Displaying publications 441 - 460 of 8202 in total

Abstract:
Sort:
  1. Lee CL, Ng HF, Ngeow YF, Thaw Z
    J Med Microbiol, 2021 Jul;70(7).
    PMID: 34236301 DOI: 10.1099/jmm.0.001378
    Introduction. Tigecycline is currently acknowledged to be one of the most effective antibiotics against infections caused by Mycobacteroides abscessus.Gap statement. The genetic determinants of tigecycline resistance in M. abscessus are not well understood.Aim. In this study, we characterized a tigecycline-resistant M. abscessus mutant, designated CL7, to identify the potential resistance mechanism.Methodology. CL7 was characterized using antimicrobial susceptibility testing, whole-genome sequencing, PCR and RT-qPCR. For biological verification, gene overexpression assays were carried out.Results. Whole-genome sequencing and the subsequent gene overexpression assays showed that CL7 harboured a stop-gain mutation in MAB_3543 c, which may be responsible for the tigecycline resistance phenotype. This gene encodes an orthologue of SigH, which is involved in the positive regulation of physiological stress response and is negatively regulated by the RshA anti-sigma factor in Mycobacterium tuberculosis. We hypothesized that the MAB_3543 c mutation may disrupt the interaction between SigH and RshA (MAB_3542 c). RT-qPCR analyses revealed the upregulation of MAB_3543 c and other key stress response genes, which has previously been shown to be a hallmark of SigH-RshA bond disruption and tigecycline resistance.Conclusion. The MAB_3543c mutation may represent a novel determinant of tigecycline resistance in M. abscessus. The findings of this study will hopefully contribute to our knowledge of potential tigecycline resistance mechanisms in M. abscessus, which may lead to better diagnostics and treatment modalities in the future.
    Matched MeSH terms: Bacterial Proteins/genetics*; Sigma Factor/genetics*; Drug Resistance, Bacterial/genetics*
  2. Keating SE, Blumer M, Grismer LL, Lin A, Nielsen SV, Thura MK, et al.
    Genes (Basel), 2021 01 19;12(1).
    PMID: 33477871 DOI: 10.3390/genes12010116
    Lizards and snakes (squamates) are known for their varied sex determining systems, and gecko lizards are especially diverse, having evolved sex chromosomes independently multiple times. While sex chromosomes frequently turnover among gecko genera, intrageneric turnovers are known only from Gekko and Hemidactylus. Here, we used RADseq to identify sex-specific markers in two species of Burmese bent-toed geckos. We uncovered XX/XY sex chromosomes in Cyrtodactylus chaunghanakwaensis and ZZ/ZW sex chromosomes in Cyrtodactylus pharbaungensis. This is the third instance of intrageneric turnover of sex chromosomes in geckos. Additionally, Cyrtodactylus are closely related to another genus with intrageneric turnover, Hemidactylus. Together, these data suggest that sex chromosome turnover may be common in this clade, setting them apart as exceptionally diverse in a group already known for diverse sex determination systems.
    Matched MeSH terms: Lizards/genetics*; Sex Chromosomes/genetics*; Sex Determination Processes/genetics*
  3. Abu N, Othman N, W Hon K, Nazarie WF, Jamal R
    Biomark Med, 2020 05;14(7):525-537.
    PMID: 32462912 DOI: 10.2217/bmm-2019-0241
    Background: Finding a new target or a new drug to overcome chemoresistance is difficult due to the heterogenous nature of cancer. Meta-analysis was performed to combine the analysis of different microarray studies to get a robust discovery. Materials & methods: Herein, we analyzed three microarray datasets on combination of folinic acid, fluorouracil, and oxaliplatin drugs (FOLFOX) resistance that fit our inclusion/exclusion criteria and performed a meta-analysis using the OmiCC system. Results: We identified several deregulated genes and we discovered HNF4A as a hub gene. We performed functional validation and observed that by targeting HNF4A, HCT116 cells were more sensitive toward both oxaliplatin and 5-fluorouracil significantly. Conclusion: Our findings show that HNF4A could be a potential target in overcoming FOLFOX chemoresistance in colorectal cancer.
    Matched MeSH terms: Colorectal Neoplasms/genetics*; Drug Resistance, Neoplasm/genetics*; Genes, Neoplasm/genetics*
  4. Adeogun AO, Brooke BD, Olayanju DR, Adegbehingbe K, Oyeniyi TA, Olakiigbe AK, et al.
    Trop Biomed, 2019 Sep 01;36(3):587-593.
    PMID: 33597480
    The assortment of paracentric chromosomal inversion 2La is associated with the maintenance of dieldrin resistance in laboratory colonies of the malaria vector Anopheles gambiae. This association has not been tested in field populations. The aim of this study was to test the association between inversion 2La and dieldrin resistance in a field population of An. coluzzii in Nigeria. Field collected immature stages of Anopheles were raised to adults and exposed to 4% dieldrin according to WHO criteria. Knockdown was recorded at 10 min intervals for 1 hour and final mortality was recorded 24 hours post exposure. Species and inversion 2La diagnostic PCR assays were conducted on the resistant and susceptible mosquitoes. The mosquitoes were highly resistant to 4% dieldrin (17.1% knock down and 25.7% final mortality; KDT50 and KDT95 calculated as 170 and 1, 514 minutes respectively). Frequencies of 2La in both the resistant and susceptible cohorts assorted within HardyWeinberg estimates (χ2=1.32, p=0.8 for dead/susceptible mosquitoes and χ2=2.54, p=0.5 for survivors or resistant mosquitoes). However, a higher number of heterozygous mosquitoes were observed in the resistant cohort compared to the susceptible, with significant variation in karyotype frequencies (χ2=11.08, DF=2, p<0.05) and a significantly higher frequency of the 2La inversion arrangement in the resistant cohort (Pearson's χ2 = 4.58, p = 0.03.). These data are the first to associate paracentric chromosome inversion 2La and dieldrin resistance in field population of An. coluzzii. Dieldrin resistance shows a weak but significant association with 2La whose assortment is affected by positive heterosis. Variation in the assortment of 2La inversion arrangements between resistant and susceptible cohorts of this An. coluzzii population suggests that dieldrin resistance is at least partially linked to inversion 2La which may explain the persistence of dieldrin resistance in this population despite a significant absence of selection for resistance to this insecticide.
    Matched MeSH terms: Anopheles/genetics*; Insecticide Resistance/genetics*; Mosquito Vectors/genetics
  5. Hoh BP, Zhang X, Deng L, Yuan K, Yew CW, Saw WY, et al.
    Genome Biol Evol, 2020 12 06;12(12):2245-2257.
    PMID: 33022050 DOI: 10.1093/gbe/evaa207
    North Borneo (NB) is home to more than 40 native populations. These natives are believed to have undergone local adaptation in response to environmental challenges such as the mosquito-abundant tropical rainforest. We attempted to trace the footprints of natural selection from the genomic data of NB native populations using a panel of ∼2.2 million genome-wide single nucleotide polymorphisms. As a result, an ∼13-kb haplotype in the Major Histocompatibility Complex Class II region encompassing candidate genes TSBP1-BTNL2-HLA-DRA was identified to be undergoing natural selection. This putative signature of positive selection is shared among the five NB populations and is estimated to have arisen ∼5.5 thousand years (∼220 generations) ago, which coincides with the period of Austronesian expansion. Owing to the long history of endemic malaria in NB, the putative signature of positive selection is postulated to be driven by Plasmodium parasite infection. The findings of this study imply that despite high levels of genetic differentiation, the NB populations might have experienced similar local genetic adaptation resulting from stresses of the shared environment.
    Matched MeSH terms: Adaptation, Biological/genetics; HLA-DR alpha-Chains/genetics*; Butyrophilins/genetics*
  6. Chee KY, Yee OK, Gaillard F, Velakoulis D, Mohd Zain NR, Yogendren L, et al.
    Aust N Z J Psychiatry, 2017 Dec;51(12):1252-1253.
    PMID: 28762277 DOI: 10.1177/0004867417722642
    Matched MeSH terms: Alzheimer Disease/genetics*; Amyloid beta-Protein Precursor/genetics*; Presenilin-2/genetics*
  7. Yahya P, Sulong S, Harun A, Wan Isa H, Ab Rajab NS, Wangkumhang P, et al.
    Forensic Sci Int Genet, 2017 09;30:152-159.
    PMID: 28743033 DOI: 10.1016/j.fsigen.2017.07.005
    Malay, the main ethnic group in Peninsular Malaysia, is represented by various sub-ethnic groups such as Melayu Banjar, Melayu Bugis, Melayu Champa, Melayu Java, Melayu Kedah Melayu Kelantan, Melayu Minang and Melayu Patani. Using data retrieved from the MyHVP (Malaysian Human Variome Project) database, a total of 135 individuals from these sub-ethnic groups were profiled using the Affymetrix GeneChip Mapping Xba 50-K single nucleotide polymorphism (SNP) array to identify SNPs that were ancestry-informative markers (AIMs) for Malays of Peninsular Malaysia. Prior to selecting the AIMs, the genetic structure of Malays was explored with reference to 11 other populations obtained from the Pan-Asian SNP Consortium database using principal component analysis (PCA) and ADMIXTURE. Iterative pruning principal component analysis (ipPCA) was further used to identify sub-groups of Malays. Subsequently, we constructed an AIMs panel for Malays using the informativeness for assignment (In) of genetic markers, and the K-nearest neighbor classifier (KNN) was used to teach the classification models. A model of 250 SNPs ranked by In, correctly classified Malay individuals with an accuracy of up to 90%. The identified panel of SNPs could be utilized as a panel of AIMs to ascertain the specific ancestry of Malays, which may be useful in disease association studies, biomedical research or forensic investigation purposes.
    Matched MeSH terms: Ethnic Groups/genetics*; Genetics, Population*
  8. Muhammad Aliff M, Muhammad Shazwan S, Nur Fariha MM, Hayati AR, Nur Syahrina AR, Maizatul Azma M, et al.
    Malays J Pathol, 2016 Dec;38(3):285-294.
    PMID: 28028299 MyJurnal
    BACKGROUND: Antiphospholipid syndrome (APS) is a multisystem disease that may present as venous or arterial thrombosis and/or pregnancy complications with the presence of antiphospholipid antibodies. Until today, heterogeneity of pathogenic mechanism fits well with various clinical manifestations. Moreover, previous studies have indicated that genes are differentially expressed between normal and in the disease state. Hence, this study systematically searched the literature on human gene expression that was differentially expressed in Obstetric APS.

    METHODOLOGY: Electronic search was performed until 31st March 2015 through PubMed and Embase databases; where the following Medical Subject Heading (MeSH) terms were used and they had been specified as the primary focus of the articles; gene, antiphospholipid, obstetric, and pregnancy in the title or abstract. From 502 studies retrieved from the search, only original publications that had performed gene expression analyses of human placental tissue that reported on differentially expressed gene in pregnancies with Obstetric APS were included. Two reviewers independently scrutinized the titles and the abstracts before examining the eligibility of studies that met the inclusion criteria. For each study; diagnostic criteria for APS, method for analysis, and the gene signature were extracted independently by two reviewers. The genes listed were further analysed with the DAVID and the KEGG pathways.

    RESULTS: Three eligible gene expression studies involving obstetric APS, comprising the datasets on gene expression, were identified. All three studies showed a reduction in transcript expression on PRL, STAT5, TF, DAF, ABCA1, and HBEGF in Obstetric APS. The high enrichment score for functionality in DAVID had been positive regulation of cell proliferation. Meanwhile, pertaining to the KEGG pathway, two pathways were associated with some of the listed genes, which were ErBb signalling pathway and JAK-STAT signalling pathway.

    CONCLUSION: Ultimately, studies on a genetic level have the potential to provide new insights into the regulation and to widen the basis for identification of changes in the mechanism of Obstetric APS.
    Matched MeSH terms: Pregnancy Complications/genetics*; Antiphospholipid Syndrome/genetics*; Transcriptome/genetics*
  9. Nanthini J, Ong SY, Sudesh K
    Gene, 2017 Sep 10;628:146-155.
    PMID: 28711667 DOI: 10.1016/j.gene.2017.07.039
    Rubber materials have greatly contributed to human civilization. However, being a polymeric material does not decompose easily, it has caused huge environmental problems. On the other hand, only few bacteria are known to degrade rubber, with studies pertaining them being intensively focusing on the mechanism involved in microbial rubber degradation. The Streptomyces sp. strain CFMR 7, which was previously confirmed to possess rubber-degrading ability, was subjected to whole genome sequencing using the single molecule sequencing technology of the PacBio® RS II system. The genome was further analyzed and compared with previously reported rubber-degrading bacteria in order to identify the potential genes involved in rubber degradation. This led to the interesting discovery of three homologues of latex-clearing protein (Lcp) on the chromosome of this strain, which are probably responsible for rubber degrading activities. Genes encoding oxidoreductase α-subunit (oxiA) and oxidoreductase β-subunit (oxiB) were also found downstream of two lcp genes which are located adjacent to each other. In silico analysis reveals genes that have been identified to be involved in the microbial degradation of rubber in the Streptomyces sp. strain CFMR 7. This is the first whole genome sequence of a clear-zone-forming natural rubber- degrading Streptomyces sp., which harbours three Lcp homologous genes with the presence of oxiA and oxiB genes compared to the previously reported Gordonia polyisoprenivorans strain VH2 (with two Lcp homologous genes) and Nocardia nova SH22a (with only one Lcp gene).
    Matched MeSH terms: Bacterial Proteins/genetics*; Oxidoreductases/genetics; Streptomyces/genetics*
  10. Ya'cob Z, Takaoka H, Low VL, Sofian-Azirun M
    Acta Trop, 2017 Mar;167:31-39.
    PMID: 27986545 DOI: 10.1016/j.actatropica.2016.12.009
    In recent decades, the numbers of cryptic taxa have increased significantly with current progress in DNA barcoding, yet, most of these cryptic taxa have not been formally named and recognized as valid species. To address this issue, we provide a guide for applying the procedure of describing new cryptic species in the family Simuliidae. Simulium (Simulium) vanluni from Pahang, Peninsular Malaysia, previously treated as S. nobile De Meijere, is described as a new species by using an integrated morpho-taxonomical and genetic approach. This new species is morphologically identical to S. nobile from Java and S. kiuliense Smart & Clifford from Borneo, but their distinctiveness is supported by an expanded multigene phylogeny analysis.
    Matched MeSH terms: Larva/genetics; Pupa/genetics; Simuliidae/genetics
  11. Hasan N, Rafii MY, Abdul Rahim H, Nusaibah SA, Mazlan N, Abdullah S
    Genet. Mol. Res., 2017 Jan 23;16(1).
    PMID: 28128411 DOI: 10.4238/gmr16019280
    Rice (Oryza sativa L.) blast disease is one of the most destructive rice diseases in the world. The fungal pathogen, Magnaporthe oryzae, is the causal agent of rice blast disease. Development of resistant cultivars is the most preferred method to achieve sustainable rice production. However, the effectiveness of resistant cultivars is hindered by the genetic plasticity of the pathogen genome. Therefore, information on genetic resistance and virulence stability are vital to increase our understanding of the molecular basis of blast disease resistance. The present study set out to elucidate the resistance pattern and identify potential simple sequence repeat markers linked with rice blast disease. A backcross population (BC2F1), derived from crossing MR264 and Pongsu Seribu 2 (PS2), was developed using marker-assisted backcross breeding. Twelve microsatellite markers carrying the blast resistance gene clearly demonstrated a polymorphic pattern between both parental lines. Among these, two markers, RM206 and RM5961, located on chromosome 11 exhibited the expected 1:1 testcross ratio in the BC2F1 population. The 195 BC2F1 plants inoculated against M. oryzae pathotype P7.2 showed a significantly different distribution in the backcrossed generation and followed Mendelian segregation based on a single-gene model. This indicates that blast resistance in PS2 is governed by a single dominant gene, which is linked to RM206 and RM5961 on chromosome 11. The findings presented in this study could be useful for future blast resistance studies in rice breeding programs.
    Matched MeSH terms: Plant Diseases/genetics*; Oryza/genetics*; Disease Resistance/genetics
  12. Arai T, Taha H, Amalina R, Iizuka Y, Chang CW
    J Fish Biol, 2019 Dec;95(6):1506-1511.
    PMID: 31606890 DOI: 10.1111/jfb.14154
    Tenualosa ilisha was found recently in the Perak River in western Peninsular Malaysia. Molecular phylogenetic and haplotype network analyses suggest that T. ilisha has two genetically distinct populations/groups: (i) Peninsular Malaysia (Malaysia population), and (ii) Peninsular Malaysia, Thailand, India and Bangladesh (Indian Ocean population). The results also suggest that the T ilisha population in Peninsular Malaysia is genetically heterogeneous with a typical anadromous migration pattern.
    Matched MeSH terms: Fishes/genetics*; Genetics, Population*
  13. Menchaca A, Rossi NA, Froidevaux J, Dias-Freedman I, Caragiulo A, Wultsch C, et al.
    BMC Genet, 2019 12 27;20(1):100.
    PMID: 31881935 DOI: 10.1186/s12863-019-0801-5
    BACKGROUND: Connectivity among jaguar (Panthera onca) populations will ensure natural gene flow and the long-term survival of the species throughout its range. Jaguar conservation efforts have focused primarily on connecting suitable habitat in a broad-scale. Accelerated habitat reduction, human-wildlife conflict, limited funding, and the complexity of jaguar behaviour have proven challenging to maintain connectivity between populations effectively. Here, we used non-invasive genetic sampling and individual-based conservation genetic analyses to assess genetic diversity and levels of genetic connectivity between individuals in the Cockscomb Basin Wildlife Sanctuary and the Maya Forest Corridor. We used expert knowledge and scientific literature to develop models of landscape permeability based on circuit theory with fine-scale landscape features as ecosystem types, distance to human settlements and roads to predict the most probable jaguar movement across central Belize.

    RESULTS: We used 12 highly polymorphic microsatellite loci to identify 50 individual jaguars. We detected high levels of genetic diversity across loci (HE = 0.61, HO = 0.55, and NA = 9.33). Using Bayesian clustering and multivariate models to assess gene flow and genetic structure, we identified one single group of jaguars (K = 1). We identified critical areas for jaguar movement that fall outside the boundaries of current protected areas in central Belize. We detected two main areas of high landscape permeability in a stretch of approximately 18 km between Sittee River Forest Reserve and Manatee Forest Reserve that may increase functional connectivity and facilitate jaguar dispersal from and to Cockscomb Basin Wildlife Sanctuary. Our analysis provides important insights on fine-scale genetic and landscape connectivity of jaguars in central Belize, an area of conservation concern.

    CONCLUSIONS: The results of our study demonstrate high levels of relatively recent gene flow for jaguars between two study sites in central Belize. Our landscape analysis detected corridors of expected jaguar movement between the Cockscomb Basin Wildlife Sanctuary and the Maya Forest Corridor. We highlight the importance of maintaining already established corridors and consolidating new areas that further promote jaguar movement across suitable habitat beyond the boundaries of currently protected areas. Continued conservation efforts within identified corridors will further maintain and increase genetic connectivity in central Belize.

    Matched MeSH terms: Genetics, Population/methods*; Panthera/genetics*
  14. Amelia-Yap ZH, Sofian-Azirun M, Chen CD, Lau KW, Suana IW, Syahputra E, et al.
    J Med Entomol, 2019 06 27;56(4):953-958.
    PMID: 30942885 DOI: 10.1093/jme/tjz035
    Resistance to pyrethroid insecticides is widespread in Indonesian Aedes aegypti (Linnaeus), the primary vector of dengue viruses. This study aims to investigate the mutations in the voltage-gated sodium channel (Vgsc) conferring pyrethroid resistance against Ae. aegypti populations from Indonesia. Molecular genotyping of mutations using polymerase chain reaction assay and direct DNA sequencing were performed at positions 989 and 1,016 in IIS6 region, and 1,534 in IIIS6 region of the voltage-gated sodium channel (Vgsc) in nine populations of Indonesian Ae. aegypti. The V1016G and S989P genotyping identified the RR genotype to be predominant in six out of nine populations of Ae. aegypti, whereas the SS genotype occurred only in minority. Interestingly, co-occurrence of the V1016G and S989P mutations was detected in the aforementioned six populations with high frequency. Genotyping of F1534C showed all nine populations exhibited the SS genotype, with merely two individuals from a population were heterozygous (RS). Significant correlations were demonstrated between the allele frequencies of the V1016G mutation and the survivability rates as well as resistance ratios in pyrethroid adult bioassays. This signifies the V1016G can contribute more to the insensitivity of Vgsc than the F1534C. Homozygous 1016G mosquitoes were likelier to survive pyrethroid exposure. Identification of underlying mechanisms resulting in insecticide resistance is advantageous in developing effective mosquito control programs in Indonesia.
    Matched MeSH terms: Aedes/genetics*; Insecticide Resistance/genetics; Voltage-Gated Sodium Channels/genetics*
  15. Saleh Huddin A, Md Yusuf N, Razak MRMA, Ogu Salim N, Hisam S
    Infect Genet Evol, 2019 11;75:103952.
    PMID: 31279818 DOI: 10.1016/j.meegid.2019.103952
    It has been discovered that Plasmodium knowlesi (P. knowlesi) is transmitted from macaque to man. Thus, the aim of the present study was to determine P. knowlesi genetic diversity in both human (n = 147) and long-tailed macaque (n = 26) samples from high- and low-endemicity localities. Genotyping was performed using seven neutral microsatellite loci markers. The size of the alleles, multiplicity of infection (MOI), mean number of alleles (Na), expected heterozygosity (HE), linkage disequilibrium (LD), and genetic differentiation (FST) were determined. In highly endemic P. knowlesi localities, the MOI for human and long-tailed macaque isolates was 1.04 and 1.15, respectively, while the Na was 11.14 and 7.86, respectively. Based on the allele frequency distribution for all loci, and with FST 
    Matched MeSH terms: Genetic Markers/genetics*; Plasmodium knowlesi/genetics*; Microsatellite Repeats/genetics*
  16. Prayongratana K, Viprakasit V
    Blood Cells Mol. Dis., 2019 11;79:102347.
    PMID: 31323480 DOI: 10.1016/j.bcmd.2019.102347
    Matched MeSH terms: Elliptocytosis, Hereditary/genetics*; Glucosephosphate Dehydrogenase Deficiency/genetics*; Hemolysis/genetics*
  17. Matsuoka H, Wang J, Hirai M, Arai M, Yoshida S, Kobayashi T, et al.
    J Hum Genet, 2004;49(10):544-547.
    PMID: 15349799 DOI: 10.1007/s10038-004-0187-7
    We conducted a survey of malaria diagnoses and treatments in remote areas of Myanmar. Blood specimens from more than 1,000 people were collected by the finger-prick method, and 121 (11%) of these people were found to be glucose-6-phosphate dehydrogenase (G6PD) deficient. Of these 121, 50 consented to analysis of the G6PD genome. We read the G6PD sequences of these subjects and found 45 cases of G6PD Mahidol (487G>A), two of G6PD Coimbra (592C>T), two of G6PD Union (1360C>T), and one of G6PD Canton (1376G>T). Taken together with data from our previous report, 91.3% (73/80) of G6PD variants were G6PD Mahidol. This finding suggests that the Myanmar population is derived from homogeneous ancestries and are different from Thai, Malaysian, and Indonesian populations.
    Matched MeSH terms: Ethnic Groups/genetics; Glucosephosphate Dehydrogenase/genetics*; Malaria/genetics
  18. Hong X, Liu SN, Xu FF, Han LL, Jiang P, Wang ZQ, et al.
    Trop Biomed, 2020 Mar 01;37(1):237-250.
    PMID: 33612735
    Spirometra larvae are etiological agents of human sparganosis. However, the systematics of spirometrid cestodes has long been controversial. In order to determine the current knowledge on the evolution and genetic structure of Spirometra, an exhaustive population diversity analysis of spirometrid cestodes using the mitochondrial gene: cytochrome c oxidase subunit 1 (cox1) was performed. All publicly available cox1 sequences available in the GenBank and 127 new sequencing genes from China were used as the dataset. The haplotype identify, network, genetic differentiation and phylogenetic analysis were conducted successively. A total of 488 sequences from 20 host species, representing four spirometrid tapeworms (S. decipiens, S. ranarum, S. erinaceieuropaei and Sparganum proliferum) and several unclassified American and African isolates from 113 geographical locations in 17 countries, identified 45 haplotypes. The genetic analysis revealed that there are four clades of spirometrid cestodes: Clade 1 (Brazil + USA) and Clade 2 (Argentina + Venezuela) included isolates from America, Clade 3 contained African isolates and one Korean sample, and the remainders from Asia and Australia belonged to Clade 4; unclassified Spirometra from America and Africa should be considered the separate species within the genus; and the taxonomy of two Korea isolates (S. erinaceieuropaei KJ599680 and S. decipiens KJ599679) was still ambiguous and needs to be further identified. In addition, the demographical analyses supported population expansion for the total spirometrid population. In summary, four lineages were found in the spirometrid tapeworm, and further investigation with deeper sampling is needed to elucidate the population structure.
    Matched MeSH terms: DNA, Mitochondrial/genetics; Spirometra/genetics*; DNA, Helminth/genetics
  19. Ng YL, Fong MY, Lau YL
    Trop Biomed, 2021 Jun 01;38(2):159-164.
    PMID: 34172705 DOI: 10.47665/tb.38.2.052
    The Plasmodium knowlesi apical membrane antigen-1 (PkAMA-1) plays an important role in the invasion of the parasite into its host erythrocyte, and it has been regarded as a potential vaccine candidate against human knowlesi malaria. This study investigates genetic diversity and natural selection of the full length PkAMA-1 of P. knowlesi clinical isolates from Peninsular Malaysia. Blood samples were collected from P. knowlesi malaria patients from Peninsular Malaysia. The PkAMA-1 gene was amplified from DNA samples using PCR, cloned into a plasmid vector and sequenced. Results showed that nucleotide diversity of the full length PkAMA-1 from Peninsular Malaysia isolates (π: 0.006) was almost similar to that of Sarawak (π: 0.005) and Sabah (π: 0.004) isolates reported in other studies. Deeper analysis revealed Domain I (π: 0.007) in the PkAMA-1 had the highest diversity as compared to Domain II (π: 0.004) and Domain III (π: 0.003). Z-test indicated negative (purifying) selection of the gene. Combined alignment analysis at the amino acid level for the Peninsular Malaysia and Sarawak PkAMA-1 sequences revealed 34 polymorphic sites. Thirty-one of these sites were dimorphic, and 3 were trimorphic. The amino acid sequences could be categorised into 31 haplotypes. In the haplotype network, PkAMA-1 from Peninsular Malaysia and Sarawak were separated into two groups.
    Matched MeSH terms: Antigens, Protozoan/genetics*; Membrane Proteins/genetics*; Protozoan Proteins/genetics*
  20. Wong YC, Osahor A, Al-Ajli FOM, Narayanan K
    Anal Biochem, 2021 10 01;630:114324.
    PMID: 34363787 DOI: 10.1016/j.ab.2021.114324
    The effect of DNA topology on transfection efficiency of mammalian cells has been widely tested on plasmids smaller than 10 kb, but little is known for larger DNA vectors carrying intact genomic DNA containing introns, exons, and regulatory regions. Here, we demonstrate that circular BACs transfect more efficiently than covalently closed linear BACs. We found up to 3.1- and 8.9- fold higher eGFP expression from circular 11 kb and 100 kb BACs, respectively, compared to linear BACs. These findings provide insights for improved vector development for gene delivery and expression studies of large intact transgenes in mammalian cells.
    Matched MeSH terms: DNA/genetics*; Genetic Vectors/genetics; Chromosomes, Artificial, Bacterial/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links