Displaying publications 541 - 560 of 831 in total

Abstract:
Sort:
  1. Wong CY, Cheong SK, Mok PL, Leong CF
    Pathology, 2008 Jan;40(1):52-7.
    PMID: 18038316
    AIMS: Adult human bone marrow contains a population of mesenchymal stem cells (MSC) that contributes to the regeneration of tissues such as bone, cartilage, muscle, tendon, and fat. In recent years, it has been shown that functional stem cells exist in the adult bone marrow, and they can contribute to renal remodelling or reconstitution of injured renal glomeruli, especially mesangial cells. The purpose of this study is to examine the ability of MSC isolated from human bone marrow to differentiate into mesangial cells in glomerular injured athymic mice.

    METHODS: MSC were isolated from human bone marrow mononuclear cells based on plastic adherent properties and expanded in vitro in the culture medium. Human mesenchymal stem cells (hMSC) were characterised using microscopy, immunophenotyping, and their ability to differentiate into adipocytes, chondrocytes, and osteocytes. hMSC were then injected into athymic mice, which had induced glomerulonephropathy (GN).

    RESULTS: Test mice (induced GN and infused hMSC) were shown to have anti-human CD105(+) cells present in the kidneys and were also positive to anti-human desmin, a marker for mesangial cells. Furthermore, immunofluorescence assays also demonstrated that anti-human desmin(+) cells in the glomeruli of these test mice were in the proliferation stage, being positive to anti-human Ki-67.

    CONCLUSIONS: These findings indicate that hMSC found in renal glomeruli differentiated into mesangial cells in vivo after glomerular injury occurred.

    Matched MeSH terms: Disease Models, Animal
  2. Lau YS, Ling WC, Murugan D, Mustafa MR
    J Cardiovasc Pharmacol, 2015 Jun;65(6):522-31.
    PMID: 25469805 DOI: 10.1097/FJC.0000000000000185
    Epidemiological and clinical studies have demonstrated that a growing list of natural products, as components of the daily diet or phytomedical preparations, are a rich source of antioxidants. Boldine [(S)-2,9-dihydroxy-1,10-dimethoxy-aporphine], an aporphine alkaloid, is a potent antioxidant found in the leaves and bark of the Chilean boldo tree. Boldine has been extensively reported as a potent "natural" antioxidant and possesses several health-promoting properties like anti-inflammatory, antitumor promoting, antidiabetic, and cytoprotective. Boldine exhibited significant endothelial protective effect in animal models of hypertension and diabetes mellitus. In isolated thoracic aorta of spontaneously hypertensive rats, streptozotocin-induced diabetic rats, and db/db mice, repeated treatment of boldine significantly improved the attenuated acetylcholine-induced endothelium-dependent relaxations. The endothelial protective role of boldine correlated with increased nitric oxide levels and reduction of vascular reactive oxygen species via inhibition of the nicotinamide adenine dinucleotide phosphate oxidase subunits, p47 and nicotinamide adenine dinucleotide phosphate oxidase 2, and angiotensin II-induced bone morphogenetic protein-4 oxidative stress cascade with downregulation of angiotensin II type 1 receptor and bone morphogenetic protein-4 expression. Taken together, it seems that boldine may exert protective effects on the endothelium via several mechanisms, including protecting nitric oxide from degradation by reactive oxygen species as in oxidative stress-related diseases. The present review supports a complimentary therapeutic role of the phytochemical, boldine, against endothelial dysfunctions associated with hypertension and diabetes mellitus by interfering with the oxidative stress-mediated signaling pathway.
    Matched MeSH terms: Disease Models, Animal
  3. Islam MT, Rahman MA, Saeed M, Ul-Haq Z, Alam MJ, Mondal M, et al.
    Cell Mol Biol (Noisy-le-grand), 2020 Jun 25;66(4):243-249.
    PMID: 32583783
    Phytol (PHY), a chlorophyll-derived diterpenoid, exhibits numerous pharmacological properties, including antioxidant, antimicrobial, and anticancer activities. This study evaluates the anti-diarrheal effect of phytol (PHY) along with its possible mechanism of action through in-vivo and in-silico models. The effect of PHY was investigated on castor oil-induced diarrhea in Swiss mice by using prazosin, propranolol, loperamide, and nifedipine as standards with or without PHY. PHY at 50 mg/kg (p.o.) and all other standards exhibit significant (p < 0.05) anti-diarrheal effect in mice. The effect was prominent in the loperamide and propranolol groups. PHY co-treated with prazosin and propranolol was found to increase in latent periods along with a significant reduction in diarrheal section during the observation period than other individual or combined groups. Furthermore, molecular docking studies also suggested that PHY showed better interactions with the α- and β-adrenergic receptors, especially with α-ADR1a and β-ADR1. In the former case, PHY showed interaction with hydroxyl group of Ser192 at a distance of 2.91Å, while in the latter it showed hydrogen bond interactions with Thr170 and Lys297 with a distance of 2.65 and 2.72Å, respectively. PHY exerted significant anti-diarrheal effect in Swiss mice, possibly through blocking α- and β-adrenergic receptors.
    Matched MeSH terms: Disease Models, Animal
  4. Hu T, Zheng Y, Zhang Y, Li G, Qiu W, Yu J, et al.
    BMC Microbiol, 2012;12:305.
    PMID: 23268691 DOI: 10.1186/1471-2180-12-305
    The identification of new virus strains is important for the study of infectious disease, but current (or existing) molecular biology methods are limited since the target sequence must be known to design genome-specific PCR primers. Thus, we developed a new method for the discovery of unknown viruses based on the cDNA--random amplified polymorphic DNA (cDNA-RAPD) technique. Getah virus, belonging to the family Togaviridae in the genus Alphavirus, is a mosquito-borne enveloped RNA virus that was identified using the Virus-Discovery-cDNA RAPD (VIDISCR) method.
    Matched MeSH terms: Disease Models, Animal
  5. Sundaram A, Siew Keah L, Sirajudeen KN, Singh HJ
    Hypertens Res, 2013 Mar;36(3):213-8.
    PMID: 23096233 DOI: 10.1038/hr.2012.163
    Although oxidative stress has been implicated in the pathogenesis of hypertension in spontaneously hypertensive rats (SHRs), there is little information on the levels of primary antioxidant enzymes status (AOEs) in pre-hypertensive SHR. This study therefore determined the activities of primary AOEs and their mRNA levels, levels of hydrogen peroxide (H2O2), malondialdehyde (MDA) and total antioxidant status (TAS) in whole kidneys of SHR and age-matched Wistar-Kyoto (WKY) rats aged between 2 and 16 weeks. Compared with age-matched WKY rats, catalase (CAT) activity was significantly higher from the age of 2 weeks (P<0.001) and glutathione peroxide (GPx) activity was lower from the age of 3 weeks (P<0.001) in SHR. CAT mRNA levels were significantly higher in SHR aged 2, 4, 6 and 12 weeks. GPx mRNA levels were significantly lower in SHR at 8 and 12 weeks. Superoxide dismutase activity or its mRNA levels were not different between the two strains. H2O2 levels were significantly lower in SHR from the age of 8 weeks (P<0.01). TAS was significantly higher in SHR from the age of 3 weeks (P<0.05). MDA levels were only significantly higher at 16 weeks of age in the SHR (P<0.05). The data suggest that altered renal CAT and GPx mRNA expression and activity precede the development of hypertension in SHR. The raised CAT activity perhaps contributes to the higher TAS and lower H2O2 levels in SHR. In view of these findings, the precise role of oxidative stress in the pathogenesis of hypertension in SHR needs to be investigated further.
    Matched MeSH terms: Disease Models, Animal
  6. Narasingam M, Pandy V, Mohamed Z
    Exp Anim, 2016 May 20;65(2):157-64.
    PMID: 26744024 DOI: 10.1538/expanim.15-0088
    The present study was designed to investigate the effect of a methanolic extract of Morinda citrifolia Linn. fruit (MMC) on the rewarding effect of heroin in the rat conditioned place preference (CPP) paradigm and naloxone-precipitated withdrawal in mice. In the first experiment, following a baseline preference test (preconditioning score), the rats were subjected to conditioning trials with five counterbalanced escalating doses of heroin versus saline followed by a preference test conducted under drug-free conditions (post-conditioning score) using the CPP test. Meanwhile, in the second experiment, withdrawal jumping was precipitated by naloxone administration after heroin dependence was induced by escalating doses for 6 days (3×/ day). The CPP test results revealed that acute administration of MMC (1, 3, and 5 g/kg body weight (bw), p.o.), 1 h prior to the CPP test on the 12th day significantly reversed the heroin-seeking behavior in a dose-dependent manner, which was similar to the results observed with a reference drug, methadone (3 mg/kg bw, p.o.). On the other hand, MMC (0.5, 1, and 3 g/kg bw, p.o.) did not attenuate the heroin withdrawal jumps precipitated by naloxone. These findings suggest that the mechanism by which MMC inhibits the rewarding effect of heroin is distinct from naloxone-precipitated heroin withdrawal.
    Matched MeSH terms: Models, Animal
  7. Zain MA, Rouhollahi E, Pandy V, Mani V, Majeed ABA, Wong WF, et al.
    Exp Anim, 2018 Nov 01;67(4):421-429.
    PMID: 29731492 DOI: 10.1538/expanim.18-0006
    Phencyclidine (PCP) has been used to model cognitive deficits related to schizophrenia in rats and mice. However, the model in mice is not consistent in terms of the PCP effective dose reported. Furthermore, most of the previous studies in mice excluded the presence of drug washout period in the regime. Thus, we aimed to optimize the dose of PCP in producing robust cognitive deficits by implementing it in a PCP regime which incorporates a drug washout period. The regimen used was 7 days' daily injection of PCP or saline for treatment and vehicle groups, respectively; followed by 24 h drug washout period. After the washout period, the test mice were tested in water maze (5 days of acquisition + 1 day of probe trial) for assessment of spatial learning and memory. Initially, we investigated the effect of PCP at 2mg/kg, however, no apparent impairment in spatial learning and memory was observed. Subsequently, we examined the effect of higher doses of PCP at 5, 10 and 20 mg/kg. We found that the PCP at 10 mg/kg produced a significant increase in "latency to reach the platform" during the acquisition days and a significant increase in "latency of first entry to previous platform" during the probe day. There was no significant change observed in "swim speed" during the test days. Thus, we concluded that PCP at 10 mg/kg produced robust deficits in spatial learning and memory without being confounded by motor disturbances.
    Matched MeSH terms: Disease Models, Animal
  8. Beatson SA, Ben Zakour NL, Totsika M, Forde BM, Watts RE, Mabbett AN, et al.
    Infect Immun, 2015 May;83(5):1749-64.
    PMID: 25667270 DOI: 10.1128/IAI.02810-14
    Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli responsible for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. To understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50-pheV has a mosaic structure and contains genes encoding a number of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50-pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50afa and VR50afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50afa and VR50afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50-pheV mutant. Our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder.
    Matched MeSH terms: Models, Animal
  9. Azad AK, Doolaanea AA, Al-Mahmood SMA, Kennedy JF, Chatterjee B, Bera H
    Int J Biol Macromol, 2021 Aug 31;185:861-875.
    PMID: 34237363 DOI: 10.1016/j.ijbiomac.2021.07.019
    Peppermint oil (PO) is the most prominent oil using in pharmaceutical formulations with its significant therapeutic value. In this sense, this oil is attracting considerable attention from the scientific community due to its traditional therapeutic claim, biological and pharmacological potential in recent research. An organic solvent-free and environment-friendly electrohydrodynamic assisted (EHDA) technique was employed to prepared PO-loaded alginate microbeads. The current study deals with the development, optimization, in vitro characterization, in vivo gastrointestinal tract drug distribution and ex-vivo mucoadhesive properties, antioxidant, and anti-inflammatory effects of PO-loaded alginate microbeads. The optimization results indicated the voltage and flow rate have a significant influence on microbeads size and sphericity factor and encapsulation efficiency. All these optimized microbeads showed a better drug release profile in simulated intestinal fluid (pH 6.8) at 2 h. However, a minor release was found in acidic media (pH 1.2) at 2 h. The optimized formulation showed excellent mucoadhesive properties in ex-vivo and good swelling characterization in intestine media. The microbeads were found to be well distributed in various parts of the intestine in in vivo study. PO-loaded alginate microbeads similarly showed potential antioxidant effects with drug release. The formulation exhibited possible improvement of irritable bowel syndrome (IBS) in MO-induced rats. It significantly suppressed proinflammatory cytokines, i.e., interleukin- IL-1β, and upregulated anti-inflammatory cytokine expression, i.e., IL-10. It would be a promising approach for targeted drug release after oral administration and could be considered an anti-inflammatory therapeutic strategy for treating IBS.
    Matched MeSH terms: Disease Models, Animal
  10. Shah SA, Sohail M, Minhas MU, Khan S, Hussain Z, Mahmood A, et al.
    Int J Biol Macromol, 2021 Aug 31;185:350-368.
    PMID: 34171251 DOI: 10.1016/j.ijbiomac.2021.06.119
    Injectable hydrogel with multifunctional tunable properties comprising biocompatibility, anti-oxidative, anti-bacterial, and/or anti-infection are highly preferred to efficiently promote diabetic wound repair and its development remains a challenge. In this study, we report hyaluronic acid and Pullulan-based injectable hydrogel loaded with curcumin that could potentiate reepithelization, increase angiogenesis, and collagen deposition at wound microenvironment to endorse healing cascade compared to other treatment groups. The physical interaction and self-assembly of hyaluronic acid-Pullulan-grafted-pluronic F127 injectable hydrogel were confirmed using nuclear magnetic resonance (1H NMR) and Fourier transformed infrared spectroscopy (FT-IR), and cytocompatibility was confirmed by fibroblast viability assay. The CUR-laden hyaluronic acid-Pullulan-g-F127 injectable hydrogel promptly undergoes a sol-gel transition and has proved to potentiate wound healing in a streptozotocin-induced diabetic rat model by promoting 93% of wound closure compared to other groups having 35%, 38%, and 62%. The comparative in vivo study and histological examination was conducted which demonstrated an expeditious recovery rate by significantly reducing the wound healing days i.e. 35 days in a control group, 33 days in the CUR suspension group, 21 days in unloaded injectable, and 13 days was observed in CUR loaded hydrogel group. Furthermore, we suggest that the injectable hydrogel laden with CUR showed a prompt wound healing potential by increasing the cell proliferation and serves as a drug delivery platform for sustained and targeted delivery of hydrophobic moieties.
    Matched MeSH terms: Disease Models, Animal
  11. Ortiz RH, Leon DA, Estevez HO, Martin A, Herrera JL, Romo LF, et al.
    Clin Exp Immunol, 2009 Aug;157(2):271-81.
    PMID: 19604267 DOI: 10.1111/j.1365-2249.2009.03941.x
    Buruli ulcer (BU) is the third most common mycobacterial disease in immunocompetent hosts. BU is caused by Mycobacterium ulcerans, which produces skin ulcers and necrosis at the site of infection. The principal virulence factor of M. ulcerans is a polyketide-derived macrolide named mycolactone, which has cytotoxic and immunosuppressive activities. We determined the severity of inflammation, histopathology and bacillary loads in the subcutaneous footpad tissue of BALB/c mice infected with 11 different M. ulcerans isolates from diverse geographical areas. Strains from Africa (Benin, Ghana, Ivory Coast) induced the highest inflammation, necrosis and bacillary loads, whereas the strains collected from Australia, Asia (Japan, Malaysia, New Guinea), Europe (France) and America (Mexico) induced mild inflammation. Subsequently, animals were infected with the strain that exhibited the highest (Benin) or lowest (Mexico) level of virulence in order to analyse the local immune response generated. The Mexican strain, which does not produce mycolactone, induced a predominantly T helper type 1 (Th1) cytokine profile with constant high expression of the anti-microbial peptides beta defensins 3 and 4, in co-existence with low expression of the anti-inflammatory cytokines interleukin (IL)-10, IL-4 and transforming growth factor (TGF)-beta. The highly virulent strain from Benin which produces mycolactone A/B induced the opposite pattern. Thus, different local immune responses were found depending on the infecting M. ulcerans strain.
    Matched MeSH terms: Models, Animal
  12. Guo W, Wu X, Li Y, Gao J, Wang F, Jin Y, et al.
    J Drug Target, 2020 01;28(1):41-45.
    PMID: 30943812 DOI: 10.1080/1061186X.2019.1601199
    Purpose: The present study evaluated biochemical as well as biophysical mechanisms behind the synergistic effects of curcumin and resveratrol during prostate carcinogenesis.Methods: The rats were segregated into five groups that included normal control, 3,2'-dimethyl-4-aminobiphenyl (DMAB)treated, DMAB + curcumin treated, DMAB + resveratrol-treated and DMAB + curcumin + resveratrol-treated.Results: The DMAB treatment resulted in a significant increase in the levels of lipid peroxidation (LPO) in DMAB treated rats. Also, significant changes were recorded in the enzyme activities of both drug metabolising enzyme and antioxidant enzymes after DMAB treatment. Further, radiorespirometric studies showed a significant increase in the 14C-glucose turnover as well as 14C-glucose uptake in the prostate slices of DMAB treated rats. Moreover, a significant rise in cell proliferation was confirmed indirectly by enhanced uptake of 3H-thymidine in the prostate slices of DMAB treated rats. Interestingly, combined treatment of curcumin and resveratrol to DMAB treated animals resulted in a significant decrease in lipid peroxidation, 14C glucose uptakes/turnover and 3H-thymidine uptake in the DMAB treated rats. Besides this, curcumin and resveratrol in combination significantly modulated biochemical indices including drug-metabolising enzymes; antioxidant enzymes in DMBA treated rats.Conclusion: The study, therefore, concludes that the combination of curcumin and resveratrol holds strong modulatory potential against prostate carcinogenesis.
    Matched MeSH terms: Disease Models, Animal
  13. Carvajal-Zarrabal O, Nolasco-Hipolito C, Aguilar-Uscanga MG, Melo-Santiesteban G, Hayward-Jones PM, Barradas-Dermitz DM
    Dis Markers, 2014;2014:386425.
    PMID: 24719499 DOI: 10.1155/2014/386425
    The purpose of this study was to evaluate the effects of avocado oil administration on biochemical markers of cardiovascular risk profile in rats with metabolic changes induced by sucrose ingestion. Twenty-five rats were divided into five groups: a control group (CG; basic diet), a sick group (MC; basic diet plus 30% sucrose solution), and three other groups (MCao, MCac, and MCas; basic diet plus 30% sucrose solution plus olive oil and avocado oil extracted by centrifugation or using solvent, resp.). Glucose, total cholesterol, triglycerides, phospholipids, low- and high-density lipoproteins (LDL, HDL), very low-density lipoprotein (VLDL), lactic dehydrogenase, creatine kinase, and high sensitivity C-reactive protein concentration were analyzed. Avocado oil reduces TG, VLDL, and LDL levels, in the LDL case significantly so, without affecting HDL levels. An effect was exhibited by avocado oil similar to olive oil, with no significant difference between avocado oil extracted either by centrifugation or solvent in myocardial injury biochemical indicators. Avocado oil decreased hs-CRP levels, indicating that inflammatory processes were partially reversed. These findings suggested that avocado oil supplementation has a positive health outcome because it reduces inflammatory events and produces positive changes in the biochemical indicators studied, related to the development of metabolic syndrome.
    Matched MeSH terms: Disease Models, Animal
  14. Sosroseno W, Herminajeng E
    J Med Microbiol, 2002 Jul;51(7):581-8.
    PMID: 12132775
    The aim of this study was to determine the role of macrophages in the Actinobacillus actinomycetemcomitans-induced murine immune response. BALB/c mice were given carrageenan solution by intraperitoneal injection before immunisation with heat-killed A. actinomycetemcomitans. Mice immunised with antigens and phosphate-buffered saline served as positive and negative controls, respectively. One week after the last immunisation, the delayed-type hypersensitivity (DTH) response was assessed by measurement of footpad swelling. Serum IgG and IgM anti-A. actinomycetemcomitans antibody levels and culture supernate levels of interferon (IFN)-gamma were determined by ELISA. The diameter of abscess formation was determined every 5 days. Sham-immunised spleen cells were transferred to carrageenan-untreated recipients (groups A and B) and to carrageenan-treated recipients (group D). Antigen-immunised spleen cells were transferred to carrageenan-untreated (group C) and carrageenan-treated (group E) recipients. The carrageenan-treated recipients in groups F and G received macrophages from antigen- and sham-immunised mice respectively. All mice except those in group A were immunised with antigen 24 h after cell transfer. After 1 week, a partial suppression of DTH response, reduced levels of IFN-gamma, serum IgG and IgM anti-A. actinomycetemcomitans antibodies and delayed healing were seen in carrageenan-treated mice when compared with the positive control. The immune response to A. actinomycetemcomitans in groups A, B and D was lower than that in groups C and E. Healing of the lesion in the former groups was also delayed when compared with the latter groups. The immune response and the healing of the lesion could be partially restored in carrageenan-treated mice that received antigen-pulsed macrophages (group F) but not in those that received naive macrophages (group G). These results suggest that macrophages play a partial role in the induction of the murine immune response to A. actinomycetemcomitans.
    Matched MeSH terms: Disease Models, Animal
  15. Nurul Aiezzah Z, Noor E, Hasidah MS
    Trop Biomed, 2010 Dec;27(3):624-31.
    PMID: 21399604 MyJurnal
    Malaria, caused by the Plasmodium parasite is still a health problem worldwide due to resistance of the pathogen to current anti-malarials. The search for new anti-malarial agents has become more crucial with the emergence of chloroquine-resistant Plasmodium falciparum strains. Protein kinases such as mitogen-activated protein kinase (MAPK), MAPK kinase, cyclin-dependent kinase (CDK) and glycogen synthase kinase- 3(GSK-3) of parasitic protozoa are potential drug targets. GSK-3 is an enzyme that plays a vital role in multiple cellular processes, and has been linked to pathogenesis of several diseases such as type II diabetes and Alzheimer's disease. In the present study, the antiplasmodial property of LiCl, a known GSK-3 inhibitor, was evaluated in vivo for its antimalarial effect against mice infected with Plasmodium berghei. Infected ICR mice were intraperitoneally administered with LiCl for four consecutive days before (prophylactic test) and after (suppressive test) inoculation of P. berghei-parasitised erythrocytes. Results from the suppressive test (post-infection LiCl treatment) showed inhibition of erythrocytic parasitemia development by 62.06%, 85.67% and 85.18% as compared to nontreated controls for the 100 mg/kg, 300 mg/kg and 600 mg/kg dosages respectively. Both 300 mg/kg and 600 mg/kg LiCl showed similar significant (P<0.05) suppressive values to that obtained with chloroquine-treated mice (86% suppression). The prophylactic test indicated a significantly (P<0.05) high protective effect on mice pre-treated with LiCl with suppression levels relatively comparable to chloroquine (84.07% and 86.26% suppression for the 300 mg/kg and 600 mg/kg LiCl dosages respectively versus 92.86% suppression by chloroquine). In both the suppressive and prophylactic tests, LiCl-treated animals survived longer than their non-treated counterparts. Mortality of the non-treated mice was 100% within 6 to 7 days of parasite inoculation whereas mice administered with LiCl survived beyond 9 days. Healthy non-infected mice administered with 600 mg/ kg LiCl for four consecutive days also showed decreased mortality compared to animals receiving lower doses of LiCl; three of the seven mice intraperitoneally injected with the former dose of LiCl did not survive more than 24 h after administration of LiCl whereas animals given the lower LiCl doses survived beyond four days of LiCl administration. To date, no direct evidence of anti-malarial activity in vivo or in vitro has been reported for LiCl. Evidence of anti-plasmodial activity of lithium in a mouse infection model is presented in this study.
    Matched MeSH terms: Disease Models, Animal
  16. Sahgal G, Ramanathan S, Sasidharan S, Mordi MN, Ismail S, Mansor SM
    Trop Biomed, 2011 Apr;28(1):132-7.
    PMID: 21602779 MyJurnal
    Swietenia mahogani crude methanolic (SMCM) seed extract was investigated for the antifungal activity against Candida albicans which has not been evaluated previously. The antifungal activity was evaluated against C. albicans via disk diffusion, minimum inhibition concentration (MIC), scanning electron microscope (SEM), transmission electron microscope (TEM) and time killing profile. The MIC value of SMCM seed extract is 12.5 mg/ml. The SEM and TEM findings showed there is morphological changes and cytological destruction of C. albicans at the MIC value. Animal model was used to evaluate the in vivo antifungal activity of SMCM seed extract. The colony forming unit (CFU) were calculated per gram of kidney sample and per ml of blood sample respectively for control, curative and ketaconazole treated groups. There was significant reduction for the CFU/ml of blood and CFU/g of kidney. This indicated that the extract was observed to be effective against C. albicans in vitro and in vivo conditions.
    Matched MeSH terms: Disease Models, Animal
  17. Ng JS, Chin KY
    Int J Med Sci, 2021;18(3):604-614.
    PMID: 33437195 DOI: 10.7150/ijms.50680
    Chronic psychological stress affects many body systems, including the skeleton, through various mechanisms. This review aims to provide an overview of the factors mediating the relationship between psychological stress and bone health. These factors can be divided into physiological and behavioural changes induced by psychological stress. The physiological factors involve endocrinological changes, such as increased glucocorticoids, prolactin, leptin and parathyroid hormone levels and reduced gonadal hormones. Low-grade inflammation and hyperactivation of the sympathetic nervous system during psychological stress are also physiological changes detrimental to bone health. The behavioural changes during mental stress, such as altered dietary pattern, cigarette smoking, alcoholism and physical inactivity, also threaten the skeletal system. Psychological stress may be partly responsible for epigenetic regulation of skeletal development. It may also mediate the relationship between socioeconomic status and bone health. However, more direct evidence is required to prove these hypotheses. In conclusion, chronic psychological stress should be recognised as a risk factor of osteoporosis and stress-coping methods should be incorporated as part of the comprehensive osteoporosis-preventing strategy.
    Matched MeSH terms: Models, Animal
  18. Thu HE, Zulfakar MH, Ng SF
    Int J Pharm, 2012 Sep 15;434(1-2):375-83.
    PMID: 22643226 DOI: 10.1016/j.ijpharm.2012.05.044
    The aims of this research were to develop a novel bilayer hydrocolloid film based on alginate and to investigate its potential as slow-release wound healing vehicle. The bilayer is composed of an upper layer impregnated with model drug (ibuprofen) and a drug-free lower layer, which acted as a rate-controlling membrane. The thickness uniformity, solvent loss, moisture vapour transmission rate (MVTR), hydration rate, morphology, rheology, mechanical properties, in vitro drug release and in vivo wound healing profiles were investigated. A smooth bilayer film with two homogenous distinct layers was produced. The characterisation results showed that bilayer has superior mechanical and rheological properties than the single layer films. The bilayers also showed low MVTR, slower hydration rate and lower drug flux in vitro compared to single layer inferring that bilayer may be useful for treating low suppurating wounds and suitable for slow release application on wound surfaces. The bilayers also provided a significant higher healing rate in vivo, with well-formed epidermis with faster granulation tissue formation when compared to the controls. In conclusions, a novel alginate-based bilayer hydrocolloid film was developed and results suggested that they can be exploited as slow-release wound dressings.
    Matched MeSH terms: Disease Models, Animal
  19. Hussain Z, Katas H, Mohd Amin MC, Kumolosasi E, Buang F, Sahudin S
    Int J Pharm, 2013 Feb 28;444(1-2):109-19.
    PMID: 23337632 DOI: 10.1016/j.ijpharm.2013.01.024
    In this study, hydroxytyrosol (HT; a potent antioxidant) was co-administered with hydrocortisone (HC) to mitigate the systemic adverse effects of the latter and to provide additional anti-inflammatory and antioxidant benefits in the treatment of atopic dermatitis (AD). The co-loaded nanoparticles (NPs) prepared had shown different particle sizes, zeta potentials, loading efficiencies, and morphology, when the pH of the chitosan solution was increased from 3.0 to 7.0. Ex vivo permeation data showed that the co-loaded NPs formulation significantly reduced the corresponding flux (17.04μg/cm(2)/h) and permeation coefficient (3.4×10(-3)cm/h) of HC across full-thickness NC/Nga mouse skin. In addition, the NPs formulation showed higher epidermal (1560±31μg/g of skin) and dermal (880±28μg/g of skin) accumulation of HC than did a commercial HC formulation. Moreover, an in vivo study using an NC/Nga mouse model revealed that compared to the other treatment groups, the group treated with the NPs formulation efficiently controlled transepidermal water loss (13±2g/m(2)/h), intensity of erythema (207±12), and dermatitis index (mild). In conclusion, NPs co-loaded with HC/HT is proposed as a promising system for the percutaneous co-delivery of anti-inflammatory and antioxidative agents in the treatment of AD.
    Matched MeSH terms: Disease Models, Animal
  20. Razali N, Agarwal R, Agarwal P, Kumar S, Tripathy M, Vasudevan S, et al.
    Clin Exp Ophthalmol, 2015 Jan-Feb;43(1):54-66.
    PMID: 24995479 DOI: 10.1111/ceo.12375
    BACKGROUND: Steroid-induced ocular hypertension is currently treated in the same way as primary open-angle glaucoma. However, the treatment is often suboptimal and is associated with adverse effects. We evaluated the oculohypotensive effects of topical trans-resveratrol in rats with steroid-induced ocular hypertension and involvement of adenosine receptors (AR) in intraocular pressure (IOP) lowering effect of trans-resveratrol.
    METHODS: The oculohypotensive effect of unilateral single-drop application of various concentrations of trans-resveratrol was first studied in oculonormotensive rats. Concentration with maximum effect was similarly studied in rats with steroid-induced ocular hypertension. Involvement of AR was studied by observing the alterations of IOP in response to trans-resveratrol after pretreating animals with AR subtype-specific antagonists. Additionally, we used computational methods, including 3D modelling, 3D structure generation and protein-ligand interaction, to determine the AR-trans-resveratrol interaction.
    RESULTS: All concentrations of trans-resveratrol produced significant IOP reduction in normotensive rat eyes. Maximum mean IOP reduction of 15.1% was achieved with trans-resveratrol 0.2%. In oculohypertensive rats, trans-resveratrol 0.2% produced peak IOP reduction of 25.2%. Pretreatment with A₁ antagonist abolished the oculohypotensive effect of trans-resveratrol. Pretreatment with A₃ and A₂A AR antagonists produced significant IOP reduction in both treated and control eyes, which was further augmented by trans-resveratrol application in treated eyes. Computational studies showed that trans-resveratrol has highest affinity for A₂B and A₁, followed by A2A and A₃ AR.
    CONCLUSION: Topically applied trans-resveratrol reduces IOP in rats with steroid-induced ocular hypertension. Trans-resveratrol-induced oculohypotension involves its agonistic activity at the A₁ AR.
    KEYWORDS: adenosine receptors; docking simulation; intraocular pressure; resveratrol; topical
    Matched MeSH terms: Disease Models, Animal
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links