METHODS: A total of 69 ticks were collected from 27 domestic fowl (Gallus gallus domesticus), 2 jungle fowl (Gallus gallus) and 3 Siamese firebacks (Lophura diardi) at 10 locations (provinces) in Thailand. Ticks were identified and PCR was used to amplify Coxiella bacteria 16S rRNA, groEL and rpoB genes from the extracted tick DNA. MEGA6 was used to construct phylogenetic trees via a Maximum Likelihood method.
RESULTS: The phylogenetic analysis based on the 16S rRNA gene showed that the Coxiella sequences detected in this study grouped in the same clade with Coxiella sequences from the same tick genus (or species) reported previously. In contrast, rpoB gene of the Coxiella bacteria detected in this study did not cluster together with the same tick genus reported previously. Instead, they clustered by geographical distribution (Thai cluster and Malaysian cluster). In addition, phylogenetic analysis of the groEL gene (the chaperonin family) showed that all Coxiella bacteria found in this study were grouped in the same clade (three sister groups).
CONCLUSIONS: To our knowledge, we found for the first time rpoB genes of Coxiella-like bacteria in Haemaphysalis wellingtoni ticks forming two distinct clades by phylogenetic analysis. This may be indicative of a horizontal gene transfer event.
METHODS: Seven optrA-carrying E. faecalis obtained from chicken faeces (n=3, August 2017) and retail chicken meat (n=4, August 2017) in Tunisia were analysed. Antimicrobial susceptibility was determined by disc diffusion, broth microdilution and Etest against 13 antibiotics, linezolid and tedizolid, respectively (EUCAST/CLSI). optrA stability (∼600 bacterial generations), transfer (filter mating) and location (S1-PFGE/hybridization) were characterized. WGS (Illumina-HiSeq) was done for four representatives that were analysed through in silico and genomic mapping tools.
RESULTS: Four MDR clones carrying different virulence genes were identified in chicken faeces (ST476) and retail meat (the same ST476 clone plus ST21 and ST859) samples. MICs of linezolid and tedizolid were stably maintained at 8 and 1-2 mg/L, respectively. optrA was located in the same transferable chromosomal Tn6674-like element in ST476 and ST21 clones, similar to isolates from pigs in Malaysia and humans in China. ST859 carried a non-conjugative plasmid of ∼40 kb with an impB-fexA-optrA segment, similar to plasmids from pigs and humans in China.
CONCLUSIONS: The same chromosomal and transferable Tn6674-like element was identified in different E. faecalis clones from humans and animals. The finding of retail meat contaminated with the same linezolid-resistant E. faecalis strain obtained from a food-producing animal highlights the potential role of the food chain in the worrisome dissemination of optrA that can be stably maintained without selective pressure over generations.
METHODS: Poultry meat (breast, wing, thigh, and keel) as well as the contact surfaces of weighing scales and cutting boards were sampled to detect ESBL-EC by using culture and disk combination methods and polymerase chain reaction assays. Besides, questionnaire was used to obtain data and information pertaining to those operational practices that may possibly explain the occurrence of ESBL-EC. The data were analysed using logistic regression analysis at 95 % CI.
RESULTS: The overall prevalence of ESBL-EC was 48.8 % (95 % CI, 42 - 55 %). Among the risk factors that were explored, type of countertop, sanitation of the stall environment, source of cleaning water, and type of cutting board were found to be significantly associated with the presence of ESBL-EC.
CONCLUSIONS: Thus, in order to prevent or reduce the presence of ESBL-EC and other contaminants at the retail-outlet, there is a need to design a process control system based on the current prevailing practices in order to reduce cross contamination, as well as to improve food safety and consumer health.