The magnitude of shigellosis in developing countries is largely unknown because an affordable detection method is not available. Current laboratory diagnosis of Shigella spp. is laborious and time consuming and has low sensitivity. Hence, in the present study, a molecular-based diagnostic assay which amplifies simultaneously four specific genes to identify invC for Shigella genus, rfc for S. flexneri, wbgZ for S. sonnei, and rfpB for S. dysenteriae, as well as one internal control (ompA) gene, was developed in a single reaction to detect and differentiate Shigella spp. Validation with 120 Shigella strains and 37 non-Shigella strains yielded 100% specificity. The sensitivity of the PCR was 100 pg of genomic DNA, 5.4 × 10(4) CFU/ml, or approximately 120 CFU per reaction mixture of bacteria. The sensitivity of the pentaplex PCR assay was further improved following preincubation of the stool samples in gram-negative broth. A preliminary study with 30 diarrhoeal specimens resulted in no cross-reaction with other non-Shigella strains tested. We conclude that the developed pentaplex PCR assay is robust and can provide information about the four target genes that are essential for the identification of the Shigella genus and the three Shigella species responsible for the majority of shigellosis cases.
Mycena illuminans Henn. is described and re-evaluated based on recently collected material from peninsular Malaysia, providing comprehensive descriptions, illustrations and photographs. In addition to morphological data, axenic monokaryon and dikaryon cultures were established to provide data on culture morphology and the mating system of the species. Molecular sequences data from the nuclear large subunit (LSU) gene also are presented, confirming that M. illuminans is not a synonym of Mycena chlorophos.
Bali cattle is a domestic cattle breed that can be found in Malaysia. It is a domestic cattle that was purely derived from a domestication event in Banteng (Bos javanicus) around 3,500 BC in Indonesia. This research was conducted to portray the phylogenetic relationships of the Bali cattle with other cattle species in Malaysia based on maternal and paternal lineage. We analyzed the cytochrome c oxidase I (COI) mitochondrial gene and SRY of Y chromosome obtained from five species of the Bos genus (B. javanicus, Bos gaurus, Bos indicus, Bos taurus, and Bos grunniens). The water buffalo (Bubalus bubalis) was used as an outgroup. The phylogenetic relationships were observed by employing several algorithms: Neighbor-Joining (PAUP version 4.0), Maximum parsimony (PAUP version 4.0) and Bayesian inference (MrBayes 3.1). Results from the maternal data showed that the Bali cattle formed a monophyletic clade, and together with the B. gaurus clade formed a wild cattle clade. Results were supported by high bootstrap and posterior probability values together with genetic distance data. For the paternal lineage, the sequence variation is low (with parsimony informative characters: 2/660) resulting an unresolved Neighbor-Joining tree. However, Bali cattle and other domestic cattle appear in two monophyletic clades distinct from yak, gaur and selembu. This study expresses the potential of the COI gene in portraying the phylogenetic relationships between several Bos species which is important for conservation efforts especially in decision making since cattle is highly bred and hybrid breeds are often formed. Genetic conservation for this high quality beef cattle breed is important by maintaining its genetic characters to prevent extinction or even decreased the genetic quality.
Soil contamination by copper (Cu) and lead (Pb) is a widespread environmental problem. For phytoextraction to be successful and viable in environmental remediation, strategies that can improve plant uptake must be identified. In the present study we investigated the use of nitrogen (N) fertilizer as an efficient way to enhance accumulation of Cu and Pb from contaminated industrial soils into amaranth, Indian mustard and sunflower.
Landfilling is a major option in waste management hierarchy in developing nations. It generates leachate, which has the potential of polluting watercourses. This study analysed the physico-chemical components of leachate from a closed sanitary landfill in Malaysia, in relation to evaluating the toxicological impact on fish species namely Pangasius sutchi S., 1878 and Clarias batrachus L., 1758. The leachate samples were taken from Air Hitam Sanitary Landfill (AHSL) and the static method of acute toxicity testing was experimented on both fish species at different leachate concentrations. Each fish had an average of 1.3 ± 0.2 g wet weight and length of 5.0 ± 0.1 cm. Histology of the fishes was examined by analysing the gills of the response (dead) group, using the Harris haemtoxylin and eosin (H&E) method. Finneys' Probit method was utilized as a statistical tool to evaluate the data from the fish test. The physico-chemical analysis of the leachate recorded pH 8.2 ± 0.3, biochemical oxygen demand 3500 ± 125 mg L(-1), COD 10 234 ± 175 mg L(-1), ammonical nitrogen of 880 ± 74 mg L(-1), benzene 0.22 ± 0.1 mg L(-1) and toluene 1.2 ± 0.4 mg L(-1). The 50% lethality concentration (LC(50)) values calculated after 96 h exposure were 3.2% (v/v) and 5.9% (v/v) of raw leachate on P. sutchi and C. batrachus, respectively. The H&E staining showed denaturation of the nucleus and cytoplasm of the gills of the response groups. Leachate from the sanitary landfill was toxic to both fish species. The P. sutchi and C. batrachus may be used as indicator organisms for leachate pollution in water.
An investigation was made to see the salt tolerance of 10 weed species of rice. Properly dried and treated seeds of weed species were placed on 9 cm diameter petridishes lined with Whatman No. 1 filter paper under 6 salinity regimes, viz. 0 (control), 4, 8, 16, 24 and 32 dS m(-1). The petri dishes were then kept in germinator at 25 +/- 1.0 degrees C and 12 hr light. The number of germinated seeds were recorded daily. The final germination percentage, germination index (GI), seedling vigour index, mean germination time and time for 50% germination were estimated. Root and shoot lengths of the weed seedlings were measured at 20 days after salt application and relative growth values were calculated. Results revealed that salinity decreased final germination percentage, seed of germination as measured by GI, and shoot and root length in all the species. Germination of most of the weed seeds was completely arrested (0) at 32 dS m(-1) salinity except in E. colona (12%) and C. iria (13.9%). The species C. iria, E. colona, J. linifolia and E. crusgalli showed better germination (above 30%) upto 24 dS m(-1) salinity level and were regarded as salt-tolerant weed species. J. linifolia, F. miliacea, L. chinensis and O. sativa L. (weedy rice) were graded as moderately tolerant and S. zeylanica, S. grosus and C. difformis were regarded as least tolerant weed species.
Southeast Asian deforestation rates are among the world's highest and threaten to drive many forest-dependent species to extinction. Climate change is expected to interact with deforestation to amplify this risk. Here we examine whether regional incentives for sustainable forest management will be effective in improving threatened mammal conservation, in isolation and when combined with global climate change mitigation.
Acanthocheilonema delicata n. sp. (Filarioidea: Onchocercidae: Onchocercinae) is described based on adult filarioids and microfilariae obtained from subcutaneous connective tissues and skin, respectively, of Japanese badgers (Meles anakuma) in Wakayama Prefecture, Japan. No endemic species of the genus had been found in Japan. Recently, some filarioids (e.g., Acanthocheilonema reconditum, Dirofilaria spp., and Onchocerca spp.) have come to light as causative agents of zoonosis worldwide. The new species was readily distinguished from its congeners by morphologic characteristics such as body length, body width, esophagus length, spicule length, and the length of microfilariae. Based on the molecular data of the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene, A. delicata n. sp. was included in the clade of the genus Acanthocheilonema but differed from two other congeneric species available for study, A. viteae and A. reconditum. Acanthocheilonema delicata n. sp. did not harbor Wolbachia. It is likely that the fauna of filarioids from mammals on the Japanese islands is characterized by a high level of endemicity.
Canine hookworm infection is endemic in Southeast Asian countries with a prevalence ranging from 70% to 100%, with zoonotic transmission representing a potentially significant public health concern. However, there are limited data available on the prevalence of canine hookworms in Malaysia. This study was conducted to determine the prevalence of hookworm and Ancylostoma species among dogs in Malaysia.
We used 40 ± 5 nm gold nanoparticles (GNPs) as colorimetric sensor to visually detect swine-specific conserved sequence and nucleotide mismatch in PCR-amplified and non-amplified mitochondrial DNA mixtures to authenticate species. Colloidal GNPs changed color from pinkish-red to gray-purple in 2 mM PBS. Visually observed results were clearly reflected by the dramatic reduction of surface plasmon resonance peak at 530 nm and the appearance of new features in the 620-800 nm regions in their absorption spectra. The particles were stabilized against salt-induced aggregation upon the adsorption of single-stranded DNA. The PCR products, without any additional processing, were hybridized with a 17-base probe prior to exposure to GNPs. At a critical annealing temperature (55 °C) that differentiated matched and mismatched base pairing, the probe was hybridized to pig PCR product and dehybridized from the deer product. The dehybridized probe stuck to GNPs to prevent them from salt-induced aggregation and retained their characteristic red color. Hybridization of a 27-nucleotide probe to swine mitochondrial DNA identified them in pork-venison, pork-shad and venison-shad binary admixtures, eliminating the need of PCR amplification. Thus the assay was applied to authenticate species both in PCR-amplified and non-amplified heterogeneous biological samples. The results were determined visually and validated by absorption spectroscopy. The entire assay (hybridization plus visual detection) was performed in less than 10 min. The LOD (for genomic DNA) of the assay was 6 µg ml(-1) swine DNA in mixed meat samples. We believe the assay can be applied for species assignment in food analysis, mismatch detection in genetic screening and homology studies between closely related species.
This study was undertaken to investigate the effects of different nitrate concentrations in culture medium on oil content and fatty acid composition of Chlorella vulgaris (UMT-M1) and Chlorella sorokiniana (KS-MB2). Results showed that both species produced significant higher (p<0.05) oil content at nitrate ranging from 0.18 to 0.66 mM with C. vulgaris produced 10.20-11.34% dw, while C. sorokiniana produced 15.44-17.32% dw. The major fatty acids detected include C16:0, C18:0, C18:1, C18:2 and C18:3. It is interesting to note that both species displayed differentially regulated fatty acid accumulation patterns in response to nitrate treatments at early stationary growth phase. Their potential use for biodiesel application could be enhanced by exploring the concept of binary blending of the two microalgae oils using developed mathematical equations to calculate the oil mass blending ratio and simultaneously estimated the weight percentage (wt.%) of desirable fatty acid compositions.
This report documents an incidental finding during a study investigating the effects of melatonin supplementation on the development of blood pressure in SHR. Administration of 10 mg/kg/day of melatonin in drinking water during pregnancy to Wistar-Kyoto (WKY) dams caused a loss of more than 50% of the pups by the age of three weeks and 95% by the age of 6 weeks. There was no maternal morbidity or mortality in the two strains or death of any of the SHR pups. No obvious physical defects were present but mean body weight was lower in the surviving WKY rats when compared to that of melatonin supplemented SHR or non-supplemented WKY pups. The reason for the high mortality in WKY pups is uncertain and appears to be strain if not batch specific. There is a need for caution in its use, particularly during pregnancy, and clearly necessitates more detailed studies.
Candida parapsilosis has emerged as one of the most common causes of bloodstream infection worldwide. The diagnosis of invasive candidiasis etiological agents to the species level remains a laboratory and clinical challenge. Thus, specific monoclonal antibodies to detect systemic candidiasis and to identify Candida virulence factors and associated pathogenesis through immunohistochemistry would be very useful. Inbred Balb/c mice were immunized with C. parapsilosis antigens, and blood was checked for the presence of reactive antibodies using ELISA. Fusion was performed using the harvested spleen cells and NS1 myeloma cells, and the clones were screened for the presence of antibody producing hybrid cells by dot-blot. The 1B11 clone secreted IgG2a monoclonal antibody that was reactive with the C. parapsilosis antigen at MW of 59 kDa and cross-reacted with C. tropicalis but not with other fungal and bacterial antigens tested. Another 3D1 clone secreted IgG1 monoclonal antibody that was reactive with C. parapsilosis antigen at MW of 30 kDa. The 3D1 monoclonal antibody was found to be species specific. Experimental systemic candidiasis in rats was induced through intravenous injection of C. parapsilosis, and all the vital organs were collected for immunohistochemistry study. These monoclonal antibodies were reactive against surface epitopes on the yeast cells, pseudohyphae, and immune complexes in tissue sections. Sandwich ELISAs using these antibodies were developed and were able to detect circulating antigens in experimental candidiasis in rats at 0.2 μg/μL. These monoclonal antibodies may have potential as primary capture antibodies for the development of rapid diagnostic test for human systemic fungal infection.
Vibrio cholerae is the causative agent of the infectious disease, cholera. The bacteria adhere to the mucosal membrane and release cholera toxin, leading to watery diarrhea. There are >100 serovars of V. cholerae, but the O1 and O139 serovars are the main causative agents of cholera. The present study aimed to compare the severity of intestinal mucosal infection caused by O1 El Tor and O139 V. cholerae in a rabbit ileal loop model. The results showed that although the fluid accumulation was similar in the loops inoculated with O1 and O139 V. cholerae, the presence of blood was detected only in the loops inoculated with the O139 serovar. Serosal hemorrhage was confirmed by histopathological examination and the loops inoculated with O139 showed massive destruction of villi and loss of intestinal glands. The submucosa and muscularis mucosa of the ileum showed the presence of edema with congested blood vessels, while severe hemorrhage was seen in the muscularis propria layer. The loops inoculated with O1 El Tor showed only minimal damage, with intact intestinal villi and glands. Diffuse colonies of the O139 serovar were seen to have infiltrated deep into the submucosal layer of the intestine. Although the infection caused by the O1 serovar was focal and invasive, it was more superficial than that due to O139, and involved only the villi. These observations were confirmed by immunostaining with O1 and O139 V. cholerae-specific monoclonal antibodies. The peroxidase reaction demonstrated involvement of tissues down to the submucosal layer in O139 V. cholerae infection, while in O1 El Tor infection, the reaction was confined mainly to the villi, and was greatly reduced in the submucosal region. This is the first reported study to clearly demonstrate the histopathological differences between infections caused by the O139 Bengal and O1 El Tor pathogenic serovars of V. cholerae.
The male of Phlebotomus (Larroussius) betisi is described from Malayan caves. Several males have been caught in association with P. betisi females. Males and females have been associated by ecology, biogeography, morphology and molecular biology (homology of the ND4 mtDNA sequences).
Species-specific primers for Zoophthora radicans and Pandora bluckii were developed. To achieve this, partial sequences of DNA that encode for rRNA, more specifically, the ITS region (rDNA-ITS) were obtained from different isolates and analysed. Seven Z. radicans isolates (four from P. xylostella, and three from other lepidopteran hosts) and one P. blunckii isolate (from P. xylostella) were used. These isolates were selected based on PCR-RFLP patterns obtained from 22 isolates of P. blunckii and 39 isolates of Z. radicans. All P. blunckii isolates were from the same host (P. xylostella); 20 isolates were from Mexico, one from the Philippines, and one from Germany. The Z. radicans isolates were more diverse in geographical origin (Mexico, Kenya, Japan, New Zealand, Australia, Taiwan, Philippines, Malaysia, Uruguay, France, USA, Poland, Indonesia, Switzerland, Israel, China, and Denmark) and host origin (Lepidoptera, Hemiptera, Hymentoptera, and Diptera). Using conventional PCR, each pair of species-specific primers successfully detected each species of fungus from DNA extracted from infected host larvae either single- or dual-inoculated with both fungal species. The PCR-RFLP analysis also showed that Z. radicans was genetically more diverse than P. blunckii, although only a limited number of P. blunckii isolates from one country were considered. There was no direct relationship between genetic diversity and host or geographical origin. The relationship between genetic variation within both fungal species and host specificity or ecological adaptation is discussed.
Tioman virus (TioPV) and Menangle virus (MenPV) are two antigenically and genetically related paramyxoviruses (genus: Rubulavirus, family: Paramyxoviridae) isolated from Peninsular Malaysia (2001) and Australia (1997), respectively. Both viruses are potential zoonotic agents. In the present study, the infectivity, growth kinetics, morphology and morphogenesis of these two paramyxoviruses in a human neuronal cell (SK-N-SH) line were investigated. Sub-confluent SK-N-SH cells were infected with TioPV and MenPV at similar multiplicity of infection. These cells were examined by conventional and immunoelectron microscopy, and virus titres in the supernatants were assayed. Syncytia were observed for both infections in SK-N-SH cells and were more pronounced during the early stages of TioPV infection. The TioPV titre increased consistently (10(1)) every 12 h after infection. In MenPV-infected cells, cellular material was frequently observed within budding virions, and microfilaments and microtubules were abundant. Viral budding was common, and extracellular MenPVs tended to be more pleomorphic compared to TioPVs, which appeared to be more spherical in appearance. The MenPV cytoplasmic viral inclusion appeared to be comparatively smaller, loose and interspersed with randomly scattered circle-like particles, whereas huge tubule-like cytoplasmic inclusions were observed in TioPV-infected cells. Both viruses also displayed different cellular pathology in the SK-N-SH cells. The intracellular ultrastructural characteristics of these two viruses in infected neuronal cells may allow them to be differentiated by electron microscopy.
Major (sodium, potassium, calcium, magnesium) and minor elements (iron, copper, zinc, manganese) and one heavy metal (lead) of Cavendish banana flour and Dream banana flour were determined, and data were analyzed using multivariate statistical techniques of factor analysis and discriminant analysis. Factor analysis yielded four factors explaining more than 81% of the total variance: the first factor explained 28.73%, comprising magnesium, sodium, and iron; the second factor explained 21.47%, comprising only manganese and copper; the third factor explained 15.66%, comprising zinc and lead; while the fourth factor explained 15.50%, comprising potassium. Discriminant analysis showed that magnesium and sodium exhibited a strong contribution in discriminating the two types of banana flour, affording 100% correct assignation. This study presents the usefulness of multivariate statistical techniques for analysis and interpretation of complex mineral content data from banana flour of different varieties.
Previous studies have shown that apoptosis-like features are observed in Blastocystis spp., an intestinal protozoan parasite, when exposed to the cytotoxic drug metronidazole (MTZ). This study reports that among the four subtypes of Blastocystis spp. investigated for rate of apoptosis when treated with MTZ, subtype 3 showed the highest significant increase after 72h of in vitro culture when treated with MTZ at 0.1mg/ml (79%; p<0.01) and 0.0001mg/ml (89%; p<0.001). The close correlation between viable cells and apoptotic cells for both dosages implies that the pathogenic potential of these isolates has been enhanced when treated with MTZ. This suggests that there is a mechanism in Blastocystis spp. that actually regulates the apoptotic process to produce higher number of viable cells when treated. Apoptosis may not just be programmed cell death but instead a mechanism to increase the number of viable cells to ensure survival during stressed conditions. The findings of the present study have an important contribution to influence chemotherapeutic approaches when developing drugs against the emerging Blastocystis spp. infections.
The physical factors affecting the production of an organic solvent-tolerant protease from Pseudomonas aeruginosa strain K was investigated. Growth and protease production were detected from 37 to 45 degrees C with 37 degrees C being the optimum temperature for P. aeruginosa. Maximum enzyme activity was achieved at static conditions with 4.0% (v/v) inoculum. Shifting the culture from stationary to shaking condition decreased the protease production (6.0-10.0% v/v). Extracellular organic solvent-tolerant protease was detected over a broad pH range from 6.0 to 9.0. However, the highest yield of protease was observed at pH 7.0. Neutral media increased the protease production compared to acidic or alkaline media.