Displaying publications 21 - 33 of 33 in total

Abstract:
Sort:
  1. Eleazu C, Suleiman JB, Othman ZA, Zakaria Z, Nna VU, Hussain NHN, et al.
    Arch Physiol Biochem, 2020 Apr 22.
    PMID: 32319823 DOI: 10.1080/13813455.2020.1752258
    Context: Global prevalence of obesity is increasing. Objective: To study the effect of bee bread (BB) on serum renal function parameters, oxidative stress, inflammatory and B-cell associated protein X (Bax) in the kidneys of high fat diet (HFD) obese rats. Methods: Thirty-six male Sprague Dawley rats were used. Control: received rat diet and water (1 mL/kg); HFD group: received HFD and water (1 mL/kg): bee bread (BB) preventive or orlistat preventive: received HFD and BB (0.5 g/kg) or HFD and orlistat (10 mg/kg); BB or orlistat treatment: received BB (0.5 g/kg) or orlistat (10 mg/kg). Results: HFD group had increased body weight, Body Mass Index, Lee Obesity Indices, kidney weights, malondialdehyde, inflammatory markers, Bax; decreased glutathione peroxidase, glutathione-S-transferase, superoxide dismutase, total antioxidant activity, no differences (p > .05) in food intakes, serum creatinine, sodium, potassium, chloride, catalase compared to control. Conclusion: BB modulated most of these parameters, as corroborated by histology.
    Matched MeSH terms: Propolis
  2. Nna VU, Bakar ABA, Ahmad A, Umar UZ, Suleiman JB, Zakaria Z, et al.
    Andrology, 2020 05;8(3):731-746.
    PMID: 31816190 DOI: 10.1111/andr.12739
    BACKGROUND: Diabetes mellitus is one of the risk factors for male subfertility/infertility. Malaysian propolis is reported to decrease hyperglycaemia in diabetic state.

    OBJECTIVES: The present study investigated the protective effect of Malaysian propolis on diabetes-induced subfertility/infertility. Additionally, its combined beneficial effects with metformin were investigated.

    MATERIALS AND METHODS: Forty adult male Sprague Dawley rats were randomly assigned into five groups, namely normal control, diabetic control, diabetic + Malaysian propolis (300 mg/k.g. b.w.), diabetic + metformin (300 mg/kg b.w.) and diabetic + Malaysian propolis + metformin. Diabetes was induced using a single intraperitoneal injection of streptozotocin (60 mg/kg b.w.) and treatment lasted for 4 weeks. During the 4th week, mating behavioural experiments were performed using sexually receptive female rats. Thereafter, fertility parameters were assessed in the female rats.

    RESULTS: Malaysian propolis increased serum and intratesticular free testosterone levels, up-regulated the mRNA levels of AR and luteinizing hormone receptor, up-regulated the mRNA and protein levels of StAR, CYP11A1, CYP17A1, 3β-HSD and 17β-HSD in the testes of diabetic rats. Furthermore, Malaysian propolis up-regulated testicular MCT2, MCT4 and lactate dehydrogenase type C mRNA levels, in addition to improving sperm parameters (count, motility, viability and normal morphology) and decreasing sperm nDNA fragmentation in diabetic rats. Malaysian propolis improved mating behaviour by increasing penile guanosine monophosphate levels. Malaysian propolis also improved fertility outcome as seen with decreases in pre- and post-implantation losses, increases in gravid uterine weight, litter size per dam and foetal weight. Malaysian propolis's effects were comparable to metformin. However, their combination yielded better results relative to the monotherapeutic interventions.

    CONCLUSION: Malaysian propolis improves fertility potential in diabetic state by targeting steroidogenesis, testicular lactate metabolism, spermatogenesis and mating behaviour, with better effects when co-administered with metformin. Therefore, Malaysian propolis shows a promising complementary effect with metformin in mitigating Diabetes mellitus-induced subfertility/infertility.

    Matched MeSH terms: Propolis/pharmacology*
  3. Jibril FI, Mohd Hilmi AB, Aliyu S
    J Pharm Bioallied Sci, 2020 Nov;12(Suppl 2):S831-S835.
    PMID: 33828385 DOI: 10.4103/jpbs.JPBS_280_19
    Introduction: Stingless bee is an insect that belongs to the family Apidae. Its name is based on its disability of stinging. It has a high product of Meliponini honey and propolis by which are commonly referred to as stingless bee honey and stingless bee propolis. Meliponini honey is one of the crucial natural sources and has the potential to kill infectious microorganisms. Previous studies have proved that the antibacterial activity of natural honey was an effect of hydrogen peroxide, a substance contained in the honey. However, these claims were contradicting with too many studies.

    Objective: Therefore, this study aimed to identify the antibacterial activity of Malaysian Meliponini honey which contained non-hydrogen peroxide against Staphylococcus aureus, an opportunistic microbial.

    Materials and Methods: Meliponini honey was used as an antibacterial agent for the treatment of S. aureus in agar well diffusion assay. An amplex red hydrogen peroxide kit was used to identify the hydrogen peroxide in the honey sample. Meanwhile, non-hydrogen peroxide activity was performed by using honey-catalase treated.

    Results: For the first time, we found that hydrogen peroxide was absent in all Meliponini honey samples. Meliponini honey has higher antibacterial activity (13.30 ± 0.56mm) compared to Apis honey (9.03 ± 0.22mm) in agar well diffusion assay.

    Discussion: Non-hydrogen peroxide in Meliponini honey is a bioactive compound and beneficial to kill the microbial infection.

    Conclusion: Antibacterial activity of Malaysian Meliponini honey is directly contributed by non-hydrogen peroxide.

    Matched MeSH terms: Propolis
  4. Parolia A, Kumar H, Ramamurthy S, Davamani F, Pau A
    BMC Oral Health, 2020 11 25;20(1):339.
    PMID: 33238961 DOI: 10.1186/s12903-020-01330-0
    BACKGROUND: The successful outcome of endodontic treatment depends on controlling the intra-radicular microbial biofilm by effective instrumentation and disinfection using various irrigants and intracanal medicaments. Instrumentation alone cannot effectively debride the root canals specially due to the complex morphology of the root canal system. A number of antibiotics and surfactants are being widely used in the treatment of biofilms however, the current trend is towards identification of natural products in disinfection. The aim of the study was to determine the antibacterial effect of chitosan-propolis nanoparticle (CPN) as an intracanal medicament against Enterococcus faecalis biofilm in root canal.

    METHODS: 240 extracted human teeth were sectioned to obtain 6 mm of the middle third of the root. The root canal was enlarged to an internal diameter of 0.9 mm. The specimens were inoculated with E. faecalis for 21 days. Following this, specimens were randomly divided into eight groups (n = 30) according to the intracanal medicament placed: group I: saline, group II: chitosan, group III: propolis100 µg/ml (P100), group IV: propolis 250 µg/ml (P250), group V: chitosan-propolis nanoparticle 100 µg/ml (CPN100), group VI: chitosan-propolis nanoparticle 250 µg/ml (CPN250), group VII: calcium hydroxide(CH) and group VIII: 2% chlorhexidine (CHX) gel. Dentine shavings were collected at 200 and 400 μm depths, and total numbers of CFUs were determined at the end of day one, three and seven. The non-parametric Kruskal Wallis and Mann-Whitney tests were used to compare the differences in reduction of CFUs between all groups and probability values of p 

    Matched MeSH terms: Propolis
  5. Siti Radziah Ismail
    MyJurnal
    Introduction: Trigona thoracica propolis is known to have antimicrobial properties, however its
    antileptospiral properties and its synergistic effects with commonly prescribed antibiotics are scarcely
    documented. This study aimed to evaluate the antileptospiral properties of Trigona thoracica against
    pathogenic Leptospira species (spp.) and to study its synergistic effects with commonly prescribed
    antibiotics. Materials and Methods: The tested Leptospira serovars were Australis, Bataviae, Canicola and
    Javanica. Aqueous extract propolis (AEP) and ethanolic extracts propolis (EEP) were used. Broth dilution
    methods were used to determine the Minimum Inhibitory Concentration (MIC), Minimum Bactericidal
    Concentration (MBC) and the synergistic effects between the propolis and the tested antibiotics. The
    synergistic effects was evaluated by using the fractional inhibitory concentration (FIC) index. Morphological
    changes of the treated Leptospira were observed under a Scanning Electron Microscope (SEM). Results: The
    AEP and EEP were found to have antileptospiral properties against the tested Leptospira spp. The synergy
    result showed that only combination of AEP and penicillin G against serovar Australis has demonstrated
    synergistic effect with the FIC index of 0.38. Morphological study using SEM showed significant structural
    changes of the treated Leptospira spp. Conclusions: The result suggests that Trigona thoracica propolis could
    potentially be used as either a complimentary or an alternative therapeutic agent against pathogenic
    Leptospira spp.
    Matched MeSH terms: Propolis
  6. Parolia A, Kumar H, Ramamurthy S, Madheswaran T, Davamani F, Pichika MR, et al.
    Molecules, 2021 Jan 30;26(3).
    PMID: 33573147 DOI: 10.3390/molecules26030715
    To determine the antibacterial effect of propolis nanoparticles (PNs) as an endodontic irrigant against Enterococcus faecalis biofilm inside the endodontic root canal system. Two-hundred-ten extracted human teeth were sectioned to obtain 6 mm of the middle third of the root. The root canal was enlarged to an internal diameter of 0.9 mm. The specimens were inoculated with E. faecalis for 21 days. Following this, specimens were randomly divided into seven groups, with 30 dentinal blocks in each group including: group I-saline; group II-propolis 100 µg/mL; group III-propolis 300 µg/mL; group IV-propolis nanoparticle 100 µg/mL; group V-propolis nanoparticle 300µg/mL; group VI-6% sodium hypochlorite; group VII-2% chlorhexidine. Dentin shavings were collected at 200 and 400 μm depths, and total numbers of CFUs were determined at the end of one, five, and ten minutes. The non-parametric Kruskal-Wallis and Mann-Whitney tests were used to compare the differences in reduction in CFUs between all groups, and probability values of p < 0.05 were set as the reference for statistically significant results. The antibacterial effect of PNs as an endodontic irrigant was also assessed against E. faecalis isolates from patients with failed root canal treatment. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were also performed after exposure to PNs. A Raman spectroscope, equipped with a Leica microscope and lenses with curve-fitting Raman software, was used for analysis. The molecular interactions between bioactive compounds of propolis (Pinocembrin, Kaempferol, and Quercetin) and the proteins Sortase A and β-galactosidase were also understood by computational molecular docking studies. PN300 was significantly more effective in reducing CFUs compared to all other groups (p < 0.05) except 6% NaOCl and 2% CHX (p > 0.05) at all time intervals and both depths. At five minutes, 6% NaOCl and 2% CHX were the most effective in reducing CFUs (p < 0.05). However, no significant difference was found between PN300, 6% NaOCl, and 2% CHX at 10 min (p > 0.05). SEM images also showed the maximum reduction in E. faecalis with PN300, 6% NaOCl, and 2% CHX at five and ten minutes. CLSM images showed the number of dead cells in dentin were highest with PN300 compared to PN100 and saline. There was a reduction in the 484 cm-1 band and an increase in the 870 cm-1 band in the PN300 group. The detailed observations of the docking poses of bioactive compounds and their interactions with key residues of the binding site in all the three docking protocols revealed that the interactions were consistent with reasonable docking and IFD docking scores. PN300 was equally as effective as 6% NaOCl and 2% CHX in reducing the E. faecalis biofilms.
    Matched MeSH terms: Propolis/administration & dosage*; Propolis/chemistry
  7. Ismail IH, Al-Bayaty FH, Yusof EM, Gulam Khan HBS, Hamka FA, Azmi NA
    J Conserv Dent, 2021 02 10;23(5):489-496.
    PMID: 33911359 DOI: 10.4103/JCD.JCD_528_20
    Introduction: Enterococcus faecalis can be found in failed endodontic treatment (FET) even after performing primary endodontic treatment (PET). Calcium hydroxide (Ca(OH)2) cannot fully eliminate this microorganism during PET. Brazilian green propolis (bee glue) was found to be more effective against E. faecalis when compared to Ca(OH)2. A much less studied Malaysian geopropolis (MP) as well as Aloe vera (AV) is antibacterial but is unknown against E. faecalis.

    Objective: The objective of this study is to determine the antimicrobial effects of MP, AV, and MP + AV in comparison with Ca(OH)2 against E. faecalis, as an intracanal medicament.

    Materials and Methods: Antimicrobial activity of MP, AV, MP + AV, Ca(OH)2, and dimethyl sulfoxide was tested against E. faecalis using antimicrobial sensitivity testing, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). The results were analyzed by Kruskal-Wallis test with Mann-Whitney post hoc test and repeated measures analysis of variance with Bonferroni post hoc test (P < 0.05).

    Results: For agar well-diffusion method, MP + AV gave maximum inhibition zone diameter (mean: 8.11 ± 0.015 mm), MP (mean: 6.21 ± 0.046 mm, Ca(OH)2 (mean: 5.5 ± 0.006), and AV (mean: 5.05 ± 0.012) with P < 0.05. MIC for MP + AV was 2 mg/ml, MP at 8 mg/ml, Ca(OH)2 at 8 mg/ml, and AV at 16 mg/ml. The MBC for MP + AV is at 4 mg/ml, MP at 16 mg/ml, Ca(OH)2 at 16 mg/ml, and AV at 32 mg/ml.

    Conclusion: The combination of MP and AV consistently showed better antimicrobial activity compared to MP and AV alone against E. faecalis. The findings suggest that MP and AV used in combination may be an ideal intracanal medicament in FET and PET.

    Matched MeSH terms: Propolis
  8. Mohammad SM, Mahmud-Ab-Rashid NK, Zawawi N
    Molecules, 2021 Feb 11;26(4).
    PMID: 33670262 DOI: 10.3390/molecules26040957
    Stingless bee-collected pollen (bee bread) is a mixture of bee pollen, bee salivary enzymes, and regurgitated honey, fermented by indigenous microbes during storage in the cerumen pot. Current literature data for bee bread is overshadowed by bee pollen, particularly of honeybee Apis. In regions such as South America, Australia, and Southeast Asia, information on stingless bee bee bread is mainly sought to promote the meliponiculture industry for socioeconomic development. This review aims to highlight the physicochemical properties and health benefits of bee bread from the stingless bee. In addition, it describes the current progress on identification of beneficial microbes associated with bee bread and its relation to the bee gut. This review provides the basis for promoting research on stingless bee bee bread, its nutrients, and microbes for application in the food and pharmaceutical industries.
    Matched MeSH terms: Propolis/therapeutic use; Propolis/chemistry*
  9. Othman ZA, Zakaria Z, Suleiman JB, Nna VU, Che Romli A, Wan Ghazali WS, et al.
    Int J Mol Sci, 2021 Apr 19;22(8).
    PMID: 33921777 DOI: 10.3390/ijms22084225
    Obesity and hyperlipidemia are major risk factors for developing vascular diseases. Bee bread (BB) has been reported to exhibit some biological actions, including anti-obesity and anti-hyperlipidemic. This study aims to investigate whether bee bread can ameliorate vascular inflammation and impaired vasorelaxation activity through eNOS/NO/cGMP pathway in obese rats. Forty male Sprague-Dawley rats were randomly divided into four groups (n = 10/group), namely: control (normal group), obese rats (OB group), obese rats treated with bee bread (0.5 g/kg/day, OB/BB group) and obese rats treated with orlistat (10 mg/kg/day, OB/OR group). The latter three groups were given a high-fat diet (HFD) for 6 weeks to induced obesity before being administered with their respective treatments for another 6 weeks. After 12 weeks of the total experimental period, rats in the OB group demonstrated significantly higher Lee obesity index, lipid profile (total cholesterol, triglyceride, low-density lipoprotein), aortic proinflammatory markers (tumor necrosis factor-α, nuclear factor-κβ), aortic structural damage and impairment in vasorelaxation response to acetylcholine (ACh). Bee bread significantly ameliorated the obesity-induced vascular damage manifested by improvements in the lipid profile, aortic inflammatory markers, and the impaired vasorelaxation activity by significantly enhancing nitric oxide release, promoting endothelial nitric oxide synthase (eNOS) and cyclic guanosine monophosphate (cGMP) immunoexpression. These findings suggest that the administration of bee bread ameliorates the impaired vasorelaxation response to ACh by improving eNOS/NO/cGMP-signaling pathway in obese rats, suggesting its vascular therapeutic role.
    Matched MeSH terms: Propolis/therapeutic use*
  10. Ekeuku SO, Chin KY
    Molecules, 2021 May 25;26(11).
    PMID: 34070497 DOI: 10.3390/molecules26113156
    Chronic inflammation and oxidative stress are two major mechanisms leading to the imbalance between bone resorption and bone formation rate, and subsequently, bone loss. Thus, functional foods and dietary compounds with antioxidant and anti-inflammatory could protect skeletal health. This review aims to examine the current evidence on the skeletal protective effects of propolis, a resin produced by bees, known to possess antioxidant and anti-inflammatory activities. A literature search was performed using Pubmed, Scopus, and Web of Science to identify studies on the effects of propolis on bone health. The search string used was (i) propolis AND (ii) (bone OR osteoporosis OR osteoblasts OR osteoclasts OR osteocytes). Eighteen studies were included in the current review. The available experimental studies demonstrated that propolis could prevent bone loss due to periodontitis, dental implantitis, and diabetes in animals. Combined with synthetic and natural grafts, it could also promote fracture healing. Propolis protects bone health by inhibiting osteoclastogenesis and promoting osteoblastogenesis, partly through its antioxidant and anti-inflammatory actions. Despite the promising preclinical results, the skeletal protective effects of propolis are yet to be proven in human studies. This research gap should be bridged before nutraceuticals based on propolis with specific health claims can be developed.
    Matched MeSH terms: Propolis/pharmacology*
  11. Suleiman JB, Mohamed M, Abu Bakar AB, Nna VU, Zakaria Z, Othman ZA, et al.
    Molecules, 2021 Aug 15;26(16).
    PMID: 34443531 DOI: 10.3390/molecules26164943
    The aim of the study was to determine the chemical profile, antioxidant properties and antimicrobial activities of Heterotrigona itama bee bread from Malaysia. The pH, presence of phytochemicals, antioxidant properties, total phenolic content (TPC) and total flavonoid content (TFC), as well as antimicrobial activities, were assessed. Results revealed a decrease in the pH of bee bread water extract (BBW) relative to bee bread ethanolic extract (BBE) and bee bread hot water extract (BBH). Further, alkaloids, flavonoids, phenols, tannins, saponins, terpenoids, resins, glycosides and xanthoproteins were detected in BBW, BBH and BBE. Also, significant decreases in TPC, TFC, DPPH activity and FRAP were detected in BBW relative to BBH and BBE. We detected phenolic acids such as gallic acid, caffeic acid, trans-ferulic acid, trans 3-hydroxycinnamic acid and 2-hydroxycinnamic acid, and flavonoids such as quercetin, kaempferol, apigenin and mangiferin in BBE using high-performance liquid chromatography analysis. The strongest antimicrobial activity was observed in Klebsilla pneumonia (MIC50 1.914 µg/mL), followed by E. coli (MIC50 1.923 µg/mL), Shigella (MIC50 1.813 µg/mL) and Salmonella typhi (MIC50 1.617 µg/mL). Bee bread samples possess antioxidant and antimicrobial properties. Bee bread contains phenolic acids and flavonoids, and could be beneficial in the management and treatment of metabolic diseases.
    Matched MeSH terms: Propolis/pharmacology*; Propolis/chemistry
  12. Suleiman JB, Abu Bakar AB, Noor MM, Nna VU, Othman ZA, Zakaria Z, et al.
    Am J Physiol Endocrinol Metab, 2021 Sep 01;321(3):E351-E366.
    PMID: 34229480 DOI: 10.1152/ajpendo.00093.2021
    The pituitary-gonadal axis plays an important role in steroidogenesis and spermatogenesis, and by extension, fertility. The aim of this study was to investigate the protective role of bee bread, a natural bee product, against obesity-induced decreases in steroidogenesis and spermatogenesis. Thirty-two adult male Sprague-Dawley rats weighing between 200 and 300 g were divided into four groups (n = 8/group), namely: normal control (NC), high-fat diet (HFD), HFD plus bee bread administered concurrently for 12 wk (HFD + B), HFD plus orlistat administered concurrently for 12 wk (HFD + O) groups. Bee bread (0.5 g/kg) or orlistat (10 mg/kg/day) was suspended in distilled water and given by oral gavage daily for 12 wk. Levels of follicle-stimulating hormone, luteinizing hormone, testosterone, and adiponectin, as well as sperm count, motility, viability, normal morphology, and epididymal antioxidants decreased, whereas levels of leptin, malondialdehyde, and sperm nDNA fragmentation increased significantly in the HFD group relative to the NC group. There were significant decreases in the testicular mRNA transcript levels of androgen receptor, luteinizing hormone receptor, steroidogenic acute regulatory protein, cytochrome P450 enzyme, 3β-hydroxysteroid dehydrogenase (HSD) and 17β-HSD in the testes of the HFD group. Furthermore, mount, intromission and ejaculatory latencies increased, and penile cGMP level decreased significantly in the HFD group. Supplementation with bee bread significantly reduced leptin level and increased adiponectin level, enhanced sperm parameters and reduced sperm nDNA fragmentation, upregulated the levels of steroidogenic genes and proteins in HFD-induced obese male rats. Bee bread improved steroidogenesis and spermatogenesis by upregulating steroidogenic genes. Therefore, bee bread may be considered as a potential supplementation to protect against infertility in overweight men or men with obesity.NEW & NOTEWORTHY The high-fat diet utilized in the present study induced obesity in the male rats. Bee bread supplementation mitigated impaired steroidogenesis, spermatogenesis, mating behavior, and fertility potential by counteracting the downregulation of steroidogenic genes, thus increasing testosterone levels and suppressing epididymal oxidative stress. These benefits may be due to the abundance of phenolic and flavonoid compounds in bee bread.
    Matched MeSH terms: Propolis/administration & dosage*
  13. Quoc LPT
    Med J Malaysia, 2023 Sep;78(5):687.
    PMID: 37775498
    No abstract available.
    Matched MeSH terms: Propolis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links