate the efficiency of potassium simplex optimization medium with amino acids (KSOMaa) as a basal culture medium for caprine intraspecies somatic cell nuclear transfer (SCNT) and caprine-bovine interspecies somatic cell nuclear transfer (iSCNT) embryos. The effect of increased glucose as an energy substrate for late stage development of cloned caprine embryos in vitro was also evaluated. Enucleated caprine and bovine in vitro matured oocytes at metaphase II were reconstructed with caprine ear skin fibroblast cells for the SCNT and iSCNT studies. The cloned caprine and parthenogenetic embryos were cultured in either KSOMaa with 0.2 mM glucose for 8 days (Treatment 1) or KSOMaa for 2 days followed by KSOMaa with additional glucose at a final concentration of 2.78 mM for the last 6 days (Treatment 2). There were no significant differences in the cleavage rates of SCNT (80.7%) and iSCNT (78.0%) embryos cultured in KSOMaa medium. Both Treatment 1 and Treatment 2 could support in vitro development of SCNT and iSCNT embryos to the blastocyst stage. However, the blastocyst development rate of SCNT embryos was significantly higher (P < 0.05) in Treatment 2 compared to Treatment 1. Increasing glucose for later stage embryo development (8-cell stage onwards) during in vitro culture (IVC) in Treatment 2 also improved both caprine SCNT and iSCNT embryo development to the hatched blastocyst stage. In conclusion, this study shows that cloned caprine embryos derived from SCNT and iSCNT could develop to the blastocyst stage in KSOMaa medium supplemented with additional glucose (2.78 mM, final concentration) and this medium also supported hatching of caprine cloned blastocysts.
    Matched MeSH terms: Hybridization, Genetic/drug effects; Hybridization, Genetic/physiology
  12. Tsukahara Y, Choumei Y, Oishi K, Kumagai H, Kahi AK, Panandam JM, et al.
    J. Anim. Breed. Genet., 2008 Apr;125(2):84-8.
    PMID: 18363973 DOI: 10.1111/j.1439-0388.2007.00692.x
    The effect of parental genotype and paternal heterosis on litter size (LS), total litter birth weight (TLW) and average litter birth weight (ALW) was analysed utilizing data from a crossbreeding programme involving the exotic German Fawn goats and local Katjang goats in Malaysia. In this study, these traits were regarded as traits of the litter to consider the effect of service sire genotype. The results revealed that LS was significantly influenced by the genotype of sire. The genotypes of sire and dam had significant effects on TLW and ALW. Estimates of crossbreeding parameter showed significant and negative influence of paternal heterosis on TLW and ALW while there was no significant effect of paternal heterosis on LS. The results of this study stress the need to reconsider the use of local males in the tropics.
    Matched MeSH terms: Hybridization, Genetic
  13. Momynaliev KT, Govorun VM, Gnedenko O, Ivanov YD, Archakov AI
    J. Mol. Recognit., 2003 Jan-Feb;16(1):1-8.
    PMID: 12557232
    The possibility of using the resonant mirror biosensor to detect point substitutions in oligonucleotides was demonstrated with a fragment of the Helicobacter pylori 23S rRNA gene, point mutations in which are responsible for clarythromycin resistance. Conditions were optimized for the interaction of a probe immobilized on the sensing surface with targets containing various nucleotide substitutions. A probe allowing reliable discrimination of mutant targets was selected. The mismatch position in the probe was shown to affect the kinetic parameters (response) of hybridization with mutant targets, reporting not only the position, but also the character (G or C) of a substitution.
    Matched MeSH terms: Hybridization, Genetic
  14. Baimai V, Harbach RE, Sukowati S
    J Am Mosq Control Assoc, 1988 Mar;4(1):44-50.
    PMID: 3193098
    Karyotypes and crossing relationships were investigated for three allopatric populations of Anopheles leucosphyrus in Southeast Asia: South Kalimantan, Sumatra and Thailand. The mitotic karyotypes of these populations were similar to those previously observed in other species of the An. leucosphyrus group. Populations from Thailand and South Kalimantan exhibited telocentric and subtelocentric sex chromosomes, respectively, with a distinctive band of intercalary heterochromatin in the X chromosome. Strikingly different submetacentric X and Y chromosomes were observed in the population from Sumatra, and it seems likely that the evolution of these chromosomes occurred through the acquisition of constitutive heterochromatin. Sterile F1 males were observed in crosses between the Sumatra population and the populations from South Kalimantan and Thailand. No genetic incompatibility was observed in crosses between the latter two populations. We believe that the present concept of An. leucosphyrus includes two allopatric species, one inhabiting Borneo, West Malaysia and southern Thailand and one confined to Sumatra.
    Matched MeSH terms: Hybridization, Genetic
  15. Sawamura K, Sato H, Lee CY, Kamimura Y, Matsuda M
    Zoolog Sci, 2016 Oct;33(5):467-475.
    PMID: 27715417
    We surveyed natural population of the Drosophila ananassae species complex on Penang Island, Malaysia. Analyses of phenotypic traits, chromosome arrangements, molecular markers, and reproductive isolation suggest the existence of two species: D. ananassae and D. cf. parapallidosa. Molecular marker analysis indicates that D. cf. parapallidosa carries chromosome Y and 4 introgressions from D. ananassae. Thus, D. cf. parapallidosa seems to be a hybrid descendant that recently originated from a natural D. parapallidosa♀× D. ananassae♂ cross. Furthermore, D. cf. parapallidosa behaves differently from authentic D. parapallidosa with respect to its reproductive isolation from D. ananassae. Premating isolation is usually seen in only the D. ananassae♀× D. parapallidosa♂ cross, but we observed it in crosses of both directions between D. ananassae and D. cf. parapallidosa. In addition, hybrid males from the D. ananassae♀× D. parapallidosa♂ cross are usually sterile, but they were fertile when D. ananassae♀ were mated with D. cf. parapallidosa ♂. We attempted an artificial reconstruction of the hybrid species to simulate the evolutionary process(es) that produced D. cf. parapallidosa. This is a rare case of natural hybrid population in Drosophila and may be a useful system for elucidating speciation with gene flow.
    Matched MeSH terms: Hybridization, Genetic
  16. Chai HH, Ho WK, Graham N, May S, Massawe F, Mayes S
    Genes (Basel), 2017 Feb 22;8(2).
    PMID: 28241413 DOI: 10.3390/genes8020084
    Bambara groundnut (Vigna subterranea (L.) Verdc.) is an underutilised legume crop, which has long been recognised as a protein-rich and drought-tolerant crop, used extensively in Sub-Saharan Africa. The aim of the study was to identify quantitative trait loci (QTL) involved in agronomic and drought-related traits using an expression marker-based genetic map based on major crop resources developed in soybean. The gene expression markers (GEMs) were generated at the (unmasked) probe-pair level after cross-hybridisation of bambara groundnut leaf RNA to the Affymetrix Soybean Genome GeneChip. A total of 753 markers grouped at an LOD (Logarithm of odds) of three, with 527 markers mapped into linkage groups. From this initial map, a spaced expression marker-based genetic map consisting of 13 linkage groups containing 218 GEMs, spanning 982.7 cM (centimorgan) of the bambara groundnut genome, was developed. Of the QTL detected, 46% were detected in both control and drought treatment populations, suggesting that they are the result of intrinsic trait differences between the parental lines used to construct the cross, with 31% detected in only one of the conditions. The present GEM map in bambara groundnut provides one technically feasible route for the translation of information and resources from major and model plant species to underutilised and resource-poor crops.
    Matched MeSH terms: Hybridization, Genetic
  17. Okomoda VT, Koh ICC, Shahreza MS
    Zygote, 2017 Aug;25(4):443-452.
    PMID: 28635581 DOI: 10.1017/S0967199417000259
    Breeding and larval performance of novel hybrids from reciprocal crosses of Asian catfish Pangasianodon hypophthalmus (Sauvage, 1878) and African catfish Clarias gariepinus (Burchell, 1822) were investigated in this study. Spawning was by hormonal injection of brood fish, artificial fertilization, and incubation in triplicate aquarium tanks (0.5 × 0.5 × 0.5 m3) with continuous aeration. Reciprocal crosses (♀C. gariepinus × ♂P. hypophthalmus and ♀P. hypophthalmus × ♂C. gariepinus) had lower hatchability (≤50%) than their pure siblings (≥75%). Fish from all crosses survived until the juvenile stage but survival at 35 days post hatching (dph) was higher for pure C. gariepinus sib. ♀C. gariepinus × ♂P. hypophthalmus was observed to be less resistant to degradation of water quality than the other crosses, however it had higher body weight compared with the other crosses that showed similar performance. Morphological comparison of surviving juvenile at 35 dph, showed that all ♀P. hypophthalmus × ♂C. gariepinus and 13% of the ♀C. gariepinus × ♂P. hypophthalmus exhibited the very same morphology as that of their maternal parent species, while the other portion of the ♀C. gariepinus × ♂P. hypophthalmus cross exhibited morphological traits that were intermediate between those of both parent species. This study been the first successful attempt to hybridize both species and therefore, laid the groundwork for further studies on the aquaculture potentials of the novel hybrids.
    Matched MeSH terms: Hybridization, Genetic
  18. Nudin NFH, Ali AM, Ngah N, Mazlan NZ, Mat N, Ghani MNA, et al.
    C. R. Biol., 2017 Aug;340(8):359-366.
    PMID: 28888550 DOI: 10.1016/j.crvi.2017.08.003
    Plant breeding is a way of selection of a particular individual for the production of the progeny by separating or combining desired characteristics. The objective of this study was to justify different characteristics of Dioscorea hispida (Ubi gadong) varieties using molecular techniques to select the best variety for sustainable production at the farmer's level. A total of 160 germplasms of Ubi gadong were collected from different locations at the Terengganu and Kelantan states of Malaysia. Forty eight (48) out of 160 germplasms were selected as "primary" selection based on yield and other qualitative characters. Selected collections were then grown and maintained for ISSR marker-assisted genetic diversity analysis. Overall plant growth and yield of tubers were also determined. A total of 12 ISSR markers were tested to justify the characteristics of Ubi gadong varieties among which three markers showed polymorphic bands and on average 57.3% polymorphism were observed representing the highest variation among germplasms. The ISSR marker based on UPGMA cluster analysis grouped all 48 D. hispida into 10 vital groups that proved a vast genetic variation among germplasm collections. Therefore, hybridization should be made between two distant populations. The D. hispida is already proved as the highest starch content tuber crops and very rich in vitamins with both micro and macro minerals. Considering all these criteria and results from marker-assisted diversity analysis, accessions that are far apart based on their genetic coefficient (like DH27 and DH71; DH30 and DH70; DH43 and DH62; DH45 and DH61; DH77 and DH61; DH78 and DH57) could be selected as parents for further breeding programs. This will bring about greater diversity, which will lead to high productive index in terms of increase in yield and overall quality and for the ultimate target of sustainable Ubi gadong production.
    Matched MeSH terms: Hybridization, Genetic
  19. Somarny WM, Mariana NS, Rozita R, Raha AR
    PMID: 15916081
    The cholera enterotoxin (CT) has been considered a major virulence factor of Vibrio cholerae. The accessory cholera enterotoxin (ace) gene is the third gene of V. cholerae virulence cassette. The gene coding for the Ace toxin was amplified from V. cholerae isolates producing a single band of 314 bp. The presence of ace gene was confirmed by hybridization as well as by sequencing. The gene was successfully expressed in Escherichia coli (LMG194) using expression, pBAD/Thio-TOPO vector. Optimal conditions for expression included choice of host strain, temperature used for culturing, and concentration of antibiotic and arabinose inducer. The Ace protein was obtained from the cell supernatant as a fusion protein with a molecular mass 34 kDa which was detected using an anti V5-HRP epitope tagged antibody.
    Matched MeSH terms: Hybridization, Genetic
  20. Cross JH, Bhaibulaya M
    PMID: 4432097
    Matched MeSH terms: Hybridization, Genetic
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links