Displaying publications 501 - 520 of 578 in total

Abstract:
Sort:
  1. Walsh N, Zhang H, Hyland PL, Yang Q, Mocci E, Zhang M, et al.
    J Natl Cancer Inst, 2019 Jun 01;111(6):557-567.
    PMID: 30541042 DOI: 10.1093/jnci/djy155
    BACKGROUND: Genome-wide association studies (GWAS) identify associations of individual single-nucleotide polymorphisms (SNPs) with cancer risk but usually only explain a fraction of the inherited variability. Pathway analysis of genetic variants is a powerful tool to identify networks of susceptibility genes.

    METHODS: We conducted a large agnostic pathway-based meta-analysis of GWAS data using the summary-based adaptive rank truncated product method to identify gene sets and pathways associated with pancreatic ductal adenocarcinoma (PDAC) in 9040 cases and 12 496 controls. We performed expression quantitative trait loci (eQTL) analysis and functional annotation of the top SNPs in genes contributing to the top associated pathways and gene sets. All statistical tests were two-sided.

    RESULTS: We identified 14 pathways and gene sets associated with PDAC at a false discovery rate of less than 0.05. After Bonferroni correction (P ≤ 1.3 × 10-5), the strongest associations were detected in five pathways and gene sets, including maturity-onset diabetes of the young, regulation of beta-cell development, role of epidermal growth factor (EGF) receptor transactivation by G protein-coupled receptors in cardiac hypertrophy pathways, and the Nikolsky breast cancer chr17q11-q21 amplicon and Pujana ATM Pearson correlation coefficient (PCC) network gene sets. We identified and validated rs876493 and three correlating SNPs (PGAP3) and rs3124737 (CASP7) from the Pujana ATM PCC gene set as eQTLs in two normal derived pancreas tissue datasets.

    CONCLUSION: Our agnostic pathway and gene set analysis integrated with functional annotation and eQTL analysis provides insight into genes and pathways that may be biologically relevant for risk of PDAC, including those not previously identified.

  2. Shimelis H, Mesman RLS, Von Nicolai C, Ehlen A, Guidugli L, Martin C, et al.
    Cancer Res, 2017 Jun 01;77(11):2789-2799.
    PMID: 28283652 DOI: 10.1158/0008-5472.CAN-16-2568
    Breast cancer risks conferred by many germline missense variants in the BRCA1 and BRCA2 genes, often referred to as variants of uncertain significance (VUS), have not been established. In this study, associations between 19 BRCA1 and 33 BRCA2 missense substitution variants and breast cancer risk were investigated through a breast cancer case-control study using genotyping data from 38 studies of predominantly European ancestry (41,890 cases and 41,607 controls) and nine studies of Asian ancestry (6,269 cases and 6,624 controls). The BRCA2 c.9104A>C, p.Tyr3035Ser (OR = 2.52; P = 0.04), and BRCA1 c.5096G>A, p.Arg1699Gln (OR = 4.29; P = 0.009) variant were associated with moderately increased risks of breast cancer among Europeans, whereas BRCA2 c.7522G>A, p.Gly2508Ser (OR = 2.68; P = 0.004), and c.8187G>T, p.Lys2729Asn (OR = 1.4; P = 0.004) were associated with moderate and low risks of breast cancer among Asians. Functional characterization of the BRCA2 variants using four quantitative assays showed reduced BRCA2 activity for p.Tyr3035Ser compared with wild-type. Overall, our results show how BRCA2 missense variants that influence protein function can confer clinically relevant, moderately increased risks of breast cancer, with potential implications for risk management guidelines in women with these specific variants. Cancer Res; 77(11); 2789-99. ©2017 AACR.
  3. Bancroft EK, Page EC, Castro E, Lilja H, Vickers A, Sjoberg D, et al.
    Eur Urol, 2014 Sep;66(3):489-99.
    PMID: 24484606 DOI: 10.1016/j.eururo.2014.01.003
    BACKGROUND: Men with germline breast cancer 1, early onset (BRCA1) or breast cancer 2, early onset (BRCA2) gene mutations have a higher risk of developing prostate cancer (PCa) than noncarriers. IMPACT (Identification of Men with a genetic predisposition to ProstAte Cancer: Targeted screening in BRCA1/2 mutation carriers and controls) is an international consortium of 62 centres in 20 countries evaluating the use of targeted PCa screening in men with BRCA1/2 mutations.

    OBJECTIVE: To report the first year's screening results for all men at enrollment in the study.

    DESIGN, SETTING AND PARTICIPANTS: We recruited men aged 40-69 yr with germline BRCA1/2 mutations and a control group of men who have tested negative for a pathogenic BRCA1 or BRCA2 mutation known to be present in their families. All men underwent prostate-specific antigen (PSA) testing at enrollment, and those men with PSA >3 ng/ml were offered prostate biopsy.

    OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: PSA levels, PCa incidence, and tumour characteristics were evaluated. The Fisher exact test was used to compare the number of PCa cases among groups and the differences among disease types.

    RESULTS AND LIMITATIONS: We recruited 2481 men (791 BRCA1 carriers, 531 BRCA1 controls; 731 BRCA2 carriers, 428 BRCA2 controls). A total of 199 men (8%) presented with PSA >3.0 ng/ml, 162 biopsies were performed, and 59 PCas were diagnosed (18 BRCA1 carriers, 10 BRCA1 controls; 24 BRCA2 carriers, 7 BRCA2 controls); 66% of the tumours were classified as intermediate- or high-risk disease. The positive predictive value (PPV) for biopsy using a PSA threshold of 3.0 ng/ml in BRCA2 mutation carriers was 48%-double the PPV reported in population screening studies. A significant difference in detecting intermediate- or high-risk disease was observed in BRCA2 carriers. Ninety-five percent of the men were white, thus the results cannot be generalised to all ethnic groups.

    CONCLUSIONS: The IMPACT screening network will be useful for targeted PCa screening studies in men with germline genetic risk variants as they are discovered. These preliminary results support the use of targeted PSA screening based on BRCA genotype and show that this screening yields a high proportion of aggressive disease.

    PATIENT SUMMARY: In this report, we demonstrate that germline genetic markers can be used to identify men at higher risk of prostate cancer. Targeting screening at these men resulted in the identification of tumours that were more likely to require treatment.

  4. Grootes I, Keeman R, Blows FM, Milne RL, Giles GG, Swerdlow AJ, et al.
    Eur J Cancer, 2022 Sep;173:178-193.
    PMID: 35933885 DOI: 10.1016/j.ejca.2022.06.011
    BACKGROUND: Predict Breast (www.predict.nhs.uk) is an online prognostication and treatment benefit tool for early invasive breast cancer. The aim of this study was to incorporate the prognostic effect of progesterone receptor (PR) status into a new version of PREDICT and to compare its performance to the current version (2.2).

    METHOD: The prognostic effect of PR status was based on the analysis of data from 45,088 European patients with breast cancer from 49 studies in the Breast Cancer Association Consortium. Cox proportional hazard models were used to estimate the hazard ratio for PR status. Data from a New Zealand study of 11,365 patients with early invasive breast cancer were used for external validation. Model calibration and discrimination were used to test the model performance.

    RESULTS: Having a PR-positive tumour was associated with a 23% and 28% lower risk of dying from breast cancer for women with oestrogen receptor (ER)-negative and ER-positive breast cancer, respectively. The area under the ROC curve increased with the addition of PR status from 0.807 to 0.809 for patients with ER-negative tumours (p = 0.023) and from 0.898 to 0.902 for patients with ER-positive tumours (p = 2.3 × 10-6) in the New Zealand cohort. Model calibration was modest with 940 observed deaths compared to 1151 predicted.

    CONCLUSION: The inclusion of the prognostic effect of PR status to PREDICT Breast has led to an improvement of model performance and more accurate absolute treatment benefit predictions for individual patients. Further studies should determine whether the baseline hazard function requires recalibration.

  5. Zanti M, O'Mahony DG, Parsons MT, Li H, Dennis J, Aittomäkkiki K, et al.
    Hum Mutat, 2023;2023.
    PMID: 38725546 DOI: 10.1155/2023/9961341
    A large number of variants identified through clinical genetic testing in disease susceptibility genes, are of uncertain significance (VUS). Following the recommendations of the American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP), the frequency in case-control datasets (PS4 criterion), can inform their interpretation. We present a novel case-control likelihood ratio-based method that incorporates gene-specific age-related penetrance. We demonstrate the utility of this method in the analysis of simulated and real datasets. In the analyses of simulated data, the likelihood ratio method was more powerful compared to other methods. Likelihood ratios were calculated for a case-control dataset of BRCA1 and BRCA2 variants from the Breast Cancer Association Consortium (BCAC), and compared with logistic regression results. A larger number of variants reached evidence in favor of pathogenicity, and a substantial number of variants had evidence against pathogenicity - findings that would not have been reached using other case-control analysis methods. Our novel method provides greater power to classify rare variants compared to classical case-control methods. As an initiative from the ENIGMA Analytical Working Group, we provide user-friendly scripts and pre-formatted excel calculators for implementation of the method for rare variants in BRCA1, BRCA2 and other high-risk genes with known penetrance.
  6. Agarwal A, Farkouh A, Saleh R, Hamoda TAA, Salvio G, Boitrelle F, et al.
    World J Mens Health, 2024 Jan;42(1):202-215.
    PMID: 37635341 DOI: 10.5534/wjmh.230076
    PURPOSE: Sperm DNA fragmentation (SDF) is a functional sperm abnormality that can impact reproductive potential, for which four assays have been described in the recently published sixth edition of the WHO laboratory manual for the examination and processing of human semen. The purpose of this study was to examine the global practices related to the use of SDF assays and investigate the barriers and limitations that clinicians face in incorporating these tests into their practice.

    MATERIALS AND METHODS: Clinicians managing male infertility were invited to complete an online survey on practices related to SDF diagnostic and treatment approaches. Their responses related to the technical aspects of SDF testing, current professional society guidelines, and the literature were used to generate expert recommendations via the Delphi method. Finally, challenges related to SDF that the clinicians encounter in their daily practice were captured.

    RESULTS: The survey was completed by 436 reproductive clinicians. Overall, terminal deoxynucleotidyl transferase deoxyuridine triphosphate Nick-End Labeling (TUNEL) is the most commonly used assay chosen by 28.6%, followed by the sperm chromatin structure assay (24.1%), and the sperm chromatin dispersion (19.1%). The choice of the assay was largely influenced by availability (70% of respondents). A threshold of 30% was the most selected cut-off value for elevated SDF by 33.7% of clinicians. Of respondents, 53.6% recommend SDF testing after 3 to 5 days of abstinence. Although 75.3% believe SDF testing can provide an explanation for many unknown causes of infertility, the main limiting factors selected by respondents are a lack of professional society guideline recommendations (62.7%) and an absence of globally accepted references for SDF interpretation (50.3%).

    CONCLUSIONS: This study represents the largest global survey on the technical aspects of SDF testing as well as the barriers encountered by clinicians. Unified global recommendations regarding clinician implementation and standard laboratory interpretation of SDF testing are crucial.

  7. Luedtke JA, Chanson J, Neam K, Hobin L, Maciel AO, Catenazzi A, et al.
    Nature, 2024 Jan;625(7993):E2.
    PMID: 38040869 DOI: 10.1038/s41586-023-06851-6
  8. Luedtke JA, Chanson J, Neam K, Hobin L, Maciel AO, Catenazzi A, et al.
    Nature, 2023 Oct;622(7982):308-314.
    PMID: 37794184 DOI: 10.1038/s41586-023-06578-4
    Systematic assessments of species extinction risk at regular intervals are necessary for informing conservation action1,2. Ongoing developments in taxonomy, threatening processes and research further underscore the need for reassessment3,4. Here we report the findings of the second Global Amphibian Assessment, evaluating 8,011 species for the International Union for Conservation of Nature Red List of Threatened Species. We find that amphibians are the most threatened vertebrate class (40.7% of species are globally threatened). The updated Red List Index shows that the status of amphibians is deteriorating globally, particularly for salamanders and in the Neotropics. Disease and habitat loss drove 91% of status deteriorations between 1980 and 2004. Ongoing and projected climate change effects are now of increasing concern, driving 39% of status deteriorations since 2004, followed by habitat loss (37%). Although signs of species recoveries incentivize immediate conservation action, scaled-up investment is urgently needed to reverse the current trends.
  9. Schumpe BM, Van Lissa CJ, Bélanger JJ, Ruggeri K, Mierau J, Nisa CF, et al.
    Sci Rep, 2022 Mar 09;12(1):3824.
    PMID: 35264597 DOI: 10.1038/s41598-021-04703-9
    The present paper examines longitudinally how subjective perceptions about COVID-19, one's community, and the government predict adherence to public health measures to reduce the spread of the virus. Using an international survey (N = 3040), we test how infection risk perception, trust in the governmental response and communications about COVID-19, conspiracy beliefs, social norms on distancing, tightness of culture, and community punishment predict various containment-related attitudes and behavior. Autoregressive analyses indicate that, at the personal level, personal hygiene behavior was predicted by personal infection risk perception. At social level, social distancing behaviors such as abstaining from face-to-face contact were predicted by perceived social norms. Support for behavioral mandates was predicted by confidence in the government and cultural tightness, whereas support for anti-lockdown protests was predicted by (lower) perceived clarity of communication about the virus. Results are discussed in light of policy implications and creating effective interventions.
  10. Feng G, Mózes FE, Ji D, Treeprasertsuk S, Okanoue T, Shima T, et al.
    PMID: 39362618 DOI: 10.1016/j.cgh.2024.07.045
    BACKGROUND & AIMS: Metabolic dysfunction-associated steatohepatitis (MASH) and fibrotic MASH are significant health challenges. This multi-national study aimed to validate the acMASH index (including serum creatinine and aspartate aminotransferase concentrations) for MASH diagnosis and develop a new index (acFibroMASH) for non-invasively identifying fibrotic MASH and exploring its predictive value for liver-related events (LREs).

    METHODS: We analyzed data from 3004 individuals with biopsy-proven metabolic dysfunction-associated steatotic liver disease (MASLD) across 29 Chinese and 9 international cohorts to validate the acMASH index and develop the acFibroMASH index. Additionally, we utilized the independent external data from a multi-national cohort of 9034 patients with MASLD to examine associations between the acFibroMASH index and the risk of LREs.

    RESULTS: In the pooled global cohort, the acMASH index identified MASH with an area under the receiver operating characteristic curve (AUROC) of 0.802 (95% confidence interval [CI], 0.786-0.818). The acFibroMASH index (including the acMASH index plus liver stiffness measurement) accurately identified fibrotic MASH with an AUROC of 0.808 in the derivation cohort and 0.800 in the validation cohort. Notably, the AUROC for the acFibroMASH index was 0.835 (95% CI, 0.786-0.882), superior to that of the FAST score at 0.750 (95% CI, 0.693-0.800; P < .01) in predicting the 5-year risk of LREs. Patients with acFibroMASH >0.39 had a higher risk of LREs than those with acFibroMASH <0.15 (adjusted hazard ratio, 11.23; 95% CI, 3.98-31.66).

    CONCLUSIONS: This multi-ethnic study validates the acMASH index as a reliable, noninvasive test for identifying MASH. The newly proposed acFibroMASH index is a reliable test for identifying fibrotic MASH and predicting the risk of LREs.

  11. Romanello M, Walawender M, Hsu SC, Moskeland A, Palmeiro-Silva Y, Scamman D, et al.
    Lancet, 2024 Nov 09;404(10465):1847-1896.
    PMID: 39488222 DOI: 10.1016/S0140-6736(24)01822-1
    Despite the initial hope inspired by the 2015 Paris Agreement, the world is now dangerously close to breaching its target of limiting global multiyear mean heating to 1·5°C. Annual mean surface temperature reached a record high of 1·45°C above the pre-industrial baseline in 2023, and new temperature highs were recorded throughout 2024. The resulting climatic extremes are increasingly claiming lives and livelihoods worldwide. The Lancet Countdown: tracking progress on health and climate change was established the same year the Paris Agreement entered into force, to monitor the health impacts and opportunities of the world’s response to this landmark agreement. Supported through strategic core funding from Wellcome, the collaboration brings together over 300 multidisciplinary researchers and health professionals from around the world to take stock annually of the evolving links between health and climate change at global, regional, and national levels. The 2024 report of the Lancet Countdown, building on the expertise of 122 leading researchers from UN agencies and academic institutions worldwide, reveals the most concerning findings yet in the collaboration’s 8 years of monitoring.

    THE RECORD-BREAKING HUMAN COSTS OF CLIMATE CHANGE: Data in this year’s report show that people all around the world are facing record-breaking threats to their wellbeing, health, and survival from the rapidly changing climate. Of the 15 indicators monitoring climate change-related health hazards, exposures, and impacts, ten reached concerning new records in their most recent year of data. Heat-related mortality of people older than 65 years increased by a record-breaking 167%, compared with the 1990s, 102 percentage points higher than the 65% that would have been expected without temperature rise (indicator 1.1.5). Heat exposure is also increasingly affecting physical activity and sleep quality, in turn affecting physical and mental health. In 2023, heat exposure put people engaging in outdoor physical activity at risk of heat stress (moderate or higher) for a record high of 27·7% more hours than on average in the 1990s (indicator 1.1.2) and led to a record 6% more hours of sleep lost in 2023 than the average during 1986–2005 (indicator 1.1.4). People worldwide are also increasingly at risk from life-threatening extreme weather events. Between 1961–90 and 2014–23, 61% of the global land area saw an increase in the number of days of extreme precipitation (indicator 1.2.3), which in turn increases the risk of flooding, infectious disease spread, and water contamination. In parallel, 48% of the global land area was affected by at least 1 month of extreme drought in 2023, the second largest affected area since 1951 (indicator 1.2.2). The increase in drought and heatwave events since 1981–2010 was, in turn, associated with 151 million more people experiencing moderate or severe food insecurity across 124 countries assessed in 2022, the highest recorded value (indicator 1.4.2). The hotter and drier weather conditions are increasingly favouring the occurrence of sand and dust storms. This weather-environmental phenomenon contributed to a 31% increase in the number of people exposed to dangerously high particulate matter concentrations between 2003–07 and 2018–22 (indicator 1.2.4). Meanwhile, changing precipitation patterns and rising temperatures are favouring the transmission of deadly infectious diseases such as dengue, malaria, West Nile virus-related illness, and vibriosis, putting people at risk of transmission in previously unaffected locations (indicators 1.3.1–1.3.4). Compounding these impacts, climate change is affecting the social and economic conditions on which health and wellbeing depend. The average annual economic losses from weather-related extreme events increased by 23% from 2010–14 to 2019–23, to US$227 billion (a value exceeding the gross domestic product [GDP] of about 60% of the world’s economies; indicator 4.1.1). Although 60·5% of losses in very high Human Development Index (HDI) countries were covered by insurance, the vast majority of those in countries with lower HDI levels were uninsured, with local communities bearing the brunt of the physical and economic losses (indicator 4.1.1). Extreme weather and climate change-related health impacts are also affecting labour productivity, with heat exposure leading to a record high loss of 512 billion potential labour hours in 2023, worth $835 billion in potential income losses (indicators 1.1.3 and 4.1.3). Low and medium HDI countries were most affected by these losses, which amounted to 7·6% and 4·4% of their GDP, respectively (indicator 4.1.3). With the most underserved communities most affected, these economic impacts further reduce their capacity to cope with and recover from the growing impacts of climate change, thereby amplifying global inequities. Concerningly, multiple hazards revealed by individual indicators are likely to have simultaneous compounding and cascading impacts on the complex and inter-connected human systems that sustain good health, disproportionately threatening people’s health and survival with every fraction of a degree of increase in global mean temperature. Despite years of monitoring exposing the imminent health threats of climate inaction, the health risks people face have been exacerbated by years of delays in adaptation, which have left people ill-protected from the growing threats of climate change. Only 68% of countries reported high-to-very-high implementation of legally mandated health emergency management capacities in 2023, of which just 11% were low HDI countries (indicator 2.2.5). Moreover, only 35% of countries reported having health early warning systems for heat-related illness, whereas 10% did so for mental and psychosocial conditions (indicator 2.2.1). Scarcity of financial resources was identified as a key barrier to adaptation, including by 50% of the cities that reported they were not planning to undertake climate change and health risk assessments (indicator 2.1.3). Indeed, adaptation projects with potential health benefits represented just 27% of all the Green Climate Fund’s adaptation funding in 2023, despite a 137% increase since 2021 (indicator 2.2.4). With universal health coverage still unattained in most countries, financial support is needed to strengthen health systems and ensure that they can protect people from growing climate change-related health hazards. The unequal distribution of financial resources and technical capacity is leaving the most vulnerable populations further unprotected from the growing health risks.

    FUELLING THE FIRE: As well as exposing the inadequacy of adaptation efforts to date, this year’s report reveals a world veering away from the goal of limiting temperature rise to 1·5°C, with concerning new records broken across indicators monitoring greenhouse gas emissions and the conditions that enable them. Far from declining, global energy-related CO2 emissions reached an all-time high in 2023 (indicator 3.1.1). Oil and gas companies are reinforcing the global dependence on fossil fuels and—partly fuelled by the high energy prices and windfall profits of the global energy crisis—most are further expanding their fossil fuel production plans. As of March, 2024, the 114 largest oil and gas companies were on track to exceed emissions consistent with 1·5°C of heating by 189% in 2040, up from 173% 1 year before (indicator 4.2.2). As a result, their strategies are pushing the world further off track from meeting the goals of the Paris Agreement, further threatening people’s health and survival. Although renewable energy could provide power to remote locations, its adoption is lagging, particularly in the most vulnerable countries. The consequences of this delay reflect the human impacts of an unjust transition. Globally, 745 million people still lack access to electricity and are facing the harms of energy poverty on health and wellbeing. The burning of polluting biomass (eg, wood or dung) still accounts for 92% of the energy used in the home by people in low HDI countries (indicator 3.1.2), and only 2·3% of electricity in these countries comes from clean renewables, compared with 11·6% in very high HDI countries (indicators 3.1.1). This persistent burning of fossil fuel and biomass led to at least 3·33 million deaths from outdoor fine particulate matter (PM2·5) air pollution globally in 2021 alone (indicator 3.2.1), and the domestic use of dirty solid fuels caused 2·3 million deaths from indoor air pollution in 2020 across 65 countries analysed (indicator 3.2.2). Compounding the growth in energy-related greenhouse gas emissions, almost 182 million hectares of forests were lost between 2016 and 2022 (indicator 3.4), reducing the world’s natural capacity to capture atmospheric CO2. In parallel, the consumption of red meat and dairy products, which contributed to 11·2 million deaths attributable to unhealthy diets in 2021 (indicator 3.3.2), has led to a 2·9% increase in agricultural greenhouse gas emissions since 2016 (indicator 3.3.1). Health systems themselves, although essential to protect people’s health, are also increasingly contributing to the problem. Greenhouse gas emissions from health care have increased by 36% since 2016, making health systems increasingly unprepared to operate in a net zero emissions future and pushing health care further from its guiding principle of doing no harm (indicator 3.5). The growing accumulation of greenhouse gases in the atmosphere is pushing the world to a future of increasingly dangerous health hazards and reducing the chances of survival of vulnerable people all around the globe.

    HEALTH-THREATENING FINANCIAL FLOWS: With the availability of financial resources a key barrier to tackling climate change, a rapid growth in predictable and equitable investment is urgently needed to avoid the most dangerous impacts of climate change. A growing body of literature shows that the economic benefits of a transition to net zero greenhouse gas emissions will far exceed the costs of inaction. Healthier, more resilient populations will further support more prosperous and sustainable economies (indicators 4.1.2–4.1.4). However, although funding to enable potentially life-saving climate change adaptation and mitigation activities remains scarce, substantial financial resources are being allocated to activities that harm health and perpetuate a fossil fuel-based economy. The resulting reliance on fossil fuel energy has meant many countries faced sharp increases in energy prices following Russia’s invasion of Ukraine and the resulting disruption of fossil fuel supplies. To keep energy affordable to local populations, many governments resorted to increasing their explicit fossil fuel subsidies. Consequently, 84% of countries studied still operated net negative carbon prices (explicit net fossil fuel subsidies) in 2022, for a record high net total of $1·4 trillion (indicator 4.3.3), with the sums involved often comparable to countries’ total health budgets. In addition, although clean energy investment grew by 10% globally in 2023—exceeding fossil fuel investment by 73%—considerable regional disparities exist. Clean energy investment is 38% lower than fossil fuel spending in emerging market and developing economies outside China. Clean energy spending in these countries only accounted for 17·4% of the global total. Moreover, investment in energy efficiency and end use, essential for a just transition, decreased by 1·3% in 2023 (indicator 4.3.1). The resulting expansion of fossil fuel assets is increasingly jeopardising the economies on which people’s livelihoods depend. On the current trajectory, the world already faces potential global income losses ranging from 11% to 29% by 2050. The number of fossil fuel industry employees reached 11·8 million in 2022, increasing the size of a workforce whose employment cannot be sustained in a world that avoids the most catastrophic human impacts of climate change (indicator 4.2.1). Meanwhile, ongoing investments in coal power have pushed the value of coal-fired power generation assets that risk becoming stranded within 10 years (between 2025 and 2034) in a 1·5°C trajectory to a cumulative total of $164·5 billion—a value that will increase if coal investments persist (indicator 4.2.3). The prioritisation of fossil fuel-based systems means most countries remain ill-prepared for the vital transition to zero greenhouse gas emission economies. As a result of an unjust transition, the risk is unequally distributed: preparedness scores for the transition to a net zero greenhouse gas economy were below the global average in all countries with a low HDI, 96% of those with a medium HDI, and 84% of those with a high HDI, compared with just 7% of very high HDI countries (indicator 4.2.4).

    DEFINING THE HEALTH PROFILE OF PEOPLE WORLDWIDE: Following decades of delays in climate change action, avoiding the most severe health impacts of climate change now requires aligned, structural, and sustained changes across most human systems, including energy, transportation, agriculture, food, and health care. Importantly, a global transformation of financial systems is required, shifting resources away from the fossil fuel-based economy towards a zero emissions future. Putting people’s health at the centre of climate change policy making is key to ensuring this transition protects wellbeing, reduces health inequities, and maximises health gains. Some indicators reveal incipient progress and important opportunities for delivering this health-centred transformation. As of December, 2023, 50 countries reported having formally assessed their health vulnerabilities and adaptation needs, up from 11 the previous year, and the number of countries that reported having a Health National Adaptation Plan increased from four in 2022 to 43 in 2023 (indicators 2.1.1 and 2.1.2). Additionally, 70% of 279 public health education institutions worldwide reported providing education in climate and health in 2023, essential to build capacities for health professionals to help shape this transition (indicator 2.2.6). Regarding the energy sector, the global share of electricity from clean modern renewables reached a record high of 10·5% in 2021 (indicator 3.1.1); clean energy investment exceeded fossil fuel investment by 73% in 2023 (indicator 4.3.1); and renewable energy-related employment has grown 35·6% since 2016, providing healthier and more sustainable employment opportunities than those in the fossil fuel industry (indicator 4.2.1). Importantly, mostly as a result of coal phase-down in high and very high HDI countries, deaths attributable to outdoor PM2·5 from fossil fuel combustion decreased by 6·9% between 2016 and 2021 (indicator 3.2.1), showing the life-saving potential of coal phase-out. Important progress was made within international negotiations, which opened new opportunities to protect health in the face of climate change. After years of leadership from WHO on climate change and health, its Fourteenth General Programme of Work, adopted in May, 2024, made responding to climate change its first strategic priority. Within climate negotiations themselves, the 28th Conference of the Parties (COP28) of the United Nations Framework Convention on Climate Change (UNFCCC) featured the first health thematic day in 2023: 151 countries endorsed the COP28 United Arab Emirates Declaration on Climate and Health, and the Global Goal on Adaptation set a specific health target. The outcome of the first Global Stocktake of the Paris Agreement also recognised the right to health and a healthy environment, urging parties to take further health adaptation efforts, and opened a new opportunity for human survival, health, and wellbeing to be prioritised in the updated Nationally Determined Contributions (NDCs) due in 2025. The pending decision of how the Loss and Damage fund will be governed and the definition of the New Collective Quantified Goal on Climate Finance during COP29 provide further opportunities to secure the financial support crucial for a healthy net zero transition. Although still insufficient to protect people’s health from climate change, these emerging signs of progress help open new opportunities to deliver a healthy, prosperous future. However, much remains to be done.

    HANGING IN THE BALANCE: With climate change breaking dangerous new records and emissions persistently rising, preventing the most catastrophic consequences on human development, health, and survival now requires the support and will of all actors in society. However, data suggest that engagement with health and climate change could be declining across key sectors: the number of governments mentioning health and climate change in their annual UN General Debate statements fell from 50% in 2022 to 35% in 2023, and only 47% of the 58 NDCs updated as of February, 2024, referred to health (indicator 5.4.1). Media engagement also dropped, with the proportion of newspaper climate change articles mentioning health falling 10% between 2022 and 2023 (indicator 5.1). The powerful and trusted leadership of the health community could hold the key to reversing these concerning trends and making people’s wellbeing, health, and survival a central priority of political and financial agendas. The engagement of health professionals at all levels of climate change decision making will be pivotal in informing the redirection of efforts and financial resources away from activities that jeopardise people’s health towards supporting healthy populations, prosperous economies, and a safer future. As concerning records continue to be broken and people face unprecedented risks from climate change, the wellbeing, health, and survival of individuals in every country now hang in the balance.

  12. Wang A, Shen J, Rodriguez AA, Saunders EJ, Chen F, Janivara R, et al.
    Nat Genet, 2023 Dec;55(12):2065-2074.
    PMID: 37945903 DOI: 10.1038/s41588-023-01534-4
    The transferability and clinical value of genetic risk scores (GRSs) across populations remain limited due to an imbalance in genetic studies across ancestrally diverse populations. Here we conducted a multi-ancestry genome-wide association study of 156,319 prostate cancer cases and 788,443 controls of European, African, Asian and Hispanic men, reflecting a 57% increase in the number of non-European cases over previous prostate cancer genome-wide association studies. We identified 187 novel risk variants for prostate cancer, increasing the total number of risk variants to 451. An externally replicated multi-ancestry GRS was associated with risk that ranged from 1.8 (per standard deviation) in African ancestry men to 2.2 in European ancestry men. The GRS was associated with a greater risk of aggressive versus non-aggressive disease in men of African ancestry (P = 0.03). Our study presents novel prostate cancer susceptibility loci and a GRS with effective risk stratification across ancestry groups.
  13. Dadaev T, Saunders EJ, Newcombe PJ, Anokian E, Leongamornlert DA, Brook MN, et al.
    Nat Commun, 2018 06 11;9(1):2256.
    PMID: 29892050 DOI: 10.1038/s41467-018-04109-8
    Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling.
  14. Schumacher FR, Al Olama AA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, et al.
    Nat Genet, 2018 07;50(7):928-936.
    PMID: 29892016 DOI: 10.1038/s41588-018-0142-8
    Genome-wide association studies (GWAS) and fine-mapping efforts to date have identified more than 100 prostate cancer (PrCa)-susceptibility loci. We meta-analyzed genotype data from a custom high-density array of 46,939 PrCa cases and 27,910 controls of European ancestry with previously genotyped data of 32,255 PrCa cases and 33,202 controls of European ancestry. Our analysis identified 62 novel loci associated (P C, p.Pro1054Arg) in ATM and rs2066827 (OR = 1.06; P = 2.3 × 10-9; T>G, p.Val109Gly) in CDKN1B. The combination of all loci captured 28.4% of the PrCa familial relative risk, and a polygenic risk score conferred an elevated PrCa risk for men in the ninetieth to ninety-ninth percentiles (relative risk = 2.69; 95% confidence interval (CI): 2.55-2.82) and first percentile (relative risk = 5.71; 95% CI: 5.04-6.48) risk stratum compared with the population average. These findings improve risk prediction, enhance fine-mapping, and provide insight into the underlying biology of PrCa1.
  15. Schumacher FR, Olama AAA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, et al.
    Nat Genet, 2019 02;51(2):363.
    PMID: 30622367 DOI: 10.1038/s41588-018-0330-6
    In the version of this article initially published, the name of author Manuela Gago-Dominguez was misspelled as Manuela Gago Dominguez. The error has been corrected in the HTML and PDF version of the article.
  16. Breast Cancer Association Consortium, Dorling L, Carvalho S, Allen J, González-Neira A, Luccarini C, et al.
    N Engl J Med, 2021 02 04;384(5):428-439.
    PMID: 33471991 DOI: 10.1056/NEJMoa1913948
    BACKGROUND: Genetic testing for breast cancer susceptibility is widely used, but for many genes, evidence of an association with breast cancer is weak, underlying risk estimates are imprecise, and reliable subtype-specific risk estimates are lacking.

    METHODS: We used a panel of 34 putative susceptibility genes to perform sequencing on samples from 60,466 women with breast cancer and 53,461 controls. In separate analyses for protein-truncating variants and rare missense variants in these genes, we estimated odds ratios for breast cancer overall and tumor subtypes. We evaluated missense-variant associations according to domain and classification of pathogenicity.

    RESULTS: Protein-truncating variants in 5 genes (ATM, BRCA1, BRCA2, CHEK2, and PALB2) were associated with a risk of breast cancer overall with a P value of less than 0.0001. Protein-truncating variants in 4 other genes (BARD1, RAD51C, RAD51D, and TP53) were associated with a risk of breast cancer overall with a P value of less than 0.05 and a Bayesian false-discovery probability of less than 0.05. For protein-truncating variants in 19 of the remaining 25 genes, the upper limit of the 95% confidence interval of the odds ratio for breast cancer overall was less than 2.0. For protein-truncating variants in ATM and CHEK2, odds ratios were higher for estrogen receptor (ER)-positive disease than for ER-negative disease; for protein-truncating variants in BARD1, BRCA1, BRCA2, PALB2, RAD51C, and RAD51D, odds ratios were higher for ER-negative disease than for ER-positive disease. Rare missense variants (in aggregate) in ATM, CHEK2, and TP53 were associated with a risk of breast cancer overall with a P value of less than 0.001. For BRCA1, BRCA2, and TP53, missense variants (in aggregate) that would be classified as pathogenic according to standard criteria were associated with a risk of breast cancer overall, with the risk being similar to that of protein-truncating variants.

    CONCLUSIONS: The results of this study define the genes that are most clinically useful for inclusion on panels for the prediction of breast cancer risk, as well as provide estimates of the risks associated with protein-truncating variants, to guide genetic counseling. (Funded by European Union Horizon 2020 programs and others.).

  17. Ghoussaini M, Edwards SL, Michailidou K, Nord S, Cowper-Sal Lari R, Desai K, et al.
    Nat Commun, 2014 Sep 23;4:4999.
    PMID: 25248036 DOI: 10.1038/ncomms5999
    GWAS have identified a breast cancer susceptibility locus on 2q35. Here we report the fine mapping of this locus using data from 101,943 subjects from 50 case-control studies. We genotype 276 SNPs using the 'iCOGS' genotyping array and impute genotypes for a further 1,284 using 1000 Genomes Project data. All but two, strongly correlated SNPs (rs4442975 G/T and rs6721996 G/A) are excluded as candidate causal variants at odds against >100:1. The best functional candidate, rs4442975, is associated with oestrogen receptor positive (ER+) disease with an odds ratio (OR) in Europeans of 0.85 (95% confidence interval=0.84-0.87; P=1.7 × 10(-43)) per t-allele. This SNP flanks a transcriptional enhancer that physically interacts with the promoter of IGFBP5 (encoding insulin-like growth factor-binding protein 5) and displays allele-specific gene expression, FOXA1 binding and chromatin looping. Evidence suggests that the g-allele confers increased breast cancer susceptibility through relative downregulation of IGFBP5, a gene with known roles in breast cell biology.
  18. Orr N, Dudbridge F, Dryden N, Maguire S, Novo D, Perrakis E, et al.
    Hum Mol Genet, 2015 May 15;24(10):2966-84.
    PMID: 25652398 DOI: 10.1093/hmg/ddv035
    We recently identified a novel susceptibility variant, rs865686, for estrogen-receptor positive breast cancer at 9q31.2. Here, we report a fine-mapping analysis of the 9q31.2 susceptibility locus using 43 160 cases and 42 600 controls of European ancestry ascertained from 52 studies and a further 5795 cases and 6624 controls of Asian ancestry from nine studies. Single nucleotide polymorphism (SNP) rs676256 was most strongly associated with risk in Europeans (odds ratios [OR] = 0.90 [0.88-0.92]; P-value = 1.58 × 10(-25)). This SNP is one of a cluster of highly correlated variants, including rs865686, that spans ∼14.5 kb. We identified two additional independent association signals demarcated by SNPs rs10816625 (OR = 1.12 [1.08-1.17]; P-value = 7.89 × 10(-09)) and rs13294895 (OR = 1.09 [1.06-1.12]; P-value = 2.97 × 10(-11)). SNP rs10816625, but not rs13294895, was also associated with risk of breast cancer in Asian individuals (OR = 1.12 [1.06-1.18]; P-value = 2.77 × 10(-05)). Functional genomic annotation using data derived from breast cancer cell-line models indicates that these SNPs localise to putative enhancer elements that bind known drivers of hormone-dependent breast cancer, including ER-α, FOXA1 and GATA-3. In vitro analyses indicate that rs10816625 and rs13294895 have allele-specific effects on enhancer activity and suggest chromatin interactions with the KLF4 gene locus. These results demonstrate the power of dense genotyping in large studies to identify independent susceptibility variants. Analysis of associations using subjects with different ancestry, combined with bioinformatic and genomic characterisation, can provide strong evidence for the likely causative alleles and their functional basis.
  19. Michailidou K, Beesley J, Lindstrom S, Canisius S, Dennis J, Lush MJ, et al.
    Nat Genet, 2015 Apr;47(4):373-80.
    PMID: 25751625 DOI: 10.1038/ng.3242
    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to women of European ancestry. We generated genotypes for more than 11 million SNPs by imputation using the 1000 Genomes Project reference panel, and we identified 15 new loci associated with breast cancer at P < 5 × 10(-8). Combining association analysis with ChIP-seq chromatin binding data in mammary cell lines and ChIA-PET chromatin interaction data from ENCODE, we identified likely target genes in two regions: SETBP1 at 18q12.3 and RNF115 and PDZK1 at 1q21.1. One association appears to be driven by an amino acid substitution encoded in EXO1.
  20. Zhang H, Ahearn TU, Lecarpentier J, Barnes D, Beesley J, Qi G, et al.
    Nat Genet, 2020 06;52(6):572-581.
    PMID: 32424353 DOI: 10.1038/s41588-020-0609-2
    Breast cancer susceptibility variants frequently show heterogeneity in associations by tumor subtype1-3. To identify novel loci, we performed a genome-wide association study including 133,384 breast cancer cases and 113,789 controls, plus 18,908 BRCA1 mutation carriers (9,414 with breast cancer) of European ancestry, using both standard and novel methodologies that account for underlying tumor heterogeneity by estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 status and tumor grade. We identified 32 novel susceptibility loci (P 
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links