Displaying publications 21 - 40 of 116 in total

Abstract:
Sort:
  1. Kleinschmidt I, Mnzava AP, Kafy HT, Mbogo C, Bashir AI, Bigoga J, et al.
    Malar J, 2015 Jul 22;14:282.
    PMID: 26194648 DOI: 10.1186/s12936-015-0782-4
    BACKGROUND: Progress in reducing the malaria disease burden through the substantial scale up of insecticide-based vector control in recent years could be reversed by the widespread emergence of insecticide resistance. The impact of insecticide resistance on the protective effectiveness of insecticide-treated nets (ITN) and indoor residual spraying (IRS) is not known. A multi-country study was undertaken in Sudan, Kenya, India, Cameroon and Benin to quantify the potential loss of epidemiological effectiveness of ITNs and IRS due to decreased susceptibility of malaria vectors to insecticides. The design of the study is described in this paper.

    METHODS: Malaria disease incidence rates by active case detection in cohorts of children, and indicators of insecticide resistance in local vectors were monitored in each of approximately 300 separate locations (clusters) with high coverage of malaria vector control over multiple malaria seasons. Phenotypic and genotypic resistance was assessed annually. In two countries, Sudan and India, clusters were randomly assigned to receive universal coverage of ITNs only, or universal coverage of ITNs combined with high coverage of IRS. Association between malaria incidence and insecticide resistance, and protective effectiveness of vector control methods and insecticide resistance were estimated, respectively.

    RESULTS: Cohorts have been set up in all five countries, and phenotypic resistance data have been collected in all clusters. In Sudan, Kenya, Cameroon and Benin data collection is due to be completed in 2015. In India data collection will be completed in 2016.

    DISCUSSION: The paper discusses challenges faced in the design and execution of the study, the analysis plan, the strengths and weaknesses, and the possible alternatives to the chosen study design.

    Matched MeSH terms: Insecticides/pharmacology
  2. Ang LH, Nazni WA, Kuah MK, Shu-Chien AC, Lee CY
    J Econ Entomol, 2013 Oct;106(5):2167-76.
    PMID: 24224261
    Extensive usage and heavy reliance on insecticides have led to the development of insecticide resistance in the German cockroach, Blattella germanica (L.). Six field-collected strains of B. germanica from Singapore were used to investigate resistance to fipronil and dieldrin. The three strains (Boat Quay, Cavenagh Road, and Ghimmoh Road) with greatest resistance to fipronil were subjected to selection with fipronil bait up to the F5 generation. Synergism assay and molecular detection of a target site mutation were used to elucidate the mechanism of fipronil resistance in these strains. With the exception of the Cavenagh Road strain, all parental strains were susceptible to dieldrin. This strain exhibited resistance to dieldrin and fipronil with resistance ratios of 4.1 and 3.0, respectively. Piperonyl butoxide and S,S,S-tributylphosphorotrithioate were antagonistic toward fipronil toxicity in all strains. Bait selection significantly increased fipronil and dieldrin resistance in the three chosen strains, either in topical bioassay or bait evaluations. There was a significant positive relationship [y = (6,852.69 +/- 1,988.37) x - (708.93 +/- 1,226.28), where x = fipronil toxicity and y = dieldrin toxicity] between dieldrin and fipronil resistance levels, indicating significant cross-resistance between the insecticides. High frequencies of individuals possessing the Rdl gene mutation were found in the F5 generation of the three strains selected with fipronil bait. The synergism assays indicated that monooxygenase and esterase were not involved in fipronil resistance in the strains studied herein. The A302S Rdl mutation was the major mechanism contributing to fipronil and dieldrin resistance in these strains.
    Matched MeSH terms: Insecticides/pharmacology*
  3. Hidayati H, Nazni WA, Mohd SA
    Trop Biomed, 2008 Apr;25(1):75-9.
    PMID: 18600207 MyJurnal
    The standard laboratory strain was found to be heterozygous for susceptibility. Hence, an attempt was made to obtain a homozygous susceptible strain in Culex quinquefasciatus (Say) using single raft sib-selection method. Lab-bred females of Cx. quinquefasciatus from insectariums, Unit of Medical Entomology were used in the experiment. After blood feeding Cx. quinquefasciatus mosquitoes laid eggs in raft form, ten rafts selected randomly for the test. Each egg raft was introduced into a plastic tray from number one to number ten. Twenty-five third stage larvae from each tray were exposed to 17.5 microl from 500mg/l malathion in a paper cup label number 1 to number ten. In the bioassay, which had 100% mortality, the respective larva in that particular tray was bred to adult stage for the following generation. Less than 7days old female mosquitoes that emerged from F(0) were used in the test. The F(0) and the subsequent adult and larval stage generations were subjected to adult and larval bioassay. After selection for about 10 generations, a homozygous susceptible strain in Cx. quinquefasciatus was obtained.
    Matched MeSH terms: Insecticides/pharmacology*
  4. Pollack RJ, Kiszewski A, Armstrong P, Hahn C, Wolfe N, Rahman HA, et al.
    Arch Pediatr Adolesc Med, 1999 Sep;153(9):969-73.
    PMID: 10482215 DOI: 10.1001/archpedi.153.9.969
    BACKGROUND: Pediculiasis is treated aggressively in the United States, mainly with permethrin- and pyrethrin-containing pediculicides. Increasingly frequent anecdotal reports of treatment failure suggest the emergence of insecticidal resistance by these lice.

    OBJECTIVE: To confirm or refute the susceptibility of head lice sampled in the United States to permethrin.

    DESIGN: Survey. Head lice were removed from children residing where pediculicides are readily available and where such products are essentially unknown. Their survival was compared following exposure to residues of graded doses of permethrin in an in vitro bioassay.

    SETTING: School children from Massachusetts, Idaho, and Sabah (Malaysian Borneo).

    SUBJECTS: In the United States, 75 children aged 5 to 8 years. In Sabah, 59 boys aged 6 to 13 years. Virtually all sampled US children had previously been treated with pediculicides containing pyrethrins or permethrin; none of the Sabahan children were so exposed.

    MAIN OUTCOME MEASURE: Survival of head lice exposed to permethrin.

    RESULTS: Permethrin did not affect head lice sampled from chronically infested US children who had previously been treated for pediculiasis. The slope of the dose-response regression line for these lice did not differ significantly from zero (P = .66). This pediculicide immobilized lice sampled in Sabah. Mortality correlated closely with permethrin concentration (P = .008).

    CONCLUSIONS: Head lice in the United States are less susceptible to permethrin than are those in Sabah. The pyrethroid susceptibility of the general population of head lice in the United States, however, remains poorly defined. Accordingly, these relatively safe over-the-counter preparations may remain the pediculicides of choice for newly recognized louse infestations.
    Matched MeSH terms: Insecticides/pharmacology*
  5. Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Kumar PM, et al.
    Environ Sci Pollut Res Int, 2015 Dec;22(24):20067-83.
    PMID: 26300364 DOI: 10.1007/s11356-015-5253-5
    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. However, the use of synthetic insecticides to control Culicidae may lead to high operational costs and adverse non-target effects. Plant-borne compounds have been proposed for rapid extracellular synthesis of mosquitocidal nanoparticles. Their impact against biological control agents of mosquito larval populations has been poorly studied. We synthesized silver nanoparticles (AgNP) using the aqueous leaf extract of Mimusops elengi as a reducing and stabilizing agent. The formation of AgNP was studied using different biophysical methods, including UV-vis spectrophotometry, TEM, XRD, EDX and FTIR. Low doses of AgNP showed larvicidal and pupicidal toxicity against the malaria vector Anopheles stephensi and the arbovirus vector Aedes albopictus. AgNP LC50 against A. stephensi ranged from 12.53 (I instar larvae) to 23.55 ppm (pupae); LC50 against A. albopictus ranged from 11.72 ppm (I) to 21.46 ppm (pupae). In the field, the application of M. elengi extract and AgNP (10 × LC50) led to 100 % larval reduction after 72 h. In adulticidal experiments, AgNP showed LC50 of 13.7 ppm for A. stephensi and 14.7 ppm for A. albopictus. The predation efficiency of Gambusia affinis against A. stephensi and A. albopictus III instar larvae was 86.2 and 81.7 %, respectively. In AgNP-contaminated environments, predation was 93.7 and 88.6 %, respectively. This research demonstrates that M. elengi-synthesized AgNP may be employed at ultra-low doses to reduce larval populations of malaria and arbovirus vectors, without detrimental effects on predation rates of mosquito natural enemies, such as larvivorous fishes.
    Matched MeSH terms: Insecticides/pharmacology
  6. Dang K, Singham GV, Doggett SL, Lilly DG, Lee CY
    J Econ Entomol, 2017 04 01;110(2):558-566.
    PMID: 28115498 DOI: 10.1093/jee/tow296
    The performance of five insecticides (bendiocarb, deltamethrin, DDT, malathion, and imidacloprid) using three application methods (oil-based insecticide films on filter paper, and acetone-based insecticide deposits on two substrates: filter paper and glass) was assessed against a susceptible strain of Cimex lectularius (L.) and two resistant strains of Cimex hemipterus (F.). Substrate type significantly affected (P 
    Matched MeSH terms: Insecticides/pharmacology*
  7. Lim SP, Lee CY
    J Econ Entomol, 2005 Dec;98(6):2169-75.
    PMID: 16539147
    Two juvenile hormone analogs (JHAs), pyriproxyfen and S-methoprene, were impregnated into dried tuna fish and fed to colonies of Monomorium pharaonis (L.) at very low concentrations (1.0, 2.0, 3.0, 4.0, and 5.0 microg/ml). Its effects on the production of sexuals and colonial growth were observed. Colonies treated with pyriproxyfen yielded sexuals with physical abnormalities. Both female and male sexuals developed bulbous wings, decreased melanization, and died shortly after emergence. Sexuals emerged from colonies treated with S-methoprene did not possess anomalous characteristics. Both pyriproxyfen and S-methoprene did not have significant effects on colonial growth because of the low concentrations of the baits. A commercial bait containing 0.3% S-methoprene (Bioprene-BM) also was evaluated for its efficacy on Pharaoh's ant colonies. Results showed that Pharaoh's ant colonies succumbed to the lethal effects of S-methoprene. Colony members were reduced significantly. Production of queens also decreased significantly in treated colonies and treated queens were unable to lay eggs. JHAs are slow acting and eliminate ant colonies at a relatively slow rate. At low concentrations, pyriproxyfen recorded baffling results, i.e., bulbous wings and demelanized exoskeleton, and it is vital that further studies are initiated to solidify these findings.
    Matched MeSH terms: Insecticides/pharmacology*
  8. Neoh KB, Lee CC, Lee CY
    Pest Manag Sci, 2014 Feb;70(2):240-4.
    PMID: 23554339 DOI: 10.1002/ps.3544
    Mutual interactions, including reciprocal food sharing and grooming between chlorantraniliprole- and fipronil-treated, and untreated Asian subterranean termites, Coptotermes gestroi (Wasmann), were examined using rubidium as a tracer. Two questions were addressed in this study: (1) After insecticide treatment, does the mutual interaction between termiticide-treated termites and untreated nestmates increase? (2) Does the nutritional status of both termiticide-treated termites and untreated nestmates affect the mutual interaction?
    Matched MeSH terms: Insecticides/pharmacology*
  9. Loke SR, Sing KW, Teoh GN, Lee HL
    Trop Biomed, 2015 Mar;32(1):76-83.
    PMID: 25801256 MyJurnal
    Space spraying of chemical insecticides is still an important mean of controlling Aedes mosquitoes and dengue transmission. For this purpose, the bioefficacy of space-sprayed chemical insecticide should be evaluated from time to time. A simulation field trial was conducted outdoor in an open field and indoor in unoccupied flat units in Kuala Lumpur, to evaluate the adulticidal and larvicidal effects of Sumithion L-40, a ULV formulation of fenitrothion. A thermal fogger with a discharge rate of 240 ml/min was used to disperse Sumithion L-40 at 3 different dosages (350 ml/ha, 500 ml/ha, 750 ml/ha) against lab-bred larvae and adult female Aedes aegypti and Aedes albopictus. An average of more than 80% adult mortality was achieved for outdoor space spray, and 100% adult mortality for indoor space spray, in all tested dosages. Outdoor larvicidal effect was noted up to 14 days and 7 days at a dosage of 500 and 750 ml/ha for Ae. aegypti and Ae. albopictus, respectively. Indoor larvicidal effect was up to 21 days (500 ml/ha) and 14 days (750 ml/ha), respectively, after spraying with larval mortality > 50% against Ae. aegypti. This study concluded that the effective dosage of Sumithion L-40 thermally applied against adult Ae. aegypti and Ae. albopictus indoor and outdoor is 500 and 750 ml/ha. Based on these dosages, effective indoor spray volume is 0.4 - 0.6 ml/m³. Additional indoor and outdoor larvicidal effect will be observed at these application dosages, in addition to adult mortality.
    Matched MeSH terms: Insecticides/pharmacology*
  10. Appalasamy S, Diyana MHA, Arumugam N, Boon JG
    Sci Rep, 2021 01 08;11(1):153.
    PMID: 33420232 DOI: 10.1038/s41598-020-80018-5
    The use of chemical insecticides has had many adverse effects. This study reports a novel perspective on the application of insect-based compounds to repel and eradicate other insects in a controlled environment. In this work, defense fluid was shown to be a repellent and insecticide against termites and cockroaches and was analyzed using gas chromatography-mass spectrometry (GC-MS). Globitermes sulphureus extract at 20 mg/ml showed the highest repellency for seven days against Macrotermes gilvus and for thirty days against Periplaneta americana. In terms of toxicity, G. sulphureus extract had a low LC50 compared to M. carbonarius extract against M. gilvus. Gas chromatography-mass spectrometry analysis of the M. carbonarius extract indicated the presence of six insecticidal and two repellent compounds in the extract, whereas the G. sulphureus extract contained five insecticidal and three repellent compounds. The most obvious finding was that G. sulphureus defense fluid had higher potential as a natural repellent and termiticide than the M. carbonarius extract. Both defense fluids can play a role as alternatives in the search for new, sustainable, natural repellents and termiticides. Our results demonstrate the potential use of termite defense fluid for pest management, providing repellent and insecticidal activities comparable to those of other green repellent and termiticidal commercial products.
    Matched MeSH terms: Insecticides/pharmacology
  11. Dieng H, Tan Yusop NS, Kamal NN, Ahmad AH, Ghani IA, Abang F, et al.
    J Agric Food Chem, 2016 May 11;64(18):3485-91.
    PMID: 27115536 DOI: 10.1021/acs.jafc.6b01157
    Dengue mosquitoes are evolving into a broader global public health menace, with relentless outbreaks and the rise in number of Zika virus disease cases as reminders of the continued hazard associated with Aedes vectors. The use of chemical insecticides-the principal strategy against mosquito vectors-has been greatly impeded due to the development of insecticide resistance and the shrinking spectrum of effective agents. Therefore, there is a pressing need for new chemistries for vector control. Tea contains hundreds of chemicals, and its waste, which has become a growing global environmental problem, is almost as rich in toxicants as green leaves. This paper presents the toxic and sublethal effects of different crude extracts of tea on Aedes albopictus. The survival rates of larvae exposed to tea extracts, especially fresh tea extract (FTE), were markedly lower than those in the control treatment group. In addition to this immediate toxicity against different developmental stages, the extracts tested caused a broad range of sublethal effects. The developmental time was clearly longer in containers with tea, especially in those with young larvae (YL) and FTE. Among the survivors, pupation success was reduced in containers with tea, which also produced low adult emergence rates with increasing tea concentration. The production of eggs tended to be reduced in females derived from the tea treatment groups. These indirect effects of tea extracts on Ae. albopictus exhibited different patterns according to the exposed larval stage. Taken together, these findings indicate that tea and its waste affect most key components of Ae. albopictus vectorial capacity and may be useful for dengue control. Reusing tea waste in vector control could also be a practical solution to the problems associated with its pollution.
    Matched MeSH terms: Insecticides/pharmacology*
  12. Lee YW, Zairi J
    Trop Biomed, 2006 Jun;23(1):37-44.
    PMID: 17041550 MyJurnal
    Studies were carried out on the residual efficacy of Bacillus thuringiensis H-14 (water dispersible granule, VectoBac ABG 6511) as direct application in the control of Aedes larvae in the field. Field Aedes sp populations in the earthen and glass jars were predetermined before initiation of the trial. On confirmation of the presence of Aedes species in the designated area, Sungai Nibong Kecil, Penang Island, Malaysia, Bti was introduced in the 55L earthen and 3L glass jars). Two test designs were carried out. The first design had treated water replenished daily with 6L of seasoned water and the second design is without the replenishment of water but evaporated water was replenished. Bti was effective in the field for at least 35 days with more than 80% reduction in the Aedes larvae in the treated containers. For earthen jars with daily replenishment of water, 100% reduction was recorded for the first 3 days, while more than 80% reduction was recorded up to day 40. At day 60, Bti still provided an efficacy of 54.32 +/- 4.61 (%) of reduction. Whilst for earthen jars without daily replenishment of water, 100% reduction was recorded for the first 5 days, while more than 80% of reduction was recorded up to day 40. For the glass jars studied, similar efficacy was observed. In jars with daily replenishment of water a better larval control was observed. Percentage of reduction from day 50 to 60 for replenishment of water was between 50 to 70% compared to without replenishment of water with less than 40%.
    Matched MeSH terms: Insecticides/pharmacology*
  13. Sulaiman S, Pawanchee ZA, Othman HF, Shaari N, Yahaya S, Wahab A, et al.
    J Vector Ecol, 2002 Dec;27(2):230-4.
    PMID: 12546459
    Cynoff 25ULV (cypermethrin 25 g/l) and Solfac UL015 (cyfluthrin 1.5% w/v) were evaluated against the sentinel sugar-fed adults and 4th-instar larvae of Aedes aegypti in a housing estate endemic of dengue in Malaysia. The impact of both pyrethroids on field populations of Aedes albopictus and Aedes aegypti larvae was monitored weekly using bottle containers. Both Cynoff 25ULV and Solfac UL015 showed adulticidal effects and larvicidal effects. This field trial using Cynoff 25ULV against dengue vectors showed its potential for use in dengue vector control programs.
    Matched MeSH terms: Insecticides/pharmacology*
  14. Chen CD, Seleena B, Chiang YF, Lee HL
    Trop Biomed, 2008 Apr;25(1):80-6.
    PMID: 18600208
    The inhibitory activity of diflubenzuron, a chitin synthesis inhibitor, on the ecdysis of Aedes sp. larvae was evaluated in earthen jars and automobile tires. Two formulations of diflubenzuron were used in this study: Dimilin(R) WP (wettable powder), 25% and Dimilin GR (granular), 2%. The equivalent rate of 25 g/ha, 50 g/ha and 100 g/ha active ingredients for both WP and GR formulations were used in this study. Generally, at the higher dosage of 100 g/ha, both formulations were more effective against Aedes mosquitoes. On the whole, the WP formulation appeared to perform better than the GR formulation in terms of residual activity.
    Matched MeSH terms: Insecticides/pharmacology*
  15. Nurita AT, Abu Hassan A, Nur Aida H, Norasmah B
    Trop Biomed, 2008 Aug;25(2):126-33.
    PMID: 18948883
    The efficacy and residual efficacy of commercial baits, Quick Bayt (0.5% w/w imidacloprid) and Agita (10.0% w/w thiamethoxam) against synanthropic flies were evaluated under field conditions. Efficacy was evaluated based on knockdown percentage (KD %). The bait efficacy and residual efficacy evaluation were conducted for a period of 3 weeks and 6 weeks respectively. Baits were applied onto bait targets and placed on fly-count targets to facilitate the counting of flies. All baits were applied according to the manufacturer's recommended application rate. Three replicate treatments for each type of bait were placed at the study site each week. The number of flies feeding on baits and the knocked down flies were counted and collected. The efficacy of Agita and Quick Bayt did not differ significantly (t-test, P>0.05) over the 3-week period, even though Quick Bayt had a slightly higher KD% than Agita. In the residual efficacy evaluation, the (knockdown) KD% of Quick Bayt was consistent at around 36% for the first five weeks but dropped to 33.8 +/- 0.4% on the sixth week. The KD% for Agita on the first week was 33.6 +/- 12.2% and remained relatively consistent for the first 4 weeks at around 31%. KD% dropped to 16.7 +/- 3.3% on week 5 and to 15.7 +/- 1.2% on week 6. The difference in residual efficacy of the two baits was significant (t-test, p < 0.05).
    Matched MeSH terms: Insecticides/pharmacology*
  16. Low VL, Vinnie-Siow WY, Lim Y AL, Tan TK, Leong CS, Chen CD, et al.
    Trop Biomed, 2015 Sep;32(3):554-6.
    PMID: 26695218 MyJurnal
    Given the lack of molecular evidence in altered target-site insecticide resistance mechanism in Aedes albopictus (Skuse) worldwide, the present study aims to detect the presence of A302S mutation in the gene encoding the gamma aminobutyric acid receptor resistant to dieldrin (Rdl) in Ae. albopictus for the first time from its native range of South East Asia, namely Malaysia. World Health Organization (WHO) adult susceptibility bioassay indicated a relatively low level of dieldrin resistance (two-fold) in Ae. albopictus from Petaling Jaya, Selangor. However, PCR-RFLP and direct sequencing methods revealed the presence of the A302S mutation with the predomination of heterozygous genotype (40 out of 82 individuals), followed by the resistant genotype with 11 individuals. This study represents the first field evolved instance of A302S mutation in Malaysian insect species.
    Matched MeSH terms: Insecticides/pharmacology
  17. Low VL, Chen CD, Lim PE, Lee HL, Lim YA, Tan TK, et al.
    Pest Manag Sci, 2013 Dec;69(12):1362-8.
    PMID: 23404830 DOI: 10.1002/ps.3512
    Given that there is limited available information on the insensitive acetylcholinesterase in insect species in Malaysia, the present study aims to detect the presence of G119S mutation in the acetylcholinesterase gene of Culex quinquefasciatus from 14 residential areas across 13 states and a federal territory in Malaysia.
    Matched MeSH terms: Insecticides/pharmacology
  18. Riveron JM, Ibrahim SS, Mulamba C, Djouaka R, Irving H, Wondji MJ, et al.
    G3 (Bethesda), 2017 06 07;7(6):1819-1832.
    PMID: 28428243 DOI: 10.1534/g3.117.040147
    Pyrethroid resistance in malaria vector, An. funestus is increasingly reported across Africa, threatening the sustainability of pyrethroid-based control interventions, including long lasting insecticidal nets (LLINs). Managing this problem requires understanding of the molecular basis of the resistance from different regions of the continent, to establish whether it is being driven by a single or independent selective events. Here, using a genome-wide transcription profiling of pyrethroid resistant populations from southern (Malawi), East (Uganda), and West Africa (Benin), we investigated the molecular basis of resistance, revealing strong differences between the different African regions. The duplicated cytochrome P450 genes (CYP6P9a and CYP6P9b) which were highly overexpressed in southern Africa are not the most upregulated in other regions, where other genes are more overexpressed, including GSTe2 in West (Benin) and CYP9K1 in East (Uganda). The lack of directional selection on both CYP6P9a and CYP6P9b in Uganda in contrast to southern Africa further supports the limited role of these genes outside southern Africa. However, other genes such as the P450 CYP9J11 are commonly overexpressed in all countries across Africa. Here, CYP9J11 is functionally characterized and shown to confer resistance to pyrethroids and moderate cross-resistance to carbamates (bendiocarb). The consistent overexpression of GSTe2 in Benin is coupled with a role of allelic variation at this gene as GAL4-UAS transgenic expression in Drosophila flies showed that the resistant 119F allele is highly efficient in conferring both DDT and permethrin resistance than the L119. The heterogeneity in the molecular basis of resistance and cross-resistance to insecticides in An. funestus populations throughout sub-Saharan African should be taken into account in designing resistance management strategies.
    Matched MeSH terms: Insecticides/pharmacology*
  19. Lee HL, Chong WL
    PMID: 8525405
    Comparative DDT-susceptibility status and glutathion s-transferase (GST) activity of Malaysian Anopheles maculatus, Culex quinquefasciatus and Aedes aegypti was investigated to ascertain the role of this enzyme in DDT resistance. The standardised WHO dose-mortality bioassay tests were used to determine DDT susceptibility in these mosquitos, whilst GST microassay (Brogdon and Barber, 1990) was conducted to measure the activity of this enzyme in mosquito homogenate. It appeared that DDT susceptibility status of Malaysian mosquitos was not correlated with GST activity.
    Matched MeSH terms: Insecticides/pharmacology*
  20. Murugan K, Dinesh D, Kavithaa K, Paulpandi M, Ponraj T, Alsalhi MS, et al.
    Parasitol Res, 2016 Mar;115(3):1085-96.
    PMID: 26621285 DOI: 10.1007/s00436-015-4838-8
    Mosquito vectors (Diptera: Culicidae) are responsible for transmission of serious diseases worldwide. Mosquito control is being enhanced in many areas, but there are significant challenges, including increasing resistance to insecticides and lack of alternative, cost-effective, and eco-friendly products. To deal with these crucial issues, recent emphasis has been placed on plant materials with mosquitocidal properties. Furthermore, cancers figure among the leading causes of morbidity and mortality worldwide, with approximately 14 million new cases and 8.2 million cancer-related deaths in 2012. It is expected that annual cancer cases will rise from 14 million in 2012 to 22 million within the next two decades. Nanotechnology is a promising field of research and is expected to give major innovation impulses in a variety of industrial sectors. In this study, we synthesized titanium dioxide (TiO2) nanoparticles using the hydrothermal method. Nanoparticles were subjected to different analysis including UV-Vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), zeta potential, and energy-dispersive spectrometric (EDX). The synthesized TiO2 nanoparticles exhibited dose-dependent cytotoxicity against human breast cancer cells (MCF-7) and normal breast epithelial cells (HBL-100). After 24-h incubation, the inhibitory concentrations (IC50) were found to be 60 and 80 μg/mL on MCF-7 and normal HBL-100 cells, respectively. Induction of apoptosis was evidenced by Acridine Orange (AO)/ethidium bromide (EtBr) and 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) staining. In larvicidal and pupicidal experiments conducted against the primary dengue mosquito Aedes aegypti, LC50 values of nanoparticles were 4.02 ppm (larva I), 4.962 ppm (larva II), 5.671 ppm (larva III), 6.485 ppm (larva IV), and 7.527 ppm (pupa). Overall, our results suggested that TiO2 nanoparticles may be considered as a safe tool to build newer and safer mosquitocides and chemotherapeutic agents with little systemic toxicity.
    Matched MeSH terms: Insecticides/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links