RESULTS: The rumen pH and concentration of propionate were greater (P rumen of goats. The ruminal populations of Ruminococcus albus, Ruminococcus flavefaciens and Fibrobacter succinogenes were greater (P rumen metabolism for improved nutrient digestibility in goats.
METHODS AND RESULTS: The effects of unfractionated CTs (F0) and CT fractions of different MWs (F1 > F2 > F3 > F4 > F5) on protozoal population and community were evaluated in vitro using rumen microbes and ground guinea grass as the substrate. Higher-MW CT fractions F1 and F2 significantly (P rumen protozoa population in vitro. This effect was more pronounced for higher-MW CTs.
SIGNIFICANCE AND IMPACT OF THE STUDY: The high MW CTs should be considered as a feed supplement in the ruminant diet to reduce the protozoal population which are known to be associated with methanogens as a means to mitigate methane production in the rumen.
METHODS: Twelve 3 to 4 months old male goats and sheep were randomly allocated into two dietary treatment groups in a 2 (species)×2 (oil levels) factorial experiment. The treatments were: i) goats fed basal diet, ii) goats fed oil-supplemented diet, iii) sheep fed basal diet, and iv) sheep fed oil-supplemented diet. Each treatment group consisted of six animals. Animals in the basal diet group were fed with 30% alfalfa hay and 70% concentrates at a rate equivalent to 4% of their body weight. For the oil treatment group, linseed oil was added at 4% level (w:w) to the concentrate portion of the basal diet. Growth performance of the animals was determined fortnightly. Digestibility study was conducted during the final week of the feeding trial before the animals were slaughtered to obtain rumen fluid for rumen fermentation characteristics study.
RESULTS: Sheep had higher (p<0.01) average daily weight gain (ADG) and better feed conversion ratio (FCR) than goats. Oil supplementation did not affect rumen fermentation in both species and improved ADG by about 29% and FCR by about 18% in both goats and sheep. The above enhancement is consistent with the higher dry matter and energy digestibility (p<0.05), as well as organic matter and neutral detergent fiber digestibility (p<0.01) in animals fed oil- supplemented diet. Sheep had higher total volatile fatty acid production and acetic acid proportion compared to goat.
CONCLUSION: The findings of this study suggested that sheep performed better than goats when fed a fattening diet and oil supplementation at the inclusion rate of 4% provides a viable option to significantly enhance growth performance and FCR in fattening sheep and goats.