METHODS: Extracts of ZOVR were subjected to in-vivo antihypertensive screening using noninvasive blood pressures in SHRs. The most potent extract, ZOVR petroleum ether extract (ZOP) was then fractionated using n-hexane, chloroform and water. Isolated thoracic aortic rings were harvested and subjected to vascular relaxation studies of n-hexane fraction of ZOP (HFZOP) with incubation of different antagonists such as Nω-nitro-l-arginine methyl ester (L-NAME, 10 µmol/L), indomethacin (10 µmol/L), methylene blue (10 µmol/L), atropine (1 µmol/L), glibenclamide (10 µmol/L), prazosin (0.01 µmol/L), and propranolol (1 µmol/L).
RESULTS: During the screening of various ZOVR extracts, ZOP produced the most reduction in blood pressures of SHRs and so did HFZOP. HFZOP significantly decreased phenylephrine-induced contraction and enhanced acetylcholine-induced relaxation. L-NAME, indomethacin, methylene blue, atropine, and glibenclamide significantly potentiated the vasorelaxant effects of HFZOP. Propranolol and prazosin did not alter the vasorelaxant effects of HFZOP. HFZOP significantly suppressed the Ca2+-dependent contraction and influenced the ratio of the responses to phenylephrine in Ca2+-free medium.
CONCLUSION: This study demonstrates that ZOP may exert an antihypertensive effect in the SHR model. Its possible vascular relaxation mechanisms involve nitric oxide and prostacyclin release, activation of cGMP-KATP channels, stimulation of muscarinic receptors, and transmembrane calcium channel or Ca2+ release from intracellular stores. Possible active compounds that contribute to the vasorelaxant effects are 6-gingerol, 8-gingerol and 6-shogaol.
AIM OF THE STUDY: To investigate the antinociceptive, anti-neuropathic, and anti-migraine activities of Fritillaria imperialis bulbs essential oil (FIEO) as well as to uncover the potential mechanisms of action involved.
MATERIALS AND METHODS: The antinociceptive activity of FIEO and its main constituent, Verticinone (Vt), was assessed using the formalin-induced paw licking assay. The potential mechanisms of antinociception were investigated through various antagonists. Additionally, their antineuropathic activity was examined using the cervical spinal cord contusion (CCS) technique and the possible role of Stat3 was evaluated using Western blot analysis. The nitroglycerin-induced model (NTG) was also employed for the evaluation of migraine.
RESULTS: FIEO demonstrated significant antinociceptive activity in both phases of the formalin-induced test. However, the FIEO activity was more pronounced effect observed in the second phase. Modulators of the NO-cGMP-K+ channel pathway significantly reversed the antinociceptive activity of FIEO (P