Displaying publications 521 - 540 of 1878 in total

Abstract:
Sort:
  1. Kazim AR, Nasir DM, Tan TK, Yin VW, Noh AAM, Heo CC, et al.
    Acta Trop, 2025 Jan;261:107496.
    PMID: 39667694 DOI: 10.1016/j.actatropica.2024.107496
    Nymphal and larval Amblyomma cordiferum ticks, a relatively rare species, were collected from the Malaysian house rat (Rattus rattus diardii) in Peninsular Malaysia. Redescription and molecular analysis of nymphs and larvae, based on the 12S rRNA, 16S rRNA, and COI genes, revealed divergence from A. cordiferum in Taiwan, suggesting that the Taiwanese tick specimens may represent a different taxon. Molecular analysis of the pathogens in these specimens revealed three sequences of Rickettsia closely related or identical to Rickettsia raoultii (99.71-100%), two sequences of relapsing fever Borrelia identical to Borrelia theileri, and four sequences of Bartonella identical to Bartonella phoceensis. This study also identifies a new host record for A. cordiferum in R. r. diardii and reports the first detection of Rickettsia, Borrelia, and Bartonella in this tick species.
    Matched MeSH terms: Phylogeny*
  2. Sekizuka T, Kai M, Nakanaga K, Nakata N, Kazumi Y, Maeda S, et al.
    PLoS One, 2014;9(12):e114848.
    PMID: 25503461 DOI: 10.1371/journal.pone.0114848
    Mycobacterium abscessus group subsp., such as M. massiliense, M. abscessus sensu stricto and M. bolletii, are an environmental organism found in soil, water and other ecological niches, and have been isolated from respiratory tract infection, skin and soft tissue infection, postoperative infection of cosmetic surgery. To determine the unique genetic feature of M. massiliense, we sequenced the complete genome of M. massiliense type strain JCM 15300 (corresponding to CCUG 48898). Comparative genomic analysis was performed among Mycobacterium spp. and among M. abscessus group subspp., showing that additional ß-oxidation-related genes and, notably, the mammalian cell entry (mce) operon were located on a genomic island, M. massiliense Genomic Island 1 (MmGI-1), in M. massiliense. In addition, putative anaerobic respiration system-related genes and additional mycolic acid cyclopropane synthetase-related genes were found uniquely in M. massiliense. Japanese isolates of M. massiliense also frequently possess the MmGI-1 (14/44, approximately 32%) and three unique conserved regions (26/44; approximately 60%, 34/44; approximately 77% and 40/44; approximately 91%), as well as isolates of other countries (Malaysia, France, United Kingdom and United States). The well-conserved genomic island MmGI-1 may play an important role in high growth potential with additional lipid metabolism, extra factors for survival in the environment or synthesis of complex membrane-associated lipids. ORFs on MmGI-1 showed similarities to ORFs of phylogenetically distant M. avium complex (MAC), suggesting that horizontal gene transfer or genetic recombination events might have occurred within MmGI-1 among M. massiliense and MAC.
    Matched MeSH terms: Phylogeny
  3. Matsui M, Zainudin R, Nishikawa K
    Zoolog Sci, 2014 Nov;31(11):773-9.
    PMID: 25366161 DOI: 10.2108/zs140137
    A new megophryid species is described from southwestern Sarawak, Malaysian Borneo. In appearance, Leptolalax marmoratus sp. nov. is most similar to L. hamidi also from southwestern Sarawak, but differs from it by mtDNA sequence, larger body size, and higher dominant frequency of advertisement call. The assumption that more than one species of Leptolalax coexist at one locality in Borneo is supported. The finding of the new species raises the species number of Leptolalax known from Borneo to nine, and the island is thought to be one of the diversification centers of the genus.
    Matched MeSH terms: Phylogeny
  4. Gan HM, Tan MH, Lee YP, Austin CM
    PMID: 25329290 DOI: 10.3109/19401736.2014.974173
    The mitochondrial genome sequence of the Australian tadpole shrimp, Triops australiensis is presented (GenBank Accession Number: NC_024439) and compared with other Triops species. Triops australiensis has a mitochondrial genome of 15,125 base pairs consisting of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a non-coding AT-rich region. The T. australiensis mitogenome is composed of 36.4% A, 16.1% C, 12.3% G and 35.1% T. The mitogenome gene order conforms to the primitive arrangement for Branchiopod crustaceans, which is also conserved within the Pancrustacean.
    Matched MeSH terms: Phylogeny
  5. Che Lah EF, Yaakop S, Ahamad M, Md Nor S
    Zookeys, 2015.
    PMID: 25685009 DOI: 10.3897/zookeys.478.8037
    Blood meal analysis (BMA) from ticks allows for the identification of natural hosts of ticks (Acari: Ixodidae). The aim of this study is to identify the blood meal sources of field collected on-host ticks using PCR analysis. DNA of four genera of ticks was isolated and their cytochrome b (Cyt b) gene was amplified to identify host blood meals. A phylogenetic tree was constructed based on data of Cyt b sequences using Neighbor Joining (NJ) and Maximum Parsimony (MP) analysis using MEGA 5.05 for the clustering of hosts of tick species. Twenty out of 27 samples showed maximum similarity (99%) with GenBank sequences through a Basic Local Alignment Search Tool (BLAST) while 7 samples only showed a similarity range of between 91-98%. The phylogenetic trees showed that the blood meal samples were derived from small rodents (Leopoldamyssabanus, Rattustiomanicus and Sundamysmuelleri), shrews (Tupaiaglis) and mammals (Tapirusindicus and Prionailurusbengalensis), supported by 82-88% bootstrap values. In this study, Cyt b gene as a molecular target produced reliable results and was very significant for the effective identification of ticks' blood meal. The assay can be used as a tool for identifying unknown blood meals of field collected on-host ticks.
    Matched MeSH terms: Phylogeny
  6. Masstor NH, Samat A, Nor SM, Md-Zain BM
    Biomed Res Int, 2014;2014:213896.
    PMID: 25013766 DOI: 10.1155/2014/213896
    Chiloscyllium, commonly called bamboo shark, can be found inhabiting the waters of the Indo-West Pacific around East Asian countries such as Malaysia, Myanmar, Thailand, Singapore, and Indonesia. The International Union for Conservation of Nature (IUCN) Red List has categorized them as nearly threatened sharks out of their declining population status due to overexploitation. A molecular study was carried out to portray the systematic relationships within Chiloscyllium species using 12S rRNA and cytochrome b gene sequences. Maximum parsimony and Bayesian were used to reconstruct their phylogeny trees. A total of 381 bp sequences' lengths were successfully aligned in the 12S rRNA region, with 41 bp sites being parsimony-informative. In the cytochrome b region, a total of 1120 bp sites were aligned, with 352 parsimony-informative characters. All analyses yield phylogeny trees on which C. indicum has close relationships with C. plagiosum. C. punctatum is sister taxon to both C. indicum and C. plagiosum while C. griseum and C. hasseltii formed their own clade as sister taxa. These Chiloscyllium classifications can be supported by some morphological characters (lateral dermal ridges on the body, coloring patterns, and appearance of hypobranchials and basibranchial plate) that can clearly be used to differentiate each species.
    Matched MeSH terms: Phylogeny
  7. Mahmodi F, Kadir JB, Puteh A, Pourdad SS, Nasehi A, Soleimani N
    Plant Pathol J, 2014 Mar;30(1):10-24.
    PMID: 25288981 DOI: 10.5423/PPJ.OA.05.2013.0054
    Genetic diversity and differentiation of 50 Colletotrichum spp. isolates from legume crops studied through multigene loci, RAPD and ISSR analysis. DNA sequence comparisons by six genes (ITS, ACT, Tub2, CHS-1, GAPDH, and HIS3) verified species identity of C. truncatum, C. dematium and C. gloeosporiodes and identity C. capsici as a synonym of C. truncatum. Based on the matrix distance analysis of multigene sequences, the Colletotrichum species showed diverse degrees of intera and interspecific divergence (0.0 to 1.4%) and (15.5-19.9), respectively. A multilocus molecular phylogenetic analysis clustered Colletotrichum spp. isolates into 3 well-defined clades, representing three distinct species; C. truncatum, C. dematium and C. gloeosporioides. The ISSR and RAPD and cluster analysis exhibited a high degree of variability among different isolates and permitted the grouping of isolates of Colletotrichum spp. into three distinct clusters. Distinct populations of Colletotrichum spp. isolates were genetically in accordance with host specificity and inconsistent with geographical origins. The large population of C. truncatum showed greater amounts of genetic diversity than smaller populations of C. dematium and C. gloeosporioides species. Results of ISSR and RAPD markers were congruent, but the effective maker ratio and the number of private alleles were greater in ISSR markers.
    Matched MeSH terms: Phylogeny
  8. Ramaiya SD, Bujang JS, Zakaria MH
    ScientificWorldJournal, 2014;2014:598313.
    PMID: 25050402 DOI: 10.1155/2014/598313
    This study used morphological characterization and phylogenetic analysis of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA to investigate the phylogeny of Passiflora species. The samples were collected from various regions of East Malaysia, and discriminant function analysis based on linear combinations of morphological variables was used to classify the Passiflora species. The biplots generated five distinct groups discriminated by morphological variables. The group consisted of cultivars of P. edulis with high levels of genetic similarity; in contrast, P. foetida was highly divergent from other species in the morphological biplots. The final dataset of aligned sequences from nine studied Passiflora accessions and 30 other individuals obtained from GenBank database (NCBI) yielded one most parsimonious tree with two strongly supported clades. Maximum parsimony (MP) tree showed the phylogenetic relationships within this subgenus Passiflora support the classification at the series level. The constructed phylogenic tree also confirmed the divergence of P. foetida from all other species and the closeness of wild and cultivated species. The phylogenetic relationships were consistent with results of morphological assessments. The results of this study indicate that ITS region analysis represents a useful tool for evaluating genetic diversity in Passiflora at the species level.
    Matched MeSH terms: Phylogeny
  9. Choo SW, Heydari H, Tan TK, Siow CC, Beh CY, Wee WY, et al.
    ScientificWorldJournal, 2014;2014:569324.
    PMID: 25243218 DOI: 10.1155/2014/569324
    To facilitate the ongoing research of Vibrio spp., a dedicated platform for the Vibrio research community is needed to host the fast-growing amount of genomic data and facilitate the analysis of these data. We present VibrioBase, a useful resource platform, providing all basic features of a sequence database with the addition of unique analysis tools which could be valuable for the Vibrio research community. VibrioBase currently houses a total of 252 Vibrio genomes developed in a user-friendly manner and useful to enable the analysis of these genomic data, particularly in the field of comparative genomics. Besides general data browsing features, VibrioBase offers analysis tools such as BLAST interfaces and JBrowse genome browser. Other important features of this platform include our newly developed in-house tools, the pairwise genome comparison (PGC) tool, and pathogenomics profiling tool (PathoProT). The PGC tool is useful in the identification and comparative analysis of two genomes, whereas PathoProT is designed for comparative pathogenomics analysis of Vibrio strains. Both of these tools will enable researchers with little experience in bioinformatics to get meaningful information from Vibrio genomes with ease. We have tested the validity and suitability of these tools and features for use in the next-generation database development.
    Matched MeSH terms: Phylogeny
  10. Grismer LL, Quah ES, Anuar M S S, Muin MA, Wood PL, Nor SA
    Zootaxa, 2014.
    PMID: 24943599 DOI: 10.11646/zootaxa.3815.1.3
    A newly discovered, diminutive, cave-dwelling, lowland species of the colubrid snake genus Lycodon Boie is described from a limestone cave along the Thai-Malaysian border in the state of Perlis, northwestern Peninsular Malaysia. Lycodon cavernicolus sp. nov. is most closely related to L. butleri Boulenger, an endemic, upland, forest-dwelling species from Peninsular Malaysia of the fasciatus group but is separated from L. butleri and all other species of the L. fasciatus group and the closely related L. ruhstrati group by having the combination of 245 (male) and 232 (female) ventral scales; 113 (male) and 92 (female) paired, subcaudal scales; a single precloacal plate; nine or 10 supralabials; 10 or 11 infralabials; a maximum total length of 508 mm (female); a relative tail length of 0.25-0.27; an immaculate venter in juveniles and dark-brown, posterior, ventral scale margins in adults; and dorsal and caudal bands in juveniles white. The discovery of L. cavernicolus sp. nov. adds to a rapidly growing list of newly discovered reptiles from karst regions and limestone forests of Peninsular Malaysia, underscoring the fact that these areas should be studied before they are quarried as they harbor a significant portion of the Peninsular Malaysia's herpetological diversity.
    Matched MeSH terms: Phylogeny
  11. Zawani MK, Abu HA, Sazaly AB, Zary SY, Darlina MN
    Genet. Mol. Res., 2014;13(4):8184-96.
    PMID: 25299203 DOI: 10.4238/2014.October.7.13
    The mosquito Aedes albopictus is indigenous to Southeast Asian and is a vector for arbovirus diseases. Studies examining the population genetics structure of A. albopictus have been conducted worldwide; however, there are no documented reports on the population genetic structure of A. albopictus in Malaysia, particularly in Penang. We examined the population genetics of A. albopictus based on a 445-base pair segment of the mitochondrial DNA cytochrome oxidase 1 gene among 77 individuals from 9 localities representing 4 regions (Seberang Perai Utara, Seberang Perai Tengah, Northeast, and Southwest) of Penang. A total of 37 haplotypes were detected, including 28 unique haplotypes. The other 9 haplotypes were shared among various populations. These shared haplotypes reflect the weak population genetic structure of A. albopictus. The phylogenetic tree showed a low bootstrap value with no genetic structure, which was supported by minimum spanning network analysis. Analysis of mismatch distribution showed poor fit of equilibrium distribution. The genetic distance showed low genetic variation, while pairwise FST values showed no significant difference between all regions in Penang except for some localities. High haplotype diversity and low nucleotide diversity was observed for cytochrome oxidase 1 mtDNA. We conclude that there is no population genetic structure of A. albopictus mosquitoes in the Penang area.
    Matched MeSH terms: Phylogeny
  12. Adibah AB, Darlina MN
    Genet. Mol. Res., 2014;13(4):8094-104.
    PMID: 25299194 DOI: 10.4238/2014.October.7.4
    For centuries, morphology-based fish identification has been applied without molecular evaluation. Many studies showed that specimens with a similar morphology are frequently found to be quite genetically distinct. One of the fish species that still remains taxonomically problematic is a commercial snapper species, Lutjanus johnii. Because of morphological ambiguities among local fish taxonomists in Malaysia, we examined the ability of the cytochrome oxidase I (COI) gene to genetically examine the taxonomic status of L. johnii. A 626-base pair COI region was successfully amplified and aligned with conspecific sequences that were retrieved from GenBank. The phylogenetic tree obtained showed two major clusters; the first cluster consists of L. johnii from Straits of Malacca, Thailand, Australia, and China while the second cluster comprises L. johnii from China and India. The latter group showed sequence divergence greater than 3.5%. After observing this, we suspected that there might be a cryptic species between the South China Sea and Indian Ocean. This is the first molecular report concerning the commercial species of snapper, L. johnii, in Malaysia, which had only gained provisional recognition from morphological examination.
    Matched MeSH terms: Phylogeny
  13. Das I, Min PY, Hsu WW, Hertwig ST, Haas A
    Zootaxa, 2014;3785:550-60.
    PMID: 24872245 DOI: 10.11646/zootaxa.3785.4.4
    A new brightly-coloured (olive and red) species of microhylid frog of the genus Calluella Stoliczka 1872 is described from the upper elevations of Gunung Penrissen and the Matang Range, Sarawak, East Malaysia (Borneo). Calluella capsa, new species, is diagnosable in showing the following combination of characters: SVL up to 36.0 mm; dorsum weakly granular; a faint dermal fold across forehead; toe tips obtuse; webbing on toes basal; lateral fringes on toes present; outer metatarsal tubercle present; and dorsum greyish-olive, with red spots; half of venter bright red, the rest with large white and dark areas. The new species is the eighth species of Calluella to be described, and the fourth known from Borneo. A preliminary phylogeny of Calluella and its relatives is presented, and the new taxon compared with congeners from Malaysia and other parts of south-east Asia. 
    Matched MeSH terms: Phylogeny
  14. Ng PK, Lim PE, Phang SM
    PLoS One, 2014;9(5):e97450.
    PMID: 24820330 DOI: 10.1371/journal.pone.0097450
    Congracilaria babae was first reported as a red alga parasitic on the thallus of Gracilaria salicornia based on Japanese materials. It was circumscribed to have deep spermatangial cavities, coloration similar to its host and the absence of rhizoids. We observed a parasitic red alga with morphological and anatomical features suggestive of C. babae on a Hydropuntia species collected from Sabah, East Malaysia. We addressed the taxonomic affinities of the parasite growing on Hydropuntia sp. based on the DNA sequence of molecular markers from the nuclear, mitochondrial and plastid genomes (nuclear ITS region, mitochondrial cox1 gene and plastid rbcL gene). Phylogenetic analyses based on all genetic markers also implied the monophyly of the parasite from Hydropuntia sp. and C. babae, suggesting their conspecificity. The parasite from Hydropuntia sp. has a DNA signature characteristic to C. babae in having plastid rbcL gene sequence identical to G. salicornia. C. babae is likely to have evolved directly from G. salicornia and subsequently radiated onto a secondary host Hydropuntia sp. We also recommend the transfer of C. babae to the genus Gracilaria and propose a new combination, G. babae, based on the anatomical observations and molecular data.
    Matched MeSH terms: Phylogeny
  15. Grismer LL, Wood PL, Cota M
    Zootaxa, 2014;3760:67-78.
    PMID: 24870072 DOI: 10.11646/zootaxa.3760.1.4
    A new species of gekkonid, Hemiphyllodactylus chiangmaiensis sp. nov., from northwestern Thailand is separated from all other species of Hemiphyllodactylus by a set of features including: a maximum SVL of 41.2 mm; 8-12 chin scales extending transversely from unions of second and third infralabials and posterior margin of mental; lamellar formula on hand 3-3-3-3 or 3-4-3-3; lamellar formula on foot 3-3-3-3 or 3-4-4-4; continuous precloacal and femoral pores; a unique dorsal color pattern; and caecum and oviducts pigmented. These characters place this species in the speciose H. typus group. Hemiphyllodactylus chiangmaiensis sp. nov. fills a biogeographical hiatus in the distribution of this genus across northern Indochina.
    Matched MeSH terms: Phylogeny
  16. Chan KO, Wood PL, Anuar S, Muin MA, Quah ES, Sumarli AX
    Zootaxa, 2014;3764:427-40.
    PMID: 24870645 DOI: 10.11646/zootaxa.3764.4.3
    A new species of Ansonia is described based on genetic and morphological differentiation. Ansonia lumut sp. nov. is most closely related to three other Peninsular Malaysian species, A. penangensis, A. malayana, and A. jeetsukumarani but differs from these and other congeners by at least 6.9% sequence divergence at the 12S, 16S rRNA and t-RNA-val genes and the following combination of morphological characters: (1) SVL 21.0-23.6 mm in males, 27.7-31.6 mm in females; (2) first finger shorter than second; (3) interorbital and tarsal ridges absent; (4) light interscapular spot absent; (5) presence of large, yellow rictal tubercle; (6) dorsum black with greenish-yellow reticulations; (7) flanks with small yellow spots; (8) fore and hind limbs with yellow cross-bars; and (9) venter light gray with fine, white spotting.
    Matched MeSH terms: Phylogeny
  17. Karimi E, Jaafar HZ, Aziz MA, Taheri S, AzadiGonbad R
    Genet. Mol. Res., 2014;13(2):3301-9.
    PMID: 24841662 DOI: 10.4238/2014.April.29.8
    The genus Labisia (Myrsinaceae) is a popular medicinal plant in Malaysia. We examined the genetic relationship among three varieties of L. pumila var. pumila, L. pumila var. alata, L. pumila var. lanceolata and Labisia paucifolia using an ISSR assay. Fifty-eight primers were tested, among which 18 gave reliable polymorphic banding patterns; these yielded 264 polymorphic markers. A similarity matrix was used to construct a dendrogram, and a principal component plot was developed to examine genetic relationships among varieties. Jaccard's similarity coefficient among species ranged from 0.09 to 0.14. At a similarity of 0.117%, species were divided into two main clusters. The mean value of the observed number of alleles, the effective number of alleles, mean Nei's gene diversity, and Shannon's information index were 1.98, 1.64, 0.38, and 0.57, respectively.
    Matched MeSH terms: Phylogeny
  18. Wilson JJ, Sing KW, Halim MR, Ramli R, Hashim R, Sofian-Azirun M
    Genet. Mol. Res., 2014;13(1):920-5.
    PMID: 24634112 DOI: 10.4238/2014.February.19.2
    Bats are important flagship species for biodiversity research; however, diversity in Southeast Asia is considerably underestimated in the current checklists and field guides. Incorporation of DNA barcoding into surveys has revealed numerous species-level taxa overlooked by conventional methods. Inclusion of these taxa in inventories provides a more informative record of diversity, but is problematic as these species lack formal description. We investigated how frequently documented, but undescribed, bat taxa are encountered in Peninsular Malaysia. We discuss whether a barcode library provides a means of recognizing and recording these taxa across biodiversity inventories. Tissue was sampled from bats trapped at Pasir Raja, Dungun Terengganu, Peninsular Malaysia. The DNA was extracted and the COI barcode region amplified and sequenced. We identified 9 species-level taxa within our samples, based on analysis of the DNA barcodes. Six specimens matched to four previously documented taxa considered candidate species but currently lacking formal taxonomic status. This study confirms the high diversity of bats within Peninsular Malaysia (9 species in 13 samples) and demonstrates how DNA barcoding allows for inventory and documentation of known taxa lacking formal taxonomic status.
    Matched MeSH terms: Phylogeny
  19. Abdul-Latiff MA, Ruslin F, Fui VV, Abu MH, Rovie-Ryan JJ, Abdul-Patah P, et al.
    Zookeys, 2014.
    PMID: 24899832 DOI: 10.3897/zookeys.407.6982
    Phylogenetic relationships among Malaysia's long-tailed macaques have yet to be established, despite abundant genetic studies of the species worldwide. The aims of this study are to examine the phylogenetic relationships of Macaca fascicularis in Malaysia and to test its classification as a morphological subspecies. A total of 25 genetic samples of M. fascicularis yielding 383 bp of Cytochrome b (Cyt b) sequences were used in phylogenetic analysis along with one sample each of M. nemestrina and M. arctoides used as outgroups. Sequence character analysis reveals that Cyt b locus is a highly conserved region with only 23% parsimony informative character detected among ingroups. Further analysis indicates a clear separation between populations originating from different regions; the Malay Peninsula versus Borneo Insular, the East Coast versus West Coast of the Malay Peninsula, and the island versus mainland Malay Peninsula populations. Phylogenetic trees (NJ, MP and Bayesian) portray a consistent clustering paradigm as Borneo's population was distinguished from Peninsula's population (99% and 100% bootstrap value in NJ and MP respectively and 1.00 posterior probability in Bayesian trees). The East coast population was separated from other Peninsula populations (64% in NJ, 66% in MP and 0.53 posterior probability in Bayesian). West coast populations were divided into 2 clades: the North-South (47%/54% in NJ, 26/26% in MP and 1.00/0.80 posterior probability in Bayesian) and Island-Mainland (93% in NJ, 90% in MP and 1.00 posterior probability in Bayesian). The results confirm the previous morphological assignment of 2 subspecies, M. f. fascicularis and M. f. argentimembris, in the Malay Peninsula. These populations should be treated as separate genetic entities in order to conserve the genetic diversity of Malaysia's M. fascicularis. These findings are crucial in aiding the conservation management and translocation process of M. fascicularis populations in Malaysia.
    Matched MeSH terms: Phylogeny
  20. Ord TJ, Klomp DA
    Oecologia, 2014 Jun;175(2):651-66.
    PMID: 24658764
    Sympatric species that initially overlap in resource use are expected to partition the environment in ways that will minimize interspecific competition. This shift in resource use can in turn prompt evolutionary changes in morphology. A classic example of habitat partitioning and morphological differentiation are the Caribbean Anolis lizards. Less well studied, but nevertheless striking analogues to the Anolis are the Southeast Asian Draco lizards. Draco and Anolis have evolved independently of each other for at least 80 million years. Their comparison subsequently offers a special opportunity to examine mechanisms of phenotypic differentiation between two ecologically diverse, but phylogenetically distinct groups. We tested whether Draco shared ecological axes of differentiation with Anolis (e.g., habitat use), whether this differentiation reflected interspecific competition, and to what extent adaptive change in morphology has occurred along these ecological axes. Using existing data on Anolis, we compared the habitat use and morphology of Draco in a field study of allopatric and sympatric species on the Malay Peninsula, Borneo and in the Philippines. Sympatric Draco lizards partitioned the environment along common resource axes to the Anolis lizards, especially in perch use. Furthermore, the morphology of Draco was correlated with perch use in the same way as it was in Anolis: species that used wider perches exhibited longer limb lengths. These results provide an important illustration of how interspecific competition can occur along common ecological axes in different animal groups, and how natural selection along these axes can generate the same type of adaptive change in morphology.
    Matched MeSH terms: Phylogeny
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links