Displaying publications 441 - 460 of 676 in total

Abstract:
Sort:
  1. Sun B, Jia L, Liang B, Chen Q, Liu D
    Virol Sin, 2018 Oct;33(5):385-393.
    PMID: 30311101 DOI: 10.1007/s12250-018-0050-1
    Nipah virus (NiV), a zoonotic paramyxovirus belonging to the genus Henipavirus, is classified as a Biosafety Level-4 pathogen based on its high pathogenicity in humans and the lack of available vaccines or therapeutics. Since its initial emergence in 1998 in Malaysia, this virus has become a great threat to domestic animals and humans. Sporadic outbreaks and person-to-person transmission over the past two decades have resulted in hundreds of human fatalities. Epidemiological surveys have shown that NiV is distributed in Asia, Africa, and the South Pacific Ocean, and is transmitted by its natural reservoir, Pteropid bats. Numerous efforts have been made to analyze viral protein function and structure to develop feasible strategies for drug design. Increasing surveillance and preventative measures for the viral infectious disease are urgently needed.
    Matched MeSH terms: Nipah Virus/pathogenicity
  2. Teh AHT, Lee SM, Dykes GA
    PLoS One, 2019;14(4):e0215275.
    PMID: 30970009 DOI: 10.1371/journal.pone.0215275
    Campylobacter jejuni is a microaerophilic bacterial species which is a major food-borne pathogen worldwide. Attachment and biofilm formation have been suggested to contribute to the survival of this fastidious bacteria in the environment. In this study the attachment of three C. jejuni strains (C. jejuni strains 2868 and 2871 isolated from poultry and ATCC 33291) to different abiotic surfaces (stainless steel, glass and polystyrene) alone or with Pseudomonas aeruginosa biofilms on them, in air at 25°C and under static or flow conditions, were investigated using a modified Robbins Device. Bacteria were enumerated and scanning electron microscopy was carried out. The results indicated that both C. jejuni strains isolated from poultry attached better to Pseudomonas aeruginosa biofilms on abiotic surfaces than to the surfaces alone under the different conditions tested. This suggests that biofilms of other bacterial species may passively protect C. jejuni against shear forces and potentially oxygen stress which then contribute to their persistence in environments which are detrimental to them. By contrast the C. jejuni ATCC 33291 strain did not attach differentially to P. aeruginosa biofilms, suggesting that different C. jejuni strains may have alternative strategies for persistence in the environment. This study supports the hypothesis that C. jejuni do not form biofilms per se under conditions they encounter in the environment but simply attach to surfaces or biofilms of other species.
    Matched MeSH terms: Campylobacter jejuni/pathogenicity*
  3. Khetawat D, Broder CC
    Virol J, 2010 Nov 12;7:312.
    PMID: 21073718 DOI: 10.1186/1743-422X-7-312
    BACKGROUND: Hendra virus (HeV) and Nipah virus (NiV) are newly emerged zoonotic paramyxoviruses discovered during outbreaks in Queensland, Australia in 1994 and peninsular Malaysia in 1998/9 respectively and classified within the new Henipavirus genus. Both viruses can infect a broad range of mammalian species causing severe and often-lethal disease in humans and animals, and repeated outbreaks continue to occur. Extensive laboratory studies on the host cell infection stage of HeV and NiV and the roles of their envelope glycoproteins have been hampered by their highly pathogenic nature and restriction to biosafety level-4 (BSL-4) containment. To circumvent this problem, we have developed a henipavirus envelope glycoprotein pseudotyped lentivirus assay system using either a luciferase gene or green fluorescent protein (GFP) gene encoding human immunodeficiency virus type-1 (HIV-1) genome in conjunction with the HeV and NiV fusion (F) and attachment (G) glycoproteins.

    RESULTS: Functional retrovirus particles pseudotyped with henipavirus F and G glycoproteins displayed proper target cell tropism and entry and infection was dependent on the presence of the HeV and NiV receptors ephrinB2 or B3 on target cells. The functional specificity of the assay was confirmed by the lack of reporter-gene signals when particles bearing either only the F or only G glycoprotein were prepared and assayed. Virus entry could be specifically blocked when infection was carried out in the presence of a fusion inhibiting C-terminal heptad (HR-2) peptide, a well-characterized, cross-reactive, neutralizing human mAb specific for the henipavirus G glycoprotein, and soluble ephrinB2 and B3 receptors. In addition, the utility of the assay was also demonstrated by an examination of the influence of the cytoplasmic tail of F in its fusion activity and incorporation into pseudotyped virus particles by generating and testing a panel of truncation mutants of NiV and HeV F.

    CONCLUSIONS: Together, these results demonstrate that a specific henipavirus entry assay has been developed using NiV or HeV F and G glycoprotein pseudotyped reporter-gene encoding retrovirus particles. This assay can be conducted safely under BSL-2 conditions and will be a useful tool for measuring henipavirus entry and studying F and G glycoprotein function in the context of virus entry, as well as in assaying and characterizing neutralizing antibodies and virus entry inhibitors.

    Matched MeSH terms: Henipavirus/pathogenicity*
  4. Diez Benavente E, Florez de Sessions P, Moon RW, Holder AA, Blackman MJ, Roper C, et al.
    PLoS Genet, 2017 Sep;13(9):e1007008.
    PMID: 28922357 DOI: 10.1371/journal.pgen.1007008
    The macaque parasite Plasmodium knowlesi is a significant concern in Malaysia where cases of human infection are increasing. Parasites infecting humans originate from genetically distinct subpopulations associated with the long-tailed (Macaca fascicularis (Mf)) or pig-tailed macaques (Macaca nemestrina (Mn)). We used a new high-quality reference genome to re-evaluate previously described subpopulations among human and macaque isolates from Malaysian-Borneo and Peninsular-Malaysia. Nuclear genomes were dimorphic, as expected, but new evidence of chromosomal-segment exchanges between subpopulations was found. A large segment on chromosome 8 originating from the Mn subpopulation and containing genes encoding proteins expressed in mosquito-borne parasite stages, was found in Mf genotypes. By contrast, non-recombining organelle genomes partitioned into 3 deeply branched lineages, unlinked with nuclear genomic dimorphism. Subpopulations which diverged in isolation have re-connected, possibly due to deforestation and disruption of wild macaque habitats. The resulting genomic mosaics reveal traits selected by host-vector-parasite interactions in a setting of ecological transition.
    Matched MeSH terms: Plasmodium knowlesi/pathogenicity
  5. Chew MF, Poh KS, Poh CL
    Int J Med Sci, 2017;14(13):1342-1359.
    PMID: 29200948 DOI: 10.7150/ijms.21875
    Dengue is an important global threat caused by dengue virus (DENV) that records an estimated 390 million infections annually. Despite the availability of CYD-TDV as a commercial vaccine, its long-term efficacy against all four dengue virus serotypes remains unsatisfactory. There is therefore an urgent need for the development of antiviral drugs for the treatment of dengue. Peptide was once a neglected choice of medical treatment but it has lately regained interest from the pharmaceutical industry following pioneering advancements in technology. In this review, the design of peptide drugs, antiviral activities and mechanisms of peptides and peptidomimetics (modified peptides) action against dengue virus are discussed. The development of peptides as inhibitors for viral entry, replication and translation is also described, with a focus on the three main targets, namely, the host cell receptors, viral structural proteins and viral non-structural proteins. The antiviral peptides designed based on these approaches may lead to the discovery of novel anti-DENV therapeutics that can treat dengue patients.
    Matched MeSH terms: Dengue Virus/pathogenicity
  6. Pirouz AA, Selamat J, Iqbal SZ, Mirhosseini H, Karjiban RA, Bakar FA
    Sci Rep, 2017 Sep 29;7(1):12453.
    PMID: 28963539 DOI: 10.1038/s41598-017-12341-3
    Adsorption plays an important role in the removal of mycotoxins from feedstuffs. The main objective of this study was to investigate the efficacy of using magnetic graphene oxide nanocomposites (MGO) as an adsorbent for the reduction of Fusarium mycotoxins in naturally contaminated palm kernel cake (PKC). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to assess the mycotoxins in animal feed. Target mycotoxins included the zearalenone (ZEA), the fumonisins (FB1 and FB2) and trichothecenes (deoxynivalenol (DON), HT-2 and T-2 toxin). Response surface methodology (RSM) was applied to investigate the effects of time (3-7 h), temperature (30-50 °C) and pH (3-7) on the reduction. The response surface models with (R2 = 0.94-0.99) were significantly fitted to predict mycotoxins in contaminated PKC. Furthermore, the method ensured a satisfactory adjustment of the polynomial regression models with the experimental data except for fumonisin B1 and B2, which decrease the adsorption of magnetic graphene oxide (MGO). The optimum reduction was performed at pH 6.2 for 5.2 h at of 40.6 °C. Under these optimum conditions, reduced levels of 69.57, 67.28, 57.40 and 37.17%, were achieved for DON, ZEA, HT-2, and T-2, respectively.
    Matched MeSH terms: Fusarium/pathogenicity
  7. Ho KL, Gabrielsen M, Beh PL, Kueh CL, Thong QX, Streetley J, et al.
    PLoS Biol, 2018 Oct;16(10):e3000038.
    PMID: 30346944 DOI: 10.1371/journal.pbio.3000038
    Macrobrachium rosenbergii nodavirus (MrNV) is a pathogen of freshwater prawns that poses a threat to food security and causes significant economic losses in the aquaculture industries of many developing nations. A detailed understanding of the MrNV virion structure will inform the development of strategies to control outbreaks. The MrNV capsid has also been engineered to display heterologous antigens, and thus knowledge of its atomic resolution structure will benefit efforts to develop tools based on this platform. Here, we present an atomic-resolution model of the MrNV capsid protein (CP), calculated by cryogenic electron microscopy (cryoEM) of MrNV virus-like particles (VLPs) produced in insect cells, and three-dimensional (3D) image reconstruction at 3.3 Å resolution. CryoEM of MrNV virions purified from infected freshwater prawn post-larvae yielded a 6.6 Å resolution structure, confirming the biological relevance of the VLP structure. Our data revealed that unlike other known nodavirus structures, which have been shown to assemble capsids having trimeric spikes, MrNV assembles a T = 3 capsid with dimeric spikes. We also found a number of surprising similarities between the MrNV capsid structure and that of the Tombusviridae: 1) an extensive network of N-terminal arms (NTAs) lines the capsid interior, forming long-range interactions to lace together asymmetric units; 2) the capsid shell is stabilised by 3 pairs of Ca2+ ions in each asymmetric unit; 3) the protruding spike domain exhibits a very similar fold to that seen in the spikes of the tombusviruses. These structural similarities raise questions concerning the taxonomic classification of MrNV.
    Matched MeSH terms: Nodaviridae/pathogenicity
  8. Chen CH, Shimada T, Elhadi N, Radu S, Nishibuchi M
    Appl Environ Microbiol, 2004 Apr;70(4):1964-72.
    PMID: 15066786
    Of 97 strains of Vibrio cholerae isolated from various seafoods in Malaysia in 1998 and 1999, 20 strains carried the ctx gene and produced cholera toxin. Fourteen, one, and five of these toxigenic strains belonged to the O139, O1 Ogawa, and rough serotypes, respectively. The rough strains had the rfb gene of the O1 serotype. The toxigenic strains varied in their biochemical characteristics, the amount of cholera toxin produced, their antibiograms, and the presence or absence of the pTLC plasmid sequence. DNA fingerprinting analysis by arbitrarily primed PCR, ribotyping, and a pulsed-field gel electrophoresis method classified the toxigenic strains into 3, 7, and 10 types, respectively. The relatedness of these toxigenic strains to clinical strains isolated in other countries and from international travelers was examined by using a dendrogram constructed from the pulsed-field gel electrophoresis profiles. The results of the examination of the antibiogram and the possession of the toxin-linked cryptic plasmid were consistent with the dendrogram-based relatedness: the O139 strains isolated from Malaysian seafoods could be separated into two groups that appear to have been introduced from the Bengal area independently. The rough strains of Malaysian seafood origin formed one group and belonged to a cluster unique to the Thailand-Malaysia-Laos region, and this group may have persisted in this area for a long period. The single O1 Ogawa strain detected in Malaysian seafood appears to have an origin and route of introduction different from those of the O139 and the rough strains.
    Matched MeSH terms: Vibrio cholerae/pathogenicity
  9. Parvin W, Govender N, Othman R, Jaafar H, Rahman M, Wong MY
    Sci Rep, 2020 Sep 24;10(1):15621.
    PMID: 32973199 DOI: 10.1038/s41598-020-72156-7
    Pseudomonas aeruginosa developed its biocontrol agent property through the production of antifungal derivatives, with the phenazine among them. In this study, the applications of crude phenazine synthesized by Pseudomonas aeruginosa UPMP3 and hexaconazole were comparatively evaluated for their effectiveness to suppress basal stem rot infection in artificially G. boninense-challenged oil palm seedlings. A glasshouse experiment under the randomized completely block design was set with the following treatments: non-inoculated seedlings, G. boninense inoculated seedlings, G. boninense inoculated seedlings with 1 mg/ml phenazine application, G. boninense inoculated seedlings with 2 mg/ml phenazine application and G. boninense inoculated seedlings with 0.048 mg/ml hexaconazole application. Seedlings were screened for disease parameters and plant vigour traits (plant height, plant fresh weight, root fresh, and dry weight, stem diameter, and total chlorophyll) at 1-to-4 month post-inoculation (mpi). The application of 2 mg/ml phenazine significantly reduced disease severity (DS) at 44% in comparison to fungicide application (DS = 67%). Plant vigour improved from 1 to 4 mpi and the rate of disease reduction in seedlings with phenazine application (2 mg/ml) was twofold greater than hexaconazole. At 4, 6 and 8 wpi, an up-regulation of chitinase and β-1,3 glucanase genes in seedlings treated with phenazine suggests the involvement of induced resistance in G. boninense-oil palm pathosystem.
    Matched MeSH terms: Ganoderma/pathogenicity*
  10. Hora B, Keating SM, Chen Y, Sanchez AM, Sabino E, Hunt G, et al.
    PLoS One, 2016;11(6):e0157340.
    PMID: 27314585 DOI: 10.1371/journal.pone.0157340
    HIV-1 subtypes and drug resistance are routinely tested by many international surveillance groups. However, results from different sites often vary. A systematic comparison of results from multiple sites is needed to determine whether a standardized protocol is required for consistent and accurate data analysis. A panel of well-characterized HIV-1 isolates (N = 50) from the External Quality Assurance Program Oversight Laboratory (EQAPOL) was assembled for evaluation at seven international sites. This virus panel included seven subtypes, six circulating recombinant forms (CRFs), nine unique recombinant forms (URFs) and three group O viruses. Seven viruses contained 10 major drug resistance mutations (DRMs). HIV-1 isolates were prepared at a concentration of 107 copies/ml and compiled into blinded panels. Subtypes and DRMs were determined with partial or full pol gene sequences by conventional Sanger sequencing and/or Next Generation Sequencing (NGS). Subtype and DRM results were reported and decoded for comparison with full-length genome sequences generated by EQAPOL. The partial pol gene was amplified by RT-PCR and sequenced for 89.4%-100% of group M viruses at six sites. Subtyping results of majority of the viruses (83%-97.9%) were correctly determined for the partial pol sequences. All 10 major DRMs in seven isolates were detected at these six sites. The complete pol gene sequence was also obtained by NGS at one site. However, this method missed six group M viruses and sequences contained host chromosome fragments. Three group O viruses were only characterized with additional group O-specific RT-PCR primers employed by one site. These results indicate that PCR protocols and subtyping tools should be standardized to efficiently amplify diverse viruses and more consistently assign virus genotypes, which is critical for accurate global subtype and drug resistance surveillance. Targeted NGS analysis of partial pol sequences can serve as an alternative approach, especially for detection of low-abundance DRMs.
    Matched MeSH terms: HIV-1/pathogenicity
  11. Moi ML, Lim CK, Chua KB, Takasaki T, Kurane I
    PLoS Negl Trop Dis, 2012;6(2):e1536.
    PMID: 22389741 DOI: 10.1371/journal.pntd.0001536
    Progress in dengue vaccine development has been hampered by limited understanding of protective immunity against dengue virus infection. Conventional neutralizing antibody titration assays that use FcγR-negative cells do not consider possible infection-enhancement activity. We reasoned that as FcγR-expressing cells are the major target cells of dengue virus, neutralizing antibody titration assays using FcγR-expressing cells that determine the sum of neutralizing and infection-enhancing activity, may better reflect the biological properties of antibodies in vivo.
    Matched MeSH terms: Dengue Virus/pathogenicity*
  12. Zhao S, Huang L, Basu P, Domingo EJ, Supakarapongkul W, Ling WY, et al.
    Cancer Lett, 2022 Jan 28;525:22-32.
    PMID: 34728309 DOI: 10.1016/j.canlet.2021.10.036
    Multiple barriers impede the transformation of evidence-based research into implementation of cervical cancer screening in ASEAN countries. This review is the first of its kind to show the disease burden of cervical cancer, progress till date to implement screening and corresponding challenges, and propose tailored solutions to promote cervical cancer prevention in ASEAN. In 2020, approximately 69 000 cervical cancer cases and 38 000 deaths happened in ASEAN, and more than 44% and 63% increases on new cases and deaths are expected in 2040. Only four countries have initiated population-based cervical cancer screening programs, but the participation rate is less than 50% in some countries and even lower than 10% in Myanmar and Indonesia. Inequity and unavailability in service delivery, lack of knowledge and awareness, limited follow-up and treatment capacity, and funding sustainability affect successful scale-up of cervical cancer screening most in ASEAN. Implementing HPV detection-based primary screening, appropriate management of screen-positives, enhancing health education, integrating health services can accelerate reduction of cervical cancer burden in ASEAN. Achieving high screening coverage and high treatment compliance will help ASEAN countries remain aligned to cervical cancer elimination strategies.
    Matched MeSH terms: Papillomaviridae/pathogenicity
  13. Rohani A, Fakhriy HA, Suzilah I, Zurainee MN, Najdah WMAW, Ariffin MM, et al.
    PLoS One, 2020;15(5):e0230860.
    PMID: 32413033 DOI: 10.1371/journal.pone.0230860
    Since 2000, human malaria cases in Malaysia were rapidly reduced with the use of insecticides in Indoor Residual Spray (IRS) and Long-Lasting Insecticide Net (LLIN). Unfortunately, monkey malaria in humans has shown an increase especially in Sabah and Sarawak. The insecticide currently used in IRS is deltamethrin K-Othrine® WG 250 wettable granule, targeting mosquitoes that rest and feed indoor. In Sabah, the primary vector for knowlesi malaria is An. balabacensis a species known to bite outdoor. This study evaluates an alternative method, the Outdoor Residual Spray (ORS) using a novel formulation of deltamethrin K-Othrine® (PolyZone) to examine it suitability to control knowlesi malaria vector in Sabah, compared to the current method. The study was performed at seven villages in Sabah having similar type of houses (wood, bamboo and concrete). Houses were sprayed with deltamethrin K-Othrine® (PolyZone) at two different dosages, 25 mg/m2 and 30 mg/m2 and deltamethrin K-Othrine® WG 250 wettable granule at 25 mg/m2, sprayed indoor and outdoor. Residual activity on different walls was assessed using standard cone bioassay techniques. For larval surveillances, potential breeding sites were surveyed. Larvae were collected and identified, pre and post spraying. Adult survey was done using Human Landing Catch (HLC) performed outdoor and indoor. Detection of malaria parasite in adults was conducted via microscopy and molecular methods. Deltamethrin K-Othrine® (PolyZone) showed higher efficacy when sprayed outdoor. The efficacy was found varied when sprayed on different types of wall surfaces. Deltamethrin K-Othrine® (PolyZone) at 25 mg/m2 was the most effective with regards to ability to high mortality and effective knock down (KD). The vector population was reduced significantly post-spraying and reduction in breeding sites as well. The number of simian malaria infected vector, human and simian malaria transmission were also greatly reduced.
    Matched MeSH terms: Plasmodium knowlesi/pathogenicity
  14. Farooq H, Sabesan GS, Monowar T, Chinni SV, Zainol NH
    Indian J Pathol Microbiol, 2024 Jul 01;67(3):654-657.
    PMID: 38391359 DOI: 10.4103/ijpm.ijpm_972_22
    Kodamaea ohmeri is a rare opportunistic pathogen belonging to Saccharomycetes family. This yeast was also formerly known as Yamadazyma ohmeri or Pichia ohmeri . This opportunistic pathogen causes illness that typically affects people with impaired immune system. In this report, we discuss a fatal case involving a woman in her late 30s who was admitted to the hospital on the sixth day of her sickness after being given a COVID-19 Category 5A diagnosis. For COVID-19, she received subcutaneous heparin, cefuroxime, and intravenous corticosteroids. She was diagnosed with secondary bacterial and fungal infections in the ICU. Multiple antibiotics and antifungal were given to treat bacterial and fungal infections. An unusual fungus, Kodamaea ohmeri , was isolated from the clinical sample. On day 36, she succumbed to her infection in the ICU. The cause of death was multidrug-resistant sepsis with multiple organ failures due to COVID-19 infection, worsened by an embolism and trachea damage during a tracheostomy. To effectively manage K. ohmeri , clinicians and microbiologists must identify and be aware of this emerging human opportunistic pathogen, which can co-infect debilitated patients such as COVID-19 patients, for effective management.
    Matched MeSH terms: Saccharomycetales/pathogenicity
  15. Zong Z, Wang X, Deng Y
    PMID: 27244959
    A previously healthy Chinese male working in Malaysia returned to China with high fever. A blood culture showed Burkholderia pseudomallei strain WCBP1. This isolate was sequenced, showing type, ST881, which appears to be present in Malaysia. WCP1 had unusual susceptibility to aminoglycosides and habored the Yersinia-like fimbrial gene cluster for virulence. The patient's condition deteriorated rapidly but he recovered after receiving meropenem and intensive care support. Melioidosis is a potential problem among Chinese imigrant workers with strains new to China being identified.
    Matched MeSH terms: Burkholderia pseudomallei/pathogenicity
  16. Tanil GB, Radu S, Nishibuchi M, Rahim RA, Napis S, Maurice L, et al.
    PMID: 16295549
    Twenty-one Vibrio parahaemolyticus isolates representing 21 samples of coastal seawater from three beaches in peninsular Malaysia were found to be sensitive to streptomycin, norfloxacin and chloramphenicol. Resistance was observed to penicillin (100%), ampicillin (95.2%), carbenicilin (95.2%), erythromycin (95.2%), bacitracin (71.4%), cephalothin (28.6%), moxalactam (28.6%), kanamycin (19.1%), tetracycline (14.3%), nalidixic acid (9.5%) and gentamicin (9.5%). Plasmids of 2.6 to 35.8 mDa were detected among plasmid-containing isolates. All isolates carried the Vp-toxR gene specific to V. parahaemolyticus and were negative for the tdh gene, but only one isolate was positive for the trh gene. DNA fingerprinting of the isolates using ERIC-PCR and PFGE showed that the isolates belong to two major clonal groups, with several isolates from different locations in the same group, indicating the presence of similar strains in the different locations.
    Matched MeSH terms: Vibrio parahaemolyticus/pathogenicity*
  17. Othman N, Abdullah NA, Wahab ZA
    PMID: 15916093
    An immunocompetent 5 year-old girl presented with pyrexia of unknown origin associated with headache. Initial investigations showed leukocytosis and an increased erythrocyte sedimentation rate. A Widal-Weil Felix test, blood film for malarial parasites, mycoplasma IgM antibody, cultures from blood and urine, full blood picture, Mantoux test, and chest x-ray were all negative. A lumbar puncture was done as part of a work-up for pyrexia of unknown origin. Cryptococcus neoformans was seen on India ink examination and confirmed on culture. She was treated with 10 weeks of intravenous amphotericin B and 8 weeks of fluconazole. Further immunological tests did not reveal any defect in the cell-mediated immune system. C. neoformans meningitis may present with non-specific symptoms and should be considered in a work-up for pyrexia of unknown origin.
    Matched MeSH terms: Cryptococcus neoformans/pathogenicity
  18. Shekhar KC, Pathmanathan R
    PMID: 1523486
    Schistosoma malayensis Sp N is a putative new species of schistosome discovered in Peninsular Malaysia in 1973. This paper comprises the first report on the detailed gastrointestinal pathology present in rabbits infected with strains of the parasite. Two different strains of schistosome--the Baling and Koyan strains--from two different ecosystems were used to infect inbred rabbits and the resulting pathophysiology was studied. Our results showed that the Baling strain of S. malayensis was more virulent than the Koyan strain and produced nodular, segmental circumferential lesions and large bilharziomas measuring 1-7 cm in diameter in the distal jejunum, ileum and the ileo-caecal junction. The findings indicate that the Baling strain of S. malayensis was more pathogenic for rabbits as compared with the Koyan strain--in relation to the gross pathology of the gut and the tissue egg load. Earlier reports have shown that rabbits infected with S. japonicum induces significant intestinal lesions in rabbits (Cheever et al, 1980 a,b) but these animals are refractory to infection with S. mekongi (Byram and Lichtenberg, 1980). Our studies show that the two strains of S. malayensis adapted well in rabbits. It is also established that in rabbits, the virulence of the Baling strain of S. malayensis is greater than that of S. mekongi and approximates that of S. japonicum.
    Matched MeSH terms: Schistosoma/pathogenicity
  19. Robinson DM, Huxsoll DL
    PMID: 818716
    The passive transfer of convalescent sera did not protect the majority of mice against challenge with the homologous strain and was completely ineffective against challenge with strains unrelated by fluorescent antibody techniques. When the immune sera was incubated with the rickettsia in vitro and then inoculated into the mice a dramatic increase occurred in the number of surviving mice. The importance of these data in relation to published results with other species of rickettsia is discussed.
    Matched MeSH terms: Orientia tsutsugamushi/pathogenicity
  20. Lau KA, Wang B, Miranda-Saksena M, Boadle R, Kamarulzaman A, Ng KP, et al.
    Curr HIV Res, 2010 Apr;8(3):259-71.
    PMID: 20214658
    In Malaysia, co-circulation of CRF01_AE and subtype B has resulted in the emergence of the second generation derivative; CRF33_01B in approximately 20% of its HIV-1 infected individuals. Our objective was to identify possible biological advantages that CRF33_01B possesses over its progenitors. Biological and molecular comparisons of CRF33_01B against its parental subtypes clearly show that CRF33_01B replicated better in activated whole peripheral blood mononuclear cells (PBMCs) and CD4+ T-lymphocytes, but not monocyte-derived macrophages (MDMs). Also, its acquired fitness was greater than CRF01_AE but not subtype B. Moreover, CRF33_01B has higher rate of apoptotic cell death and syncytia induction compared to subtype B. These adaptive and survival abilities could have been acquired by CRF33_01B due to the incorporation of subtype B fragments into the gag-RT region of its full-length genome. Our studies confirm the previously held belief that HIV-1 strains may harbor enhanced biological fitness upon recombination. We therefore estimate a possible gradual replacement of the current predominance of CRF01_AE, as well as wider dissemination of CRF33_01B, together with the identification of other new CRF01_AE/B inter-subtype recombinants in Malaysia.
    Matched MeSH terms: HIV-1/pathogenicity*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links