Displaying publications 4541 - 4560 of 55742 in total

Abstract:
Sort:
  1. Precha N, Totem K, Nuychoo L, Dom NC
    Rocz Panstw Zakl Hig, 2023;74(3):345-354.
    PMID: 37698275 DOI: 10.32394/rpzh.2023.0273
    BACKGROUND: Indoor airborne fungi are a significant health concern that can cause respiratory symptoms and other health problems. Indoor fungi are influenced by various factors such as meteorological conditions and dwelling characteristics.

    OBJECTIVE: This study aims to evaluate the association between indoor airborne fungi and environmental factors in a student dormitory in southern Thailand.

    MATERIAL AND METHODS: The study was conducted at Walailak University in southern Thailand from September toDecember 2020. Air samples were collected from rooms in thirteen dormitories, and the fungal load was determined using the passive air sampling method. The study also measured meteorological parameters and gathered data on occupant behaviors and exposure-related symptoms through a self-administered questionnaire.

    RESULTS: In a total of 135 student rooms, the average concentration (mean ± SD) of indoor airborne fungi was 409.72±176.22 CFU/m3, which showed the highest concentration on the first floor. For meteorological parameters, the averages of RH (%), temperature (°C), and CO2 (ppm) were 70.99±2.37, 31.11±0.56 and 413.29±76.72, respectively. The abundance of indoor airborne fungi was positively associated with an increase in RH (β=0.267, 95% CI: 5.288, 34.401) and building height (β=0.269, 95% CI: 16.283, 105.873), with values of 19.845 and 61.078, respectively. Conversely, temperature exhibited a negative effect on indoor airborne fungi (-92.224, β=-0.292, 95% CI: -150.052, -34.396).

    CONCLUSION: The findings highlight the influence of RH, temperature and building height on indoor airborne fungi in the student dormitory. Therefore, effective management strategies are necessary to improve indoor air quality and reduce associated health risks in student dormitories.

    Matched MeSH terms: Humans
  2. D'Oliveiro JJ, Chong AW
    Ann Otol Rhinol Laryngol, 2023 Nov;132(11):1483-1486.
    PMID: 36941748 DOI: 10.1177/00034894231159325
    OBJECTIVES: To highlight a case of nasopharyngeal Respiratory Epithelial Adenomatoid Hamartoma (REAH) in a female patient with chronic nasal block.

    METHODS: A single case report of a female patient with the diagnosis of REAH, detailing her presenting symptoms, clinical findings, management and follow up.

    RESULTS: Histopathological assessment of the excised nasopharyngeal polyp was consistent with a diagnosis of REAH with a discussion on the disease and its current literature reviews.

    CONCLUSION: The incidence of REAH within the nasopharynx remain rare with only few cases described in literature, especially in females.

    Matched MeSH terms: Humans
  3. Jamil Al-Obaidi MM, Desa MNM
    J Neurosci Res, 2023 Nov;101(11):1687-1698.
    PMID: 37462109 DOI: 10.1002/jnr.25232
    Coronaviruses are prevalent in mammals and birds, including humans and bats, and they often spread through airborne droplets. In humans, these droplets then interact with angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2), which are the main receptors for the SARS-CoV-2 virus. It can infect several organs, including the brain. The blood-brain barrier (BBB) is designed to maintain the homeostatic neural microenvironment of the brain, which is necessary for healthy neuronal activity, function, and stability. It prevents viruses from entering the brain parenchyma and does not easily allow chemicals to pass into the brain while assisting numerous compounds in exiting the brain. The purpose of this review was to examine how COVID-19 influences the BBB along with the mechanisms that indicate the BBB's deterioration. In addition, the cellular mechanism through which SARS-CoV-2 causes BBB destruction by binding to ACE2 was evaluated and addressed. The mechanisms of the immunological reaction that occurs during COVID-19 infection that may contribute to the breakdown of the BBB were also reviewed. It was discovered that the integrity of the tight junction (TJs), basement membrane, and adhesion molecules was damaged during COVID-19 infection, which led to the breakdown of the BBB. Therefore, understanding how the BBB is disrupted by COVID-19 infection will provide an indication of how the SARS-CoV-2 virus is able to reach the central nervous system (CNS). The findings of this research may help in the identification of treatment options for COVID-19 that can control and manage the infection.
    Matched MeSH terms: Humans
  4. Tran TV, Jalil AA, Nguyen TM, Nguyen TTT, Nabgan W, Nguyen DTC
    Environ Toxicol Pharmacol, 2023 Sep;102:104248.
    PMID: 37598982 DOI: 10.1016/j.etap.2023.104248
    Nowadays, microplastic pollution is one of the globally urgent concerns as a result of discharging plastic products into the atmosphere, aquatic and soil environments. Microplastics have average size of less than 5 mm, are non-biodegradable, accumulative, and highly persistent substances. Thousands of tons of microplastics are still accumulated in various environments, posing an enormous threat to human health and living creatures. Here, we review the occurrence and analytical methods, and impact of microplastics in the environments including soil, aquatic media, and atmosphere. Analytical methods including visual observation, Fourier-transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, and pyrolysis-gas chromatography-mass spectrometry were evaluated. We elucidated the environmental and human health impacts of microplastics with emphasis on life malfunction, immune disruption, neurotoxicity, diseases and other tangible health risks. This review also found some shortages of analytical equivalence and/or standardization, inconsistence in sampling collection and limited knowledge of microplastic toxicity. It is hopeful that the present work not only affords a more insight into the potential dangers of microplastics on human health but also urges future researches to establish new standardizations in analytical methods.
    Matched MeSH terms: Humans
  5. Fan PY, Chun KP, Tan ML, Mah DN, Mijic A, Strickert G, et al.
    PLoS One, 2023;18(9):e0289780.
    PMID: 37682889 DOI: 10.1371/journal.pone.0289780
    The importance of easy wayfinding in complex urban settings has been recognized in spatial planning. Empirical measurement and explicit representation of wayfinding, however, have been limited in deciding spatial configurations. Our study proposed and tested an approach to improving wayfinding by incorporating spatial analysis of urban forms in the Guangdong-Hong Kong-Macau Great Bay Area in China. Wayfinding was measured by an indicator of intelligibility using spatial design network analysis. Urban spatial configurations were quantified using landscape metrics to describe the spatial layouts of local climate zones (LCZs) as standardized urban forms. The statistical analysis demonstrated the significant associations between urban spatial configurations and wayfinding. These findings suggested, to improve wayfinding, 1) dispersing LCZ 1 (compact high-rise) and LCZ 2 (compact mid-rise) and 2) agglomerating LCZ 3 (compact low-rise), LCZ 5 (open mid-rise), LCZ 6 (open low-rise), and LCZ 9 (sparsely built). To our knowledge, this study is the first to incorporate the LCZ classification system into the wayfinding field, clearly providing empirically-supported solutions for dispersing and agglomerating spatial configurations. Our findings also provide insights for human-centered spatial planning by spatial co-development at local, urban, and regional levels.
    Matched MeSH terms: Humans
  6. Chua HM, Moshawih S, Goh HP, Ming LC, Kifli N
    PLoS One, 2023;18(9):e0290948.
    PMID: 37656730 DOI: 10.1371/journal.pone.0290948
    There is still unmet medical need in cancer treatment mainly due to drug resistance and adverse drug events. Therefore, the search for better drugs is essential. Computer-aided drug design (CADD) and discovery tools are useful to streamline the lengthy and costly drug development process. Anthraquinones are a group of naturally occurring compounds with unique scaffold that exert various biological properties including anticancer activities. This protocol describes a systematic review that provide insights into the computer-aided drug design and discovery based on anthraquinone scaffold for cancer treatment. It was prepared in accordance with the "Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 guidelines, and published in the "International prospective register of systematic reviews" database (PROSPERO: CRD42023432904). Search strategies will be developed based on the combination of relevant keywords and executed in PubMed, Scopus, Web of Science and MedRxiv. Only original studies that employed CADD as primary tool in virtual screening for the purpose of designing or discovering anti-cancer drugs involving anthraquinone scaffold published in English language will be included. Two independent reviewers will be involved to screen and select the papers, extract the data and assess the risk of bias. Apart from exploring the trends and types of CADD methods used, the target proteins of these compounds in cancer treatment will also be revealed in this review. It is believed that the outcome of this study could be utilized to support the ongoing research in similar area with better quality and greater probability of success, consequently optimizing the resources in subsequent in vitro, in vivo, non-clinical and clinical development. It will also serve as an evidence based scientific guide for new research to design novel anthraquinone-derived drug with improved efficacy and safety profile for cancer treatment.
    Matched MeSH terms: Humans
  7. Korada HY, Arora E, Maiya GA, Rao S, Hande M, Shetty S, et al.
    Curr Diabetes Rev, 2023;19(9):e290422204244.
    PMID: 37622461 DOI: 10.2174/1573399818666220429085256
    BACKGROUND: Diabetic peripheral neuropathy is a severe complication of type 2 diabetes mellitus. The most common symptoms are neuropathic pain and altered sensorium due to damage to small nerve fibers. Altered plantar pressure distribution is also a major risk factor in diabetic peripheral neuropathy, leading to diabetic foot ulcers.

    OBJECTIVE: The objective of this systematic review was to analyze the various studies involving photobiomodulation therapy on neuropathic pain and plantar pressure distribution in diabetic peripheral neuropathy.

    METHODS: We conducted a systematic review (PubMed, Web of Science, CINAHL, and Cochrane) to summarise the evidence on photobiomodulation therapy for Diabetic Peripheral Neuropathy with type 2 diabetes mellitus. Randomized and non-randomized studies were included in the review.

    RESULTS: This systematic review included eight studies in which photobiomodulation therapy showed improvement in neuropathic pain and nerve conduction velocity. It also reduces plantar pressure distribution, which is a high risk for developing foot ulcers.

    CONCLUSION: We conclude that photobiomodulation therapy is an effective, non-invasive, and costefficient means to improve neuropathic pain and altered plantar pressure distribution in diabetic peripheral neuropathy.

    Matched MeSH terms: Humans
  8. Prabhu NB, Vasishta S, Bhat SK, Joshi MB, Kabekkodu SP, Satyamoorthy K, et al.
    Environ Sci Pollut Res Int, 2023 May;30(23):64025-64035.
    PMID: 37060405 DOI: 10.1007/s11356-023-26820-w
    Polycystic ovarian syndrome (PCOS) is a complicated endocrinopathy with an unclear etiology that afflicts fertility status in women. Although the underlying causes and pathophysiology of PCOS are not completely understood, it is suspected to be driven by environmental factors as well as genetic and epigenetic factors. Bisphenol A (BPA) is a weak estrogenic endocrine disruptor known to cause adverse reproductive outcomes in women. A growing relevance supports the notion that BPA may contribute to PCOS pathogenesis. Due to the indeterminate molecular mechanisms of BPA in PCOS endocrinopathy, we sought liquid chromatography with tandem mass spectrometry (LC-MS/MS), a metabolomics strategy that could generate a metabolic signature based on urinary BPA levels of PCOS and healthy individuals. Towards this, we examined urinary BPA levels in PCOS and healthy women by ELISA and performed univariate and chemometric analysis to distinguish metabolic patterns among high and low BPA in PCOS and healthy females, followed by pathway and biomarker analysis employing MetaboAnalyst 5.0. Our findings indicated aberrant levels of certain steroids, sphingolipids, and others, implying considerable disturbances in steroid hormone biosynthesis, linoleic, linolenic, sphingolipid metabolism, and various other pathways across target groups in comparison to healthy women with low BPA levels. Collectively, our findings provide insight into metabolic signatures of BPA-exposed PCOS women, which can potentially improve management strategies and precision medicine.
    Matched MeSH terms: Humans
  9. Ng TH, How SH, Kuan YC, Fauzi AR
    Ann Thorac Med, 2012 Jan;7(1):12-5.
    PMID: 22347344 DOI: 10.4103/1817-1737.91556
    This study was carried out to determine the prevalence, patient's characteristic and reasons for defaulting follow-up and treatment among patients with lung cancer.
    Matched MeSH terms: Humans
  10. Kuan YC, How SH, Azian AA, Liam CK, Ng TH, Fauzi AR
    Ann Thorac Med, 2012 Apr;7(2):69-73.
    PMID: 22558010 DOI: 10.4103/1817-1737.94522
    Prolonged use of oral corticosteroids is a risk factor for osteoporosis. However, the effect of inhaled corticosteroids (ICS) on bone mineral density (BMD) of asthmatic patients remains controversial.
    Matched MeSH terms: Humans
  11. Krishnen R, Muniandy S
    Wounds, 2023 Aug;35(8):E243-E247.
    PMID: 37643448 DOI: 10.25270/wnds/23017
    INTRODUCTION: Drug-resistant fungal infections in chronic wounds represent a major clinical challenge to clinicians. Fungal infections delay wound healing by prolonging inflammation and encouraging biofilm formation, which protects microbes against host defenses and anti-infective medications. As such, interventions that prevent and control nosocomial fungal infections without interfering with the wound healing process are increasingly required. Although conventional antiseptics can effectively exert fungicidal effects, they also have adverse effects on human cells. SOS is a well-known bactericidal agent that enhances the wound healing process, especially for chronic wounds. However, few studies have evaluated the antimicrobial activity of SOS on fungi.

    OBJECTIVE: The objective of this study was to evaluate whether SOS exerts fungicidal activities against common fungal species.

    MATERIALS AND METHODS: The efficacy of SOS was tested against 6 fungal species (Candida albicans, Candida auris, Candida tropicalis, Candida parapsilosis, Sporothrix schenckii, Trichophyton mentagrophytes) using an in vitro time-kill assay.

    RESULTS: SOS achieved 99.9999% reduction of all tested fungi within 1 minute of exposure.

    CONCLUSIONS: This study shows that SOS may be an effective tool for the prevention and control of fungal infections.

    Matched MeSH terms: Humans
  12. Idris MA, Shee PY, Syed-Yahya SNN
    Ind Health, 2023 Jul 29;61(4):237-239.
    PMID: 37518184 DOI: 10.2486/indhealth.61_400
    Matched MeSH terms: Humans
  13. Wong YJ, Ng KY, Lee SWH
    J Public Health (Oxf), 2023 Aug 28;45(3):e447-e466.
    PMID: 37147919 DOI: 10.1093/pubmed/fdad051
    BACKGROUND: To ensure the effective delivery of latent tuberculosis infection (LTBI) care, it is vital to overcome potential challenges in LTBI management. This systematic review aims to identify the barriers and interventions to improve LTBI management using the Capability, Opportunity, and Motivation-Behaviour (COM-B) model and Behaviour Change Wheel (BCW).

    METHODS: A systematic literature search was performed on five electronic databases from database inception to 3 November 2021. A two-step technique was used in the data synthesis process: (i) the barriers of LTBI management were identified using the COM-B model, followed by (ii) mapping of intervention functions from BCW to address the identified barriers.

    RESULTS: Forty-seven eligible articles were included in this review. The findings highlighted the need for a multifaceted approach in tackling the barriers in LTBI management across the public, provider and system levels. The barriers were summarized into suboptimal knowledge and misperception of LTBI, as well as stigma and psychosocial burden, which could be overcome with a combination of intervention functions, targeting education, environment restructuring, persuasion, modelling, training, incentivization and enablement.

    CONCLUSIONS: The remedial strategies using BCW to facilitate policy reforms in LTBI management could serve as a value-added initiative in the global tuberculosis control and prevention program.

    Matched MeSH terms: Humans
  14. Hassanpour M, Hassanpour M, Rezaie M, Khezripour S, Faruque MRI, Khandaker MU
    Phys Eng Sci Med, 2023 Sep;46(3):1023-1032.
    PMID: 37219796 DOI: 10.1007/s13246-023-01269-w
    Neutrons can be generated in medical linear accelerators (Linac) due to the interaction of high-energy photons (> 10 MeV) with the components of the accelerator head. The generated photoneutrons may penetrate the treatment room if a suitable neutron shield is not used. This causes a biological risk to the patient and occupational workers. The use of appropriate materials in the barriers surrounding the bunker may be effective in preventing the transmission of neutrons from the treatment room to the outside. In addition, neutrons are present in the treatment room due to leakage in the Linac's head. This study aims to reduce the transmission of neutrons from the treatment room by using graphene/hexagonal boron nitride (h-BN) metamaterial as a neutron shielding material. MCNPX code was used to model three layers of graphene/h-BN metamaterial around the target and other components of the linac, and to investigate its effect on the photon spectrum and photoneutrons. Results indicate that the first layer of a graphene/h-BN metamaterial shield around the target improves photon spectrum quality at low energies, whereas the second and third layers have no significant effect. Regarding neutrons, three layers of the metamaterial results in a 50% reduction in the number of neutrons in the air within the treatment room.
    Matched MeSH terms: Humans
  15. Tan KF, In LLA, Vijayaraj Kumar P
    ACS Appl Bio Mater, 2023 Aug 21;6(8):2944-2981.
    PMID: 37435615 DOI: 10.1021/acsabm.3c00202
    Gold nanoparticles (AuNPs) have undergone significant research for their use in the treatment of cancer. Numerous researchers have established their potent antitumor properties, which have greatly impacted the treatment of cancer. AuNPs have been used in four primary anticancer treatment modalities, namely radiation, photothermal therapy, photodynamic therapy, and chemotherapy. However, the ability of AuNPs to destroy cancer is lacking and can even harm healthy cells without the right direction to transport them to the tumor microenvironment. Consequently, a suitable targeting technique is needed. Based on the distinct features of the human tumor microenvironment, this review discusses four different targeting strategies that target the four key features of the tumor microenvironment, including abnormal vasculature, overexpression of specific receptors, an acidic microenvironment, and a hypoxic microenvironment, to direct surface-functionalized AuNPs to the tumor microenvironment and increase antitumor efficacies. In addition, some current completed or ongoing clinical trials of AuNPs will also be discussed below to further reinforce the concept of using AuNPs in anticancer therapy.
    Matched MeSH terms: Humans
  16. Xu S, Deo RC, Soar J, Barua PD, Faust O, Homaira N, et al.
    Comput Methods Programs Biomed, 2023 Nov;241:107746.
    PMID: 37660550 DOI: 10.1016/j.cmpb.2023.107746
    BACKGROUND AND OBJECTIVE: Obstructive airway diseases, including asthma and Chronic Obstructive Pulmonary Disease (COPD), are two of the most common chronic respiratory health problems. Both of these conditions require health professional expertise in making a diagnosis. Hence, this process is time intensive for healthcare providers and the diagnostic quality is subject to intra- and inter- operator variability. In this study we investigate the role of automated detection of obstructive airway diseases to reduce cost and improve diagnostic quality.

    METHODS: We investigated the existing body of evidence and applied Preferred Reporting Items for Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to search records in IEEE, Google scholar, and PubMed databases. We identified 65 papers that were published from 2013 to 2022 and these papers cover 67 different studies. The review process was structured according to the medical data that was used for disease detection. We identified six main categories, namely air flow, genetic, imaging, signals, and miscellaneous. For each of these categories, we report both disease detection methods and their performance.

    RESULTS: We found that medical imaging was used in 14 of the reviewed studies as data for automated obstructive airway disease detection. Genetics and physiological signals were used in 13 studies. Medical records and air flow were used in 9 and 7 studies, respectively. Most papers were published in 2020 and we found three times more work on Machine Learning (ML) when compared to Deep Learning (DL). Statistical analysis shows that DL techniques achieve higher Accuracy (ACC) when compared to ML. Convolutional Neural Network (CNN) is the most common DL classifier and Support Vector Machine (SVM) is the most widely used ML classifier. During our review, we discovered only two publicly available asthma and COPD datasets. Most studies used private clinical datasets, so data size and data composition are inconsistent.

    CONCLUSIONS: Our review results indicate that Artificial Intelligence (AI) can improve both decision quality and efficiency of health professionals during COPD and asthma diagnosis. However, we found several limitations in this review, such as a lack of dataset consistency, a limited dataset and remote monitoring was not sufficiently explored. We appeal to society to accept and trust computer aided airflow obstructive diseases diagnosis and we encourage health professionals to work closely with AI scientists to promote automated detection in clinical practice and hospital settings.

    Matched MeSH terms: Humans
  17. Wong AP, Kalinovsky T, Niedzwiecki A, Rath M
    Exp Ther Med, 2015 Sep;10(3):1071-1073.
    PMID: 26622441
    Psoriasis is a chronic inflammatory skin disease characterized by thickened, silvery-scaled patches. There is currently no cure and treatments only attempt to reduce the severity of symptoms. This study reports the case of a 36-year-old female who presented to the clinic with severe psoriasis and had been treated with topical steroid cream for the past 14 years. After adherence to prescribed dietary changes for 6 months, including abundant intake of vegetables, minimal consumption of meat, and avoidance of junk food and sugar in food or drinks, as well as nutritional supplementation with Vitacor Plus, ProLysinC, VitaCforte and LysinC Drink mix, the patient experienced complete resolution of psoriatic patches on her body.
    Matched MeSH terms: Humans
  18. Alareqe NA, Roslan S, Taresh SM, Nordin MS
    Int J Environ Res Public Health, 2021 May 27;18(11).
    PMID: 34072158 DOI: 10.3390/ijerph18115770
    This study tests for the first time the validity of universality and normativity assumptions related to the attachment theory in a non-Western culture, using a novel design including psychiatric and non-psychiatric samples as part of a comprehensive exploratory and advanced confirmatory framework. Three attachment assessments were distributed to 212 psychiatric outpatients and 300 non-psychiatric samples in Yemen. The results of the fourteen approaches of exploratory factor analysis (EFA) produce a similar result and assertion that the psychiatric outpatients tend to explore attachment outcomes based on multi-methods, while the non-psychiatric samples suggest an attachment orientation based on multi-traits (self-other). The multiple group-confirmatory factor analysis (MG-CFA) demonstrates that the multi-method model fits the psychiatric samples better than the non-psychiatric samples. Equally, the MG-CFA suggests that the multi-traits model also fits the psychiatric samples better than the non-psychiatric samples. Implications of the results are discussed.
    Matched MeSH terms: Humans
  19. Hussain MS, Afzal O, Gupta G, Altamimi ASA, Almalki WH, Alzarea SI, et al.
    Pathol Res Pract, 2023 Sep;249:154738.
    PMID: 37595448 DOI: 10.1016/j.prp.2023.154738
    Lung cancer (LC) continues to pose a significant global medical burden, necessitating a comprehensive understanding of its molecular foundations to establish effective treatment strategies. The mitogen-activated protein kinase (MAPK) signaling system has been scientifically associated with LC growth; however, the intricate regulatory mechanisms governing this system remain unknown. Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of diverse cellular activities, including cancer growth. LncRNAs have been implicated in LC, which can function as oncogenes or tumor suppressors, and their dysregulation has been linked to cancer cell death, metastasis, spread, and proliferation. Due to their involvement in critical pathophysiological processes, lncRNAs are gaining attention as potential candidates for anti-cancer treatments. This article aims to elucidate the regulatory role of lncRNAs in MAPK signaling in LC. We provide a comprehensive review of the key components of the MAPK pathway and their relevance in LC, focusing on aberrant signaling processes associated with disease progression. By examining recent research and experimental findings, this article examines the molecular mechanisms through which lncRNAs influence MAPK signaling in lung cancer, ultimately contributing to tumor development.
    Matched MeSH terms: Humans
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links