Displaying publications 21 - 40 of 47 in total

Abstract:
Sort:
  1. Chandara C, Azizli KA, Ahmad ZA, Sakai E
    Waste Manag, 2009 May;29(5):1675-9.
    PMID: 19131236 DOI: 10.1016/j.wasman.2008.11.014
    The present study is focused on clarifying the influence of waste gypsum (WG) in replacing natural gypsum (NG) in the production of ordinary Portland cement (OPC). WG taken from slip casting moulds in a ceramic factory was formed from the hydration of plaster of paris. Clinker and 3-5wt% of WG was ground in a laboratory ball mill to produce cement waste gypsum (CMWG). The same procedure was repeated with NG to substitute WG to prepare cement natural gypsum (CMNG). The properties of NG and WG were investigated via X-ray Diffraction (XRD), X-ray fluorescence (XRF) and differential scanning calorimetry (DSC)/thermogravimetric (TG) to evaluate the properties of CMNG and CMWG. The mechanical properties of cement were tested in terms of setting time, flexural and compressive strength. The XRD result of NG revealed the presence of dihydrate while WG contained dihydrate and hemihydrate. The content of dihydrate and hemihydrates were obtained via DSC/TG, and the results showed that WG and NG contained 12.45% and 1.61% of hemihydrate, respectively. Furthermore, CMWG was found to set faster than CMNG, an average of 15.29% and 13.67% faster for the initial and final setting times, respectively. This was due to the presence of hemihydrate in WG. However, the values obtained for flexural and compressive strength were relatively the same for CMNG and CMWG. Therefore, this result provides evidence that WG can be used as an alternative material to NG in the production of OPC.
    Matched MeSH terms: Waste Products/analysis*
  2. Ryan PG
    Mar Pollut Bull, 2013 Apr 15;69(1-2):128-36.
    PMID: 23415747 DOI: 10.1016/j.marpolbul.2013.01.016
    A size and distance-based technique was used to assess the distribution, abundance and composition of floating marine debris in the northeast Indian Ocean. Densities of floating litter (>1 cm) were greater and more variable in the Straits of Malacca (578±219 items km(-2)) than in oceanic waters of the Bay of Bengal (8.8±1.4 items km(-2)). The density of debris in the Straits was correlated with terrestrial vegetation, and peaked close to urban centres, indicating the predominance of land-based sources. In the Bay of Bengal, debris density increased north of 17°N mainly due to small fragments probably carried in run-off from the Ganges Delta. The low densities in the Bay of Bengal relative to model predictions may result from biofouling-induced sinking and wind-driven export of debris items. Standardised data collection protocols are needed for counts of floating debris, particularly as regards the size classes used, to facilitate comparisons among studies.
    Matched MeSH terms: Waste Products/analysis*
  3. Prasetyoko D, Ramli Z, Endud S, Hamdan H, Sulikowski B
    Waste Manag, 2006;26(10):1173-9.
    PMID: 16274981
    White rice husk ash (RHA), an agriculture waste containing crystalline tridymite and alpha-cristobalite, was used as a silica source for zeolite Beta synthesis. The crystallization of zeolite Beta from RHA at 150 degrees C in the presence of tetraethylammonium hydroxide was monitored by XRD, FTIR and (29)Si MAS NMR techniques. It was found that zeolite Beta started to form after 12h and the complete crystallization of zeolite Beta phase was achieved after 2d. XRD, (29)Si MAS NMR and solid yield studies indicate that the transformation mechanism of silica present in RHA to zeolite Beta involves dissolution of the ash, formation of an amorphous aluminosilicate after 6h of crystallization, followed by dissolution in the mother liquor and final transformation to pure zeolite Beta crystals.
    Matched MeSH terms: Waste Products/analysis*
  4. Omar L, Ahmed OH, Ab Majid NM
    ScientificWorldJournal, 2015;2015:574201.
    PMID: 25793220 DOI: 10.1155/2015/574201
    Improper use of urea may cause environmental pollution through NH3 volatilization and NO3 (-) leaching from urea. Clinoptilolite zeolite and compost could be used to control N loss from urea by controlling NH4 (+) and NO3 (-) release from urea. Soil incubation and leaching experiments were conducted to determine the effects of clinoptilolite zeolite and compost on controlling NH4 (+) and NO3 (-) losses from urea. Bekenu Series soil (Typic Paleudults) was incubated for 30, 60, and 90 days. A soil leaching experiment was conducted for 30 days. Urea amended with clinoptilolite zeolite and compost significantly reduced NH4 (+) and NO3 (-) release from urea (soil incubation study) compared with urea alone, thus reducing leaching of these ions. Ammonium and NO3 (-) leaching losses during the 30 days of the leaching experiment were highest in urea alone compared with urea with clinoptilolite zeolite and compost treatments. At 30 days of the leaching experiment, NH4 (+) retention in soil with urea amended with clinoptilolite zeolite and compost was better than that with urea alone. These observations were because of the high pH, CEC, and other chemical properties of clinoptilolite zeolite and compost. Urea can be amended with clinoptilolite zeolite and compost to improve NH4 (+) and NO3 (-) release from urea.
    Matched MeSH terms: Waste Products/analysis
  5. Ong SY, Zainab-L I, Pyary S, Sudesh K
    Appl Microbiol Biotechnol, 2018 Mar;102(5):2117-2127.
    PMID: 29404644 DOI: 10.1007/s00253-018-8788-9
    Polyhydroxyalkanoate (PHA) is a family of microbial polyesters that is completely biodegradable and possesses the mechanical and thermal properties of some commonly used petrochemical-based plastics. Therefore, PHA is attractive as a biodegradable thermoplastic. It has always been a challenge to commercialize PHA due to the high cost involved in the biosynthesis of PHA via bacterial fermentation and the subsequent purification of the synthesized PHA from bacterial cells. Innovative enterprise by researchers from various disciplines over several decades successfully reduced the cost of PHA production through the efficient use of cheap and renewable feedstock, precisely controlled fermentation process, and customized bacterial strains. Despite the fact that PHA yields have been improved tremendously, the recovery and purification processes of PHA from bacterial cells remain exhaustive and require large amounts of water and high energy input besides some chemicals. In addition, the residual cell biomass ends up as waste that needs to be treated. We have found that some animals can readily feed on the dried bacterial cells that contain PHA granules. The digestive system of the animals is able to assimilate the bacterial cells but not the PHA granules which are excreted in the form of fecal pellets, thus resulting in partial recovery and purification of PHA. In this mini-review, we will discuss this new concept of biological recovery, the selection of the animal model for biological recovery, and the properties and possible applications of the biologically recovered PHA.
    Matched MeSH terms: Waste Products/analysis*
  6. Phan CW, Sabaratnam V
    Appl Microbiol Biotechnol, 2012 Nov;96(4):863-73.
    PMID: 23053096 DOI: 10.1007/s00253-012-4446-9
    Mushroom industries generate a virtually in-exhaustible supply of a co-product called spent mushroom substrate (SMS). This is the unutilised substrate and the mushroom mycelium left after harvesting of mushrooms. As the mushroom industry is steadily growing, the volume of SMS generated annually is increasing. In recent years, the mushroom industry has faced challenges in storing and disposing the SMS. The obvious solution is to explore new applications of SMS. There has been considerable discussion recently about the potentials of using SMS for production of value-added products. One of them is production of lignocellulosic enzymes such as laccase, xylanase, lignin peroxidase, cellulase and hemicellulase. This paper reviews scientific research and practical applications of SMS as a readily available and cheap source of enzymes for bioremediation, animal feed and energy feedstock.
    Matched MeSH terms: Waste Products/analysis
  7. Tanimu MI, Mohd Ghazi TI, Harun MR, Idris A
    Appl Microbiol Biotechnol, 2015 May;99(10):4509-20.
    PMID: 25761621 DOI: 10.1007/s00253-015-6486-4
    Foaming problem which occurred occasionally during food waste (FW) anaerobic digestion (AD) was investigated with the Malaysian FW by stepwise increase in organic loading (OL) from 0.5 to 7.5 g VS/L. The FW feedstock with carbon to nitrogen (C/N) ratio of 17 was upgraded to C/N ratio of 26 and 30 by mixing with other wastes. The digestion which was carried out at 37 °C in 1-L batch reactors showed that foam formation initiated at OL of 1.5 g VS/L and was further enhanced as OL of feedstock was increased. The digestion foaming reached its maximum at OL of 5.5 g VS/L and did not increase further even when OL was increased to 7.5 g VS/Ld. Increase in the C/N ratio of feedstock significantly enhanced the microbial degradation activity, leading to better removal of foam causing intermediates and reduced foaming in the reactor by up to 60%.
    Matched MeSH terms: Waste Products/analysis*
  8. Jahurul MHA, Zaidul ISM, Beh L, Sharifudin MS, Siddiquee S, Hasmadi M, et al.
    Food Res Int, 2019 01;115:105-115.
    PMID: 30599921 DOI: 10.1016/j.foodres.2018.08.017
    Fruits are important food commodities that can be consumed either raw or processed and are valued for their taste, nutrients, and healthy compounds. Mangifera pajang Kosterm (bambangan) is an underutilized fruit found in Malaysia (Sabah and Sarawak), Brunei, and Indonesia (Kalimantan). It is highly fibrous and juicy with an aromatic flavour and strong smell. In recent years, bambangan fruit has been gaining more attention due to its high fibre, carotenoid content, antioxidant properties, phytochemicals, and medicinal usages. Therefore, the production, trade, and consumption of bambangan fruit could be increased significantly, both domestically and internationally, because of its nutritional value. The identification and quantification of bioactive compounds in bambangan fruit has led to considerable interest among scientists. Bambangan fruit and its waste, especially its seeds and peels, are considered cheap sources of valuable food and are considered nutraceutical ingredients that could be used to prevent various diseases. The use of bambangan fruit waste co-products for the production of bioactive components is an important step towards sustainable development. This is an updated report on the nutritional composition and health-promoting phytochemicals of bambangan fruit and its co-products that explores their potential utilization. This review reveals that bambangan fruit and its co-products could be used as ingredients of dietary fibre powder or could be incorporated into food products (biscuits and macaroni) to enhance their nutraceutical properties.
    Matched MeSH terms: Waste Products/analysis
  9. Wan-Mohtar WAAQI, Halim-Lim SA, Kamarudin NZ, Rukayadi Y, Abd Rahim MH, Jamaludin AA, et al.
    J Food Sci, 2020 Oct;85(10):3124-3133.
    PMID: 32860235 DOI: 10.1111/1750-3841.15402
    In a commercial oyster mushroom farm, from 300 g of the total harvest, only the cap and stem of the fruiting body parts are harvested (200 g) while the unused lower section called fruiting-body-base (FBB) is discarded (50 g). A new antioxidative FBB flour (FBBF) conversion to mixed-ratio chicken patty was recently developed which converts 16.67% of FBB into an edible flour. At the initial stage, pretreatments of FBBF were optimized at particle size (106 µm) and citric acid concentration (0.5 g/100 mL) to improve flour antioxidant responses. Such pretreatments boosted total phenolic content (2.31 ± 0.53 mg GAE/g) and DPPH (51.53 ± 1.51%) of pretreated FBBF. Mixed-ratio chicken patty containing FBBF (10%, 20%, 30%) significantly (P
    Matched MeSH terms: Waste Products/analysis*
  10. Goudarzi M, Mir N, Mousavi-Kamazani M, Bagheri S, Salavati-Niasari M
    Sci Rep, 2016 09 01;6:32539.
    PMID: 27581681 DOI: 10.1038/srep32539
    In this work, two natural sources, including pomegranate peel extract and cochineal dye were employed for the synthesis of silver nanoparticles. The natural silver complex from pomegranate peel extract resulted in nano-sized structures through solution-phase method, but this method was not efficient for cochineal dye-silver precursor and the as-formed products were highly agglomerated. Therefore, an alternative facile solid-state approach was investigated as for both natural precursors and the results showed successful production of well-dispersed nanoparticles with narrow size distribution for cochineal dye-silver precursor. The products were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy dispersive X-ray microanalysis (EDX), and Transmission Electron Microscopy (TEM).
    Matched MeSH terms: Waste Products/analysis
  11. Khalik WMAWM, Ibrahim YS, Tuan Anuar S, Govindasamy S, Baharuddin NF
    Mar Pollut Bull, 2018 Oct;135:451-457.
    PMID: 30301058 DOI: 10.1016/j.marpolbul.2018.07.052
    The first report on the emergence of microplastic in Malaysian marine waters was documented in this study. Water samples were collected from two regions, namely Kuala Nerus and Kuantan port, as the representatives of different anthropogenic activities. Identification of microplastic was performed based on physical characteristics (colour, shape, density) and chemical characterisation (ATR-FTIR analysis) for a functional group of polymers. Fragment type, black or grey colour and high density (>1.02 g cm-3) of microplastic were the most prevalent characteristics found in both areas. Two principal components (density and colour) rendered explained about 95.3% (Kuantan) and 95.6% (Kuala Nerus) of the total variance. Six possible polymer materials were identified, namely polyester, polystyrene, polyamide, polyvinyl chloride, polypropylene, and polyethylene. The findings of the study provided good baseline information on marine debris issue in Malaysia.
    Matched MeSH terms: Waste Products/analysis
  12. Mohd Zain NF, Paramasivam M, Tan JS, Lim V, Lee CK
    Biotechnol Prog, 2021 01;37(1):e3077.
    PMID: 32894656 DOI: 10.1002/btpr.3077
    The feasibility of using waste glycerol from the biodiesel industry for biosynthesis of polyhydroxyalkanoate (PHA) by Burkholderia cepacia BPT1213 was evaluated. Culture conditions were optimized by growing B. cepacia BPT1213 in mineral salt medium supplemented with 2% waste glycerol in a 2.5 L bioreactor. Response surface methodology was used to determine the influence of aeration rate (0.6-1.8 vvm), agitation speed (100-300 rpm), and cultivation period (48-72 hr) on PHA production. The optimum conditions for the growth and PHA accumulation were 1.5 vvm, 300 rpm, and 72 hr, with predicted values of 5.08 g/L cell dry weight (CDW), 66.07% PHA content, and 3.35 g/L total PHA concentration. Using these conditions, the experimental system produced 5.63 g/L of CDW with 64.00% wt/wt PHA content, which is threefold higher PHA concentration (3.60 g/L) compared to the non-optimized conditions. The melting temperature (Tm ) of purified PHA was 173.45 ± 1.05°C. In conclusion, the statistical approach was significantly increased the PHA production using waste glycerol as the sole carbon source.
    Matched MeSH terms: Waste Products/analysis*
  13. Auta HS, Emenike CU, Fauziah SH
    Environ Int, 2017 May;102:165-176.
    PMID: 28284818 DOI: 10.1016/j.envint.2017.02.013
    The presence of microplastics in the marine environment poses a great threat to the entire ecosystem and has received much attention lately as the presence has greatly impacted oceans, lakes, seas, rivers, coastal areas and even the Polar Regions. Microplastics are found in most commonly utilized products (primary microplastics), or may originate from the fragmentation of larger plastic debris (secondary microplastics). The material enters the marine environment through terrestrial and land-based activities, especially via runoffs and is known to have great impact on marine organisms as studies have shown that large numbers of marine organisms have been affected by microplastics. Microplastic particles have been found distributed in large numbers in Africa, Asia, Southeast Asia, India, South Africa, North America, and in Europe. This review describes the sources and global distribution of microplastics in the environment, the fate and impact on marine biota, especially the food chain. Furthermore, the control measures discussed are those mapped out by both national and international environmental organizations for combating the impact from microplastics. Identifying the main sources of microplastic pollution in the environment and creating awareness through education at the public, private, and government sectors will go a long way in reducing the entry of microplastics into the environment. Also, knowing the associated behavioral mechanisms will enable better understanding of the impacts for the marine environment. However, a more promising and environmentally safe approach could be provided by exploiting the potentials of microorganisms, especially those of marine origin that can degrade microplastics.

    CAPSULE: The concentration, distribution sources and fate of microplastics in the global marine environment were discussed, so also was the impact of microplastics on a wide range of marine biota.

    Matched MeSH terms: Waste Products/analysis*
  14. Kupaei RH, Alengaram UJ, Jumaat MZ
    ScientificWorldJournal, 2014;2014:898536.
    PMID: 25531006 DOI: 10.1155/2014/898536
    This paper presents the experimental results of an on-going research project on geopolymer lightweight concrete using two locally available waste materials--low calcium fly ash (FA) and oil palm shell (OPS)--as the binder and lightweight coarse aggregate, respectively. OPS was pretreated with three different alkaline solutions of sodium hydroxide (NaOH), potassium hydroxide, and sodium silicate as well as polyvinyl alcohol (PVA) for 30 days; afterwards, oil palm shell geopolymer lightweight concrete (OPSGPC) was cast by using both pretreated and untreated OPSs. The effect of these solutions on the water absorption of OPS, and the development of compressive strength in different curing conditions of OPSGPC produced by pretreated OPS were investigated; subsequently the influence of NaOH concentration, alkaline solution to FA ratio (A/FA), and different curing regimes on the compressive strength and density of OPSGPC produced by untreated OPS was inspected. The 24-hour water absorption value for OPS pretreated with 20% and 50% PVA solution was about 4% compared to 23% for untreated OPS. OPSGPC produced from OPS treated with 50% PVA solution produced the highest compressive strength of about 30 MPa in ambient cured condition. The pretreatment with alkaline solution did not have a significant positive effect on the water absorption of OPS aggregate and the compressive strength of OPSGPC. The result revealed that a maximum compressive strength of 32 MPa could be obtained at a temperature of 65°C and curing period of 4 days. This investigation also found that an A/FA ratio of 0.45 has the optimum amount of alkaline liquid and it resulted in the highest level of compressive strength.
    Matched MeSH terms: Waste Products/analysis*
  15. Abioye OP, Agamuthu P, Abdul Aziz AR
    Biodegradation, 2012 Apr;23(2):277-86.
    PMID: 21870160 DOI: 10.1007/s10532-011-9506-9
    Soil contamination by hydrocarbons, especially by used lubricating oil, is a growing problem in developing countries, which poses a serious threat to the environment. Phytoremediation of these contaminated soils offers environmental friendly and a cost effective method for their remediation. Hibiscus cannabinus was studied for the remediation of soil contaminated with 2.5 and 1% used lubricating oil and treated with organic wastes [banana skin (BS), brewery spent grain (BSG) and spent mushroom compost (SMC)] for a period of 90 days under natural conditions. Loss of 86.4 and 91.8% used lubricating oil was recorded in soil contaminated with 2.5 and 1% oil and treated with organic wastes respectively at the end of 90 days. However, 52.5 and 58.9% oil loss was recorded in unamended soil contaminated with 2.5 and 1% oil, respectively. The plant did not accumulate hydrocarbon from the soil but shows appreciable accumulation of Fe and Zn in the root and stem of H. cannabinus at the end of the experiment. The first order kinetic rate of uptake of Fe and Zn in H. cannabinus was higher in organic wastes amendment treatments compared to the unamended treatments, which are extremely low. The results of this study suggest that H. cannabinus has a high potential for remediation of hydrocarbon and heavy metal contaminated soil.
    Matched MeSH terms: Waste Products/analysis
  16. Fung WY, Yuen KH, Liong MT
    J Agric Food Chem, 2011 Aug 10;59(15):8140-7.
    PMID: 21711050 DOI: 10.1021/jf2009342
    This study explored the potential of soluble dietary fiber (SDF) from agrowastes, okara (soybean solid waste), oil palm trunk (OPT), and oil palm frond (OPF) obtained via alkali treatment, in the nanoencapsulation of Lactobacillus acidophilus . SDF solutions were amended with 8% poly(vinyl alcohol) to produce nanofibers using electrospinning technology. The spinning solution made from okara had a higher pH value at 5.39 ± 0.01 and a higher viscosity at 578.00 ± 11.02 mPa·s (P < 0.05), which resulted in finer fibers. FTIR spectra of nanofibers showed the presence of hemicellulose material in the SDF. Thermal behavior of nanofibers suggested possible thermal protection of probiotics in heat-processed foods. L. acidophilus was incorporated into the spinning solution to produce nanofiber-encapsulated probiotic, measuring 229-703 nm, visible under fluorescence microscopy. Viability studies showed good bacterial survivability of 78.6-90% under electrospinning conditions and retained viability at refrigeration temperature during the 21 day storage study.
    Matched MeSH terms: Waste Products/analysis*
  17. Wong YP, Saw HY, Janaun J, Krishnaiah K, Prabhakar A
    Appl Biochem Biotechnol, 2011 May;164(2):170-82.
    PMID: 21080102 DOI: 10.1007/s12010-010-9124-8
    Solid-state fermentation (SSF) was employed to enhance the nutritive values of palm kernel cake (PKC) for poultry feeding. Aspergillus flavus was isolated from local PKC and utilized to increase the mannose content of PKC via the degradation of β-mannan in PKC; evaluation was done for batch SSF in Erlenmeyer flasks and in a novel laterally aerated moving bed (LAMB) bioreactor. The optimum condition for batch SSF in flasks was 110% initial moisture content, initial pH 6.0, 30 °C, 855 μm particle size, and 120 h of fermentation, yielding 90.91 mg mannose g⁻¹ dry PKC (5.9-fold increase). Batch SSF in the LAMB at the optimum condition yielded 79.61 mg mannose g⁻¹ dry PKC (5.5-fold increase) within just 96 h due to better heat and mass transfer when humidified air flowed radially across the PKC bed. In spite of a compromise of 12% reduction in mannose content when compared with the flasks, the LAMB facilitated good heat and mass transfer, and improved the mannose content of PKC in a shorter fermentation period. These attributes are useful for batch production of fermented PKC feed in an industrial scale.
    Matched MeSH terms: Waste Products/analysis*
  18. Boey PL, Maniam GP, Hamid SA
    Bioresour Technol, 2009 Dec;100(24):6362-8.
    PMID: 19666218 DOI: 10.1016/j.biortech.2009.07.036
    A recent rise in crab aquaculture activities has intensified the generation of waste shells. In the present study, the waste shells were utilized as a source of calcium oxide to transesterify palm olein into methyl esters (biodiesel). Characterization results revealed that the main component of the shell is calcium carbonate which transformed into calcium oxide when activated above 700 degrees C for 2 h. Parametric studies have been investigated and optimal conditions were found to be methanol/oil mass ratio, 0.5:1; catalyst amount, 5 wt.%; reaction temperature, 65 degrees C; and a stirring rate of 500 rpm. The waste catalyst performs equally well as laboratory CaO, thus creating another low-cost catalyst source for producing biodiesel. Reusability results confirmed that the prepared catalyst is able to be reemployed up to 11 times. Statistical analysis has been performed using a Central Composite Design to evaluate the contribution and performance of the parameters on biodiesel purity.
    Matched MeSH terms: Waste Products/analysis*
  19. Hosseini SM, Abdul Aziz H
    Bioresour Technol, 2013 Apr;133:240-7.
    PMID: 23428821 DOI: 10.1016/j.biortech.2013.01.098
    The effects of thermochemical pretreatment and continuous thermophilic conditions on the composting of a mixture of rice straw residue and cattle manure were investigated using a laboratory-scale composting reactor. Results indicate that the composting period of rice straw can be shortened to less than 10 days by applying alkali pre-treatment and continuous thermophilic composting conditions. The parameters obtained on day 9 of this study are similar to the criteria level published by the Canadian Council of Ministers of the Environment. The moisture content, organic matter reduction, pH level, electrical conductivity, total organic carbon reduction, soluble chemical oxygen demand reduction, total Kjeldahl nitrogen, carbon-to-nitrogen ratio, and germination index were 62.07%, 16.99%, 7.30%, 1058 μS/cm, 17.00%, 83.43%, 2.06%, 16.75%, and 90.33%, respectively. The results of this study suggest that the application of chemical-biological integrated processes under thermophilic conditions is a novel method for the rapid degradation and maturation of rice straw residue.
    Matched MeSH terms: Waste Products/analysis*
  20. Rafiq MK, Bachmann RT, Rafiq MT, Shang Z, Joseph S, Long R
    PLoS One, 2016;11(6):e0156894.
    PMID: 27327870 DOI: 10.1371/journal.pone.0156894
    This study examined the influence of pyrolysis temperature on biochar characteristics and evaluated its suitability for carbon capture and energy production. Biochar was produced from corn stover using slow pyrolysis at 300, 400 and 500°C and 2 hrs holding time. The experimental biochars were characterized by elemental analysis, BET, FTIR, TGA/DTA, NMR (C-13). Higher heating value (HHV) of feedstock and biochars was measured using bomb calorimeter. Results show that carbon content of corn stover biochar increased from 45.5% to 64.5%, with increasing pyrolysis temperatures. A decrease in H:C and O:C ratios as well as volatile matter, coupled with increase in the concentration of aromatic carbon in the biochar as determined by FTIR and NMR (C-13) demonstrates a higher biochar carbon stability at 500°C. It was estimated that corn stover pyrolysed at 500°C could provide of 10.12 MJ/kg thermal energy. Pyrolysis is therefore a potential technology with its carbon-negative, energy positive and soil amendment benefits thus creating win- win scenario.
    Matched MeSH terms: Waste Products/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links