Displaying publications 21 - 26 of 26 in total

Abstract:
Sort:
  1. Yanliang shang, Shouji du, Honghong gao, Tongyin han
    Sains Malaysiana, 2017;46:2241-2250.
    Mineral composition of rock has a very important influence on the physical and mechanical properties of tunnel surrounding rock. Take Dangjianshan tunnel in cold regions for example, the rock specimens in different parts of tunnel were taken to carry out the detection test of mineral composition. By the detail qualitative and quantitative analysis, the relationship between mineral composition and surrounding rock engineering properties was explored. First of all, the composition and content of minerals contained in in the rock specimens were detected by X ray fluorescence spectrometer and X ray powder diffraction. The detection results show that rock of tunnel contains high hardness minerals such as quartz and feldspar which were proven by initial engineering geological investigation report, in addition, it also contains several kinds of low hardness minerals including inclined chlorite and illite which may exhibit large deformation characteristic of soft rock after the tunnel excavation in case of meeting water and weathering conditions. The total content of inclined chlorite and illite accounted for a considerable component in main tunnel, inclined shaft and parallel pilot respectively and the influence on surrounding rock engineering properties cannot be ignored. Therefore, mineral composition detection must be paid attention to after tunnel excavation. Secondly, the effects of mineral composition on surrounding rock were analyzed in aspects of rock strength, weathering resistance, water softening property and excavation deformation through comparing the rock samples in different parts of tunnel. The comparative results showed that when the mineral contents is high with high hardness and poor hydrophilicity, tunnel surrounding rock plays a better performance of physical and mechanical properties, vice versa. Finally, according to the specific geological and construction parameters of the tunnel, the correlation analysis was studied about the vault settlement after tunnel excavation and the hydrophilicity mineral content in main cave. The logarithmic relationship between them was found and the correlation coefficient was 0.98. It can provide a useful reference for the settlement prediction of Dangjinshan tunnel construction.
    Matched MeSH terms: Quartz
  2. Liew MS, Aswin M, Danyaro KU, Mohammed BS, Al-Yacouby AM
    Materials (Basel), 2020 May 26;13(11).
    PMID: 32466366 DOI: 10.3390/ma13112428
    In relation to the use of retrofit materials on damaged constructions, application on earthquake-resistant buildings, and for the strengthening and rehabilitation on weakened regions, there is a need for a more superior material than concrete. Application sites include beam-column joints, corbels, link-slabs, deep beams, support regions and dapped-end areas. Fiber reinforced engineered cementitious composites (FR-ECC) can address this issue, because FR-ECC is one of the composite materials that has high strength, ductility and durability. In order to develop FR-ECC, this study was done to investigate the effect of adding quartz powder on the compressive strength capacity and properties of FR-ECC through the use of polyvinyl alcohol (PVA) and steel fibers. The volume fraction of fiber was set to 0%-2%. To support the friendly environment, FR-ECC uses by-product materials such as fly ash and silica fume, with a cement content less than 600 kg/m3. In terms of the experimental investigation on FR-ECC, this work conducted the fresh property tests showing that PVA fibers have quite an influence on ECC workability, due to their hydrophilic behavior. By adjusting the superplasticizer (SP) content, the consistency and high workability of the ECC mixes have been achieved and maintained. The test results indicated that the PVA and steel fibers-based ECC mixes can be classified as self-compacting composites and high early compressive strength composites. Significantly, addition of quartz powder into the ECC mixes increased the compressive strength ratio of the ECC samples up to 1.0747. Furthermore, the steel fiber-based ECC samples exhibited greater compressive strength than the PVA fibers-based ECC samples with the strength ratio of 1.1760. Due to effect of the pozzolanic reaction, the fibers dispersion and orientation in the fresh ECC mixes, so that the cementitious matrices provided the high strength on the FR-ECC samples. During the compression loading, the bulging effect always occurred before the failures of the fibers-based ECC samples. No spalling occurred at the time of rupture and the collapse occurred slowly. Thus, FR-ECC has provided unique characteristics, which will reduce the high cost of maintenance.
    Matched MeSH terms: Quartz
  3. Mohammed BS, Haruna S, Wahab MMA, Liew MS, Haruna A
    Heliyon, 2019 Sep;5(9):e02255.
    PMID: 31687531 DOI: 10.1016/j.heliyon.2019.e02255
    In this present experimental study, geopolymer cement is developed using high calcium fly ash and used in the production of one-part alkali-activated binders. At 8-16 percent of the total precursor materials, the HCFA was activated with anhydrous sodium metasilicate powder and cured in ambient condition. Five mixtures of one-part geopolymer paste were intended at a steady w/b proportion. Density, flowability, setting time, compressive strength, splitting tensile strength and molar ratio impact were envisaged. It was observed that the setting time of the designed one-part geopolymer paste decreases with higher activator content. The experimental findings showed that the resistance of one-part geopolymer cement paste increases with comparatively greater activator content. However, raising the granular activator beyond 12 percent by fly ash weight decreases the strength and workability of the established one-part geopolymer cement. The optimum mix by weight of the fly ash was discovered to be 12 percent (i.e. 6 percent Na2O). At 28 days of curing, one-part alkali-activated paste recorded the greatest compressive strength of almost 50 MPa. The density of the one-part geopolymer paste is nearly the same regardless of the mixes. Microstructural assessment by FESEM, FTIR and XRD has shown that the established geopolymer paste includes quartz, pyrrhotite, aluminosilicate sodium and hydrate gels of calcium aluminosilicate. Based on the experimental information acquired, it can be deduced that the strength growth of one-part geopolymer cement is similar to that of Portland cement.
    Matched MeSH terms: Quartz
  4. Akinyemi SA, Gitari WM, Petrik LF, Nyakuma BB, Hower JC, Ward CR, et al.
    Sci Total Environ, 2019 May 01;663:177-188.
    PMID: 30711584 DOI: 10.1016/j.scitotenv.2019.01.308
    Coal combustion and the disposal of combustion wastes emit enormous quantities of nano-sized particles that pose significant health concerns on exposure, particularly in unindustrialized countries. Samples of fresh and weathered class F fly ash were analysed through various techniques including X-ray fluorescence (XRF), X-ray diffraction (XRD), focused ion beam scanning electron microscopy (FIB-SEM), field-emission gun scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM) coupled with energy dispersive x-ray spectroscopy (EDS), and Raman Spectroscopy. The imaging techniques showed that the fresh and weathered coal fly ash nanoparticles (CFA-NPs) are mostly spherical shaped. The crystalline phases detected were quartz, mullite, ettringite, calcite, maghemite, hematite, gypsum, magnetite, clay residues, and sulphides. The most abundant crystalline phases were quartz mixed with Al-Fe-Si-K-Ti-O-amorphous phases whereas mullite was detected in several amorphous phases of Al, Fe, Ca, Si, O, K, Mg, Mn, and P. The analyses revealed that CFA-NPs are 5-500 nm in diameter and encapsulate several potentially hazardous elements (PHEs). The carbon species were detected as 5-50 nm carbon nanoballs of graphitic layers and massive fullerenes. Lastly, the aspects of health risks related to exposure to some detected ambient nanoparticles are also discussed.
    Matched MeSH terms: Quartz
  5. Ahmad N, Colak B, Zhang DW, Gibbs MJ, Watkinson M, Becer CR, et al.
    Sensors (Basel), 2019 Apr 08;19(7).
    PMID: 30965649 DOI: 10.3390/s19071677
    Peptide cross-linked poly(ethylene glycol) hydrogel has been widely used for drug delivery and tissue engineering. However, the use of this material as a biosensor for the detection of collagenase has not been explored. Proteases play a key role in the pathology of diseases such as rheumatoid arthritis and osteoarthritis. The detection of this class of enzyme using the degradable hydrogel film format is promising as a point-of-care device for disease monitoring. In this study, a protease biosensor was developed based on the degradation of a peptide cross-linked poly(ethylene glycol) hydrogel film and demonstrated for the detection of collagenase. The hydrogel was deposited on gold-coated quartz crystals, and their degradation in the presence of collagenase was monitored using a quartz crystal microbalance (QCM). The biosensor was shown to respond to concentrations between 2 and 2000 nM in less than 10 min with a lower detection limit of 2 nM.
    Matched MeSH terms: Quartz Crystal Microbalance Techniques
  6. Che HX, Yeap SP, Osman MS, Ahmad AL, Lim J
    ACS Appl Mater Interfaces, 2014 Oct 8;6(19):16508-18.
    PMID: 25198872 DOI: 10.1021/am5050949
    The synthesis of nanocomposite with controlled surface morphology plays a key role for pollutant removal from aqueous environments. The influence of the molecular size of the polyelectrolyte in synthesizing silica-iron oxide core-shell nanocomposite with open shell structure was investigated by using dynamic light scattering, atomic force microscopy, and quartz crystal microbalance with dissipation (QCM-D). Here, poly(diallydimethylammonium chloride) (PDDA) was used to promote the attachment of iron oxide nanoparticles (IONPs) onto the silica surface to assemble a nanocomposite with magnetic and catalytic bifunctionality. High molecular weight PDDA tended to adsorb on silica colloid, forming a more extended conformation layer than low molecular weight PDDA. Subsequent attachment of IONPs onto this extended PDDA layer was more randomly distributed, forming isolated islands with open space between them. By taking amoxicillin, an antibiotic commonly found in pharmaceutical waste, as the model system, better removal was observed for silica-iron oxide nanocomposite with a more extended open shell structure.
    Matched MeSH terms: Quartz Crystal Microbalance Techniques
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links