Displaying publications 41 - 60 of 116 in total

Abstract:
Sort:
  1. Pramanik S, Hanif ASM, Pingguan-Murphy B, Abu Osman NA
    Materials (Basel), 2012 Dec 21;6(1):65-75.
    PMID: 28809294 DOI: 10.3390/ma6010065
    In this work, untreated bovine cortical bones (BCBs) were exposed to a range of heat treatments in order to determine at which temperature the apatite develops an optimum morphology comprising porous nano hydroxyapatite (nanoHAp) crystals. Rectangular specimens (10 mm × 10 mm × 3-5 mm) of BCB were prepared, being excised in normal to longitudinal and transverse directions. Specimens were sintered at up to 900 °C under ambient pressure in order to produce apatites by two steps sintering. The samples were characterized by thermogravimetric analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM) attached to an energy-dispersive X-ray spectroscopy detector. For the first time, morphology of the HAp particles was predicted by XRD, and it was verified by SEM. The results show that an equiaxed polycrystalline HAp particle with uniform porosity was produced at 900 °C. It indicates that a porous nanoHAp achieved by sintering at 900 °C can be an ideal candidate as an in situ scaffold for load-bearing tissue applications.
  2. Al-Fakih E, Arifin N, Pirouzi G, Mahamd Adikan FR, Shasmin HN, Abu Osman NA
    J Biomed Opt, 2017 Aug;22(8):1-8.
    PMID: 28822140 DOI: 10.1117/1.JBO.22.8.087001
    This paper presents a fiber Bragg grating (FBG)-instrumented prosthetic silicone liner that provides cushioning for the residual limb and can successfully measure interface pressures inside prosthetic sockets of lower-limb amputees in a simple and practical means of sensing. The liner is made of two silicone layers between which 12 FBG sensors were embedded at locations of clinical interest. The sensors were then calibrated using a custom calibration platform that mimics a real-life situation. Afterward, a custom gait simulating machine was built to test the liner performance during an amputee's simulated gait. To validate the findings, the results were compared to those obtained by the commonly used F-socket mats. As the statistical findings reveal, both pressure mapping methods measured the interface pressure in a consistent way, with no significant difference (P-values ≥0.05). This pressure mapping technique in the form of a prosthetic liner will allow prosthetics professionals to quickly and accurately create an overall picture of the interface pressure distribution inside sockets in research and clinical settings, thereby improving the socket fit and amputee's satisfaction.
  3. Jusman Y, Mat Isa NA, Ng SC, Hasikin K, Abu Osman NA
    J Biomed Opt, 2016 07 01;21(7):75005.
    PMID: 27403606 DOI: 10.1117/1.JBO.21.7.075005
    Fourier transform infrared (FTIR) spectroscopy technique can detect the abnormality of a cervical cell that occurs before the morphological change could be observed under the light microscope as employed in conventional techniques. This paper presents developed features extraction for an automated screening system for cervical precancerous cell based on the FTIR spectroscopy as a second opinion to pathologists. The automated system generally consists of the developed features extraction and classification stages. Signal processing techniques are used in the features extraction stage. Then, discriminant analysis and principal component analysis are employed to select dominant features for the classification process. The datasets of the cervical precancerous cells obtained from the feature selection process are classified using a hybrid multilayered perceptron network. The proposed system achieved 92% accuracy.
  4. Tripathy A, Pramanik S, Manna A, Bhuyan S, Azrin Shah NF, Radzi Z, et al.
    Sensors (Basel), 2016 Jul 21;16(7).
    PMID: 27455263 DOI: 10.3390/s16071135
    Despite the many attractive potential uses of ceramic materials as humidity sensors, some unavoidable drawbacks, including toxicity, poor biocompatibility, long response and recovery times, low sensitivity and high hysteresis have stymied the use of these materials in advanced applications. Therefore, in present investigation, we developed a capacitive humidity sensor using lead-free Ca,Mg,Fe,Ti-Oxide (CMFTO)-based electro-ceramics with perovskite structures synthesized by solid-state step-sintering. This technique helps maintain the submicron size porous morphology of the developed lead-free CMFTO electro-ceramics while providing enhanced water physisorption behaviour. In comparison with conventional capacitive humidity sensors, the presented CMFTO-based humidity sensor shows a high sensitivity of up to 3000% compared to other materials, even at lower signal frequency. The best also shows a rapid response (14.5 s) and recovery (34.27 s), and very low hysteresis (3.2%) in a 33%-95% relative humidity range which are much lower values than those of existing conventional sensors. Therefore, CMFTO nano-electro-ceramics appear to be very promising materials for fabricating high-performance capacitive humidity sensors.
  5. Khan SJ, Khan SS, Usman J, Mokhtar AH, Abu Osman NA
    Gait Posture, 2018 03;61:243-249.
    PMID: 29413792 DOI: 10.1016/j.gaitpost.2018.01.024
    OBJECTIVE: To test the hypothesis that toe-in gait (TI) will further reduce first peak (Knee Adduction Moment) KAM and decrease balance when combined with a knee brace (KB) and laterally wedged insoles (LWI) in medial knee osteoarthritis (kOA) patients.
    PARTICIPANTS: Twenty patients with bilateral symptomatic medial kOA.
    INTERVENTIONS: 4-point leverage-based KB, full-length LWI with 5° inclination and toe-in gait (TI).
    MAIN OUTCOME MEASURES: First and second peak knee adduction moment (fKAM and sKAM respectively), balance and pain.
    METHODS: The fKAM and sKAM were determined from 3-dimensional gait analysis with six randomized conditions: (1) N (without any intervention), (2) KB, (3) KB + TI, (4) LWI, (5) LWI + TI, (6) KB + LWI + TI. Balance was assessed by Biodex Balance System using three stability settings, (i) Static (ii) Moderate dynamic setting for fall risk (FR12) and (iii) High dynamic setting for fall risk (FR8).
    RESULTS: The reduction in fKAM and sKAM was greatest (19.75% and 12%) when TI was combined with KB and LWI respectively. No change in balance was observed when TI combined with KB, and LWI and when used concurrently with both the orthosis at static and FR12 conditions. Significant balance reduction was found at FR8 for KB + TI (22.22%), and KB + LWI + TI (35.71%). Pain increased significantly for KB (258%), KB + TI (305%), LWI + TI (210%) and KB + LWI + TI (316%). LWI showed no effect on pain.
    CONCLUSIONS: There is a synergistic effect of TI when combined with KB and LWI concurrently in sKAM reduction. However, the concurrent use of TI, KB and LWI decreases balance and pain as assessed on a highly dynamic platform.
    Study site: Department of Sports Medicine, University of Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
  6. Khan SJ, Khan SS, Usman J, Mokhtar AH, Abu Osman NA
    Proc Inst Mech Eng H, 2018 Feb;232(2):163-171.
    PMID: 29283019 DOI: 10.1177/0954411917750409
    This study aims to investigate the effects of varying toe angles at different platform settings on Overall Stability Index of postural stability and fall risk using Biodex Balance System in healthy participants and medial knee osteoarthritis patients. Biodex Balance System was employed to measure postural stability and fall risk at different foot progression angles (ranging from -20° to 40°, with 10° increments) on 20 healthy (control group) and 20 knee osteoarthritis patients (osteoarthritis group) randomly (age: 59.50 ± 7.33 years and 61.50 ± 8.63 years; body mass: 69.95 ± 9.86 kg and 70.45 ± 8.80 kg). Platform settings used were (1) static, (2) postural stability dynamic level 8 (PS8), (3) fall risk levels 12 to 8 (FR12) and (4) fall risk levels 8 to 2 (FR8). Data from the tests were analysed using three-way mixed repeated measures analysis of variance. The participant group, platform settings and toe angles all had a significant main effect on balance ( p ≤ 0.02). Platform settings had a significant interaction effect with participant group F(3, 144) = 6.97, p 
  7. Musa RM, Hassan I, Abdullah MR, Latiff Azmi MN, Abdul Majeed APP, Abu Osman NA
    Front Public Health, 2022;10:835119.
    PMID: 36033746 DOI: 10.3389/fpubh.2022.835119
    The non-complexity of tennis, coupled with its health benefits, renders it appealing and encourages varying competitions at different levels of age, gender, and expertise. However, the rapid increase in the participation rates witnesses a surge in injury occurrences, prompting the need for in-depth analysis to facilitate immediate intervention. We employed a media content analysis technique in which tennis-associated articles published in the last 5 years were examined. A total of 207 news reports were gathered and screened for analysis. Subsequently, 71 articles were excluded from the study due to content duplications or summary updates of existing news articles, while 23 news articles were also excluded from the study due to inappropriateness. Finally, 113 news reports directly related to injury in tennis were coded and analyzed. We examined various types of injuries reported from the screened articles with respect to their status (fresh, recurrent, and recovery) across expertise levels i.e., elite, or amateur. Similarly, the incidence of injury occurrences based on the types of tournaments the players engage in was also investigated. A chi-square analysis was employed to achieve the objectives of the study. Occurrences of tennis-associated injuries are disseminated across expertise levels [ χ ( 18 ) 2 = 16.542; p = 0.555], with knee, hip, elbow, and shoulder injuries being highly prevalent in both elite and amateur players. Nevertheless, it was noted that elite players suffered a staggering 72.60% of injury-related problems, while amateur players sustained 27.40% of injuries. Moreover, the status of injury spreads based on types of tournaments [ χ ( 4 ) 2 = 3.374; p = 0.497], with higher occurrences of fresh and recurrent injuries, while low recovery rates were observed. The findings further demonstrated that injuries are sustained regardless of tournament types [ χ ( 36 ) 2 = 39.393; p = 0.321]. However, most of the injuries occurred at international tournaments (85%). Whereas, only 5.30% of the injuries occurred at national/regional tournaments while 9.70% were unidentified. It could be deduced from the findings of this investigation that elite players are more prone to injuries compared with amateur players. Furthermore, the most common tennis-related injuries affect the lower, trunk, and upper regions of the body, respectively. A large number of the reported tennis injuries are fresh and recurrent, with a few recoveries. The international tennis tournaments are highly attributed to injury occurrences as opposed to the national/regional tournaments. The application of the media-based data mining technique is non-trivial in projecting injury-related problems that could be used to facilitate the development of an injury index peculiar to the tennis sport for prompt intervention.
  8. Malaheem MS, Abd Razak NA, Abu Osman NA
    Prosthet Orthot Int, 2023 Nov 29.
    PMID: 38018968 DOI: 10.1097/PXR.0000000000000309
    Prosthetic alignment is a highly subjective process that is still based on clinical judgments. Thus, researchers have aimed their effort to quantify prosthetic alignment by providing an objective method that can assist and guide prosthetists in achieving transtibial (TT) prosthetic alignment. This systematic review aimed to examine the current literature on TT prosthetic alignment to scope the qualitative and quantitative methods designed to guide prosthetists throughout the TT prosthetic alignment process as well as evaluate the reported instruments and devices that are used to align TT prostheses and their clinical feasibility. A literature search, completed in June 2022, was performed using the following databases: Web of Science (Clarivate), SCOPUS (Elsevier), and Pub Med (Medline) with searching terms focusing on TT, prosthesis, prosthetist, prosthetic alignment, and questionnaires, resulting in 2790 studies being screened. Twenty-four studies have used quantitative methodologies, where sensor technologies were found to be the most frequently proposed technology combined with gait analysis tools and/or subjective assessments. A qualitative method that assists prosthetists throughout the alignment process was not found. In this systematic review, we presented diverse methods for guiding and assisting clinical decision-making regarding TT prosthetic alignment. However, most of these methods considered varied parameters, and there is a need for elaboration toward standardized methods, which would improve the prosthetic alignment clinical outcome.
  9. Tham LK, Al Kouzbary M, Al Kouzbary H, Liu J, Abu Osman NA
    Phys Eng Sci Med, 2023 Dec;46(4):1723-1739.
    PMID: 37870729 DOI: 10.1007/s13246-023-01332-6
    Assessment of the prosthetic gait is an important clinical approach to evaluate the quality and functionality of the prescribed lower limb prosthesis as well as to monitor rehabilitation progresses following limb amputation. Limited access to quantitative assessment tools generally affects the repeatability and consistency of prosthetic gait assessments in clinical practice. The rapidly developing wearable technology industry provides an alternative to objectively quantify prosthetic gait in the unconstrained environment. This study employs a neural network-based model in estimating three-dimensional body segmental orientation of the lower limb amputees during gait. Using a wearable system with inertial sensors attached to the lower limb segments, thirteen individuals with lower limb amputation performed two-minute walk tests on a robotic foot and a passive foot. The proposed model replicates features of a complementary filter to estimate drift free three-dimensional orientation of the intact and prosthetic limbs. The results indicate minimal estimation biases and high correlation, validating the ability of the proposed model to reproduce the properties of a complementary filter while avoiding the drawbacks, most notably in the transverse plane due to gravitational acceleration and magnetic disturbance. Results of this study also demonstrates the capability of the well-trained model to accurately estimate segmental orientation, regardless of amputation level, in different types of locomotion task.
  10. Hashim NA, Abd Razak NA, Shanmuganathan T, Jaladin RA, Gholizadeh H, Abu Osman NA
    Eur J Phys Rehabil Med, 2022 Aug;58(4):612-620.
    PMID: 35044131 DOI: 10.23736/S1973-9087.22.06794-6
    INTRODUCTION: Virtual reality has recently become a popular application for rehabilitation and motor control research. This technology has emerged as a valid addition to conventional therapy and promises a successful rehabilitation. This study describes recent research related to the use of virtual reality applications in the rehabilitation of individuals with upper limb loss and to see whether this technology has enough proof of its applicability.

    EVIDENCE ACQUISITION: Searches were conducted with the Web of Science, Google Scholar, IEEE Xplore, and PubMed databases from inception up to September 2020. Articles that employed virtual reality in the rehabilitation of individual with upper limb loss were included in the research if it is written in English, the keyword exists in the title and abstract; it uses visual feedback in nonimmersive, semi-immersive, or fully immersive virtual environments. Data extraction was carried out by two independent researchers. The study was drafted using the Preferred Reporting Items for Systematic Reviews and Meta-analysis Protocols (PRISMA).

    EVIDENCE SYNTHESIS: A total of 38 articles met the inclusion criteria. Most studies were published between 2010 and 2020. Thirty-nine percent of the studies (N.=15), originates from North America; 55% of the studies (N.=21), were publicly funded; 61% of the studies (N.=24), was without disclosure of conflict of interest; 82% of the studies (N.=31), were cited in other studies. All the studies were published in journals and conference proceedings. Sixty-six percent of the studies (N.=25) has come out with positive outcome. The design studies were mostly case reports, case series, and poorly designed cohort studies that made up 55% (N.=21) of all the studies cited here.

    CONCLUSIONS: The research conducted on the use of virtual reality in individual with upper limb loss rehabilitation is of very low quality. The improvements to the research protocol are much needed. It is not necessary to develop new devices, but rather to assess existing devices with well-conducted randomized controlled trials.

  11. Ab Rasid AM, Muazu Musa R, Abdul Majeed APP, Musawi Maliki ABH, Abdullah MR, Mohd Razmaan MA, et al.
    PLoS One, 2024;19(2):e0296467.
    PMID: 38329954 DOI: 10.1371/journal.pone.0296467
    The identification and prediction of athletic talent are pivotal in the development of successful sporting careers. Traditional subjective assessment methods have proven unreliable due to their inherent subjectivity, prompting the rise of data-driven techniques favoured for their objectivity. This evolution in statistical analysis facilitates the extraction of pertinent athlete information, enabling the recognition of their potential for excellence in their respective sporting careers. In the current study, we applied a logistic regression-based machine learning pipeline (LR) to identify potential skateboarding athletes from a combination of fitness and motor skills performance variables. Forty-five skateboarders recruited from a variety of skateboarding parks were evaluated on various skateboarding tricks while their fitness and motor skills abilities that consist of stork stance test, dynamic balance, sit ups, plank test, standing broad jump, as well as vertical jump, were evaluated. The performances of the skateboarders were clustered and the LR model was developed to classify the classes of the skateboarders. The cluster analysis identified two groups of skateboarders: high and low potential skateboarders. The LR model achieved 90% of mean accuracy specifying excellent prediction of the skateboarder classes. Further sensitivity analysis revealed that static and dynamic balance, lower body strength, and endurance were the most important factors that contributed to the model's performance. These factors are therefore essential for successful performance in skateboarding. The application of machine learning in talent prediction can greatly assist coaches and other relevant stakeholders in making informed decisions regarding athlete performance.
  12. Tripathy A, Pramanik S, Manna A, Shasmin HN, Radzi Z, Abu Osman NA
    Sensors (Basel), 2016 Nov 30;16(12).
    PMID: 27916913
    Since humidity sensors have been widely used in many sectors, a suitable humidity sensing material with improved sensitivity, faster response and recovery times, better stability and low hysteresis is necessary to be developed. Here, we fabricate a uniformly porous humidity sensor using Ca, Ti substituted Mg ferrites with chemical formula of CaMgFe1.33Ti₃O12 as humidity sensing materials by solid-sate step-sintering technique. This synthesis technique is useful to control the grain size with increased porosity to enhance the hydrophilic characteristics of the CaMgFe1.33Ti₃O12 nanoceramic based sintered electro-ceramic nanocomposites. The highest porosity, lowest density and excellent surface-hydrophilicity properties were obtained at 1050 °C sintered ceramic. The performance of this impedance type humidity sensor was evaluated by electrical characterizations using alternating current (AC) in the 33%-95% relative humidity (RH) range at 25 °C. Compared with existing conventional resistive humidity sensors, the present sintered electro-ceramic nanocomposite based humidity sensor showed faster response time (20 s) and recovery time (40 s). This newly developed sensor showed extremely high sensitivity (%S) and small hysteresis of <3.4%. Long-term stability of the sensor had been determined by testing for 30 consecutive days. Therefore, the high performance sensing behavior of the present electro-ceramic nanocomposites would be suitable for a potential use in advanced humidity sensors.
  13. Ngah AH, Kamalrulzaman NI, Mohamad MFH, Abdul Rashid R, Harun NO, Ariffin NA, et al.
    Qual Quant, 2022 Aug 10.
    PMID: 35971418 DOI: 10.1007/s11135-022-01465-y
    Without proper preparation by higher institutions, the COVID-19 pandemic has forced the world to rely on online learning. Even students of social science and science are looking for different knowledge and skills. Currently, both groups rely on the same method to gather knowledge for future undertakings. Given the uncertainty regarding the resolution of COVID-19, which has driven students to continue using online learning, the current study aims to identify the factors of willingness to continue online learning among social science and pure science students by extending the use of expectation-confirmation theory. Applying a purposive sampling method, 2,215 questionnaires were collected among undergraduate students from Universiti Malaysia Terengganu (UMT) using an online survey. Current study found that expectation and confirmation positively affect satisfaction. Attitude, satisfaction and readiness were found to have a positive relationship with willingness to continue online learning. Meanwhile, self-efficacy was found unsupported hypothesis for the direct effect. For multigroup analysis, readiness was found to have a significant difference between students of social science and pure science. The findings of this research enrich the literature about online learning, especially in the COVID-19 setting. Moreover, this work is useful for higher education institutions seeking to design a better strategy that allows students to return to campus.
  14. Gholizadeh H, Abu Osman NA, Eshraghi A, Ali S
    PLoS One, 2014;9(5):e94520.
    PMID: 24827560 DOI: 10.1371/journal.pone.0094520
    The suction sockets that are commonly prescribed for transtibial amputees are believed to provide a better suspension than the pin/lock systems. Nevertheless, their effect on amputees' gait performance has not yet been fully investigated. The main intention of this study was to understand the potential effects of the Seal-in (suction) and the Dermo (pin/lock) suspension systems on amputees' gait performance.
  15. Gholizadeh H, Abu Osman NA, Eshraghi A, Ali S
    Am J Phys Med Rehabil, 2014 Sep;93(9):809-23.
    PMID: 24743451 DOI: 10.1097/PHM.0000000000000094
    The purpose of this study was to find the scientific evidence pertaining to various transfemoral suspension systems to provide selection criteria for clinicians. To this end, databases of PubMed, Web of Science, and ScienceDirect were explored. The following key words, as well as their combinations and synonyms, were used for the search: transfemoral prosthesis, prosthetic suspension, lower limb prosthesis, above-knee prosthesis, prosthetic liner, transfemoral, and prosthetic socket. The study design, research instrument, sampling method, outcome measures, and protocols of articles were reviewed. On the basis of the selection criteria, 16 articles (11 prospective studies and 5 surveys) were reviewed. The main causes of reluctance to prosthesis, aside from energy expenditure, were socket-related problems such as discomfort, perspiration, and skin problems. Osseointegration was a suspension option, yet it is rarely applied because of several drawbacks, such as extended rehabilitation process, risk for fracture, and infection along with excessive cost. In conclusion, no clinical evidence was found as a "standard" system of suspension and socket design for all transfemoral amputees. However, among various suspension systems for transfemoral amputees, the soft insert or double socket was favored by most users in terms of function and comfort.
  16. Abd Razak NA, Abu Osman NA, Gholizadeh H, Ali S
    Biomed Eng Online, 2014;13:134.
    PMID: 25208636 DOI: 10.1186/1475-925X-13-134
    Understanding of kinematics force applied at the elbow is important in many fields, including biomechanics, biomedical engineering and rehabilitation. This paper provides a comparison of a mathematical model of elbow joint using three different types of prosthetics for transhumeral user, and characterizes the forces required to overcome the passive mechanical of the prosthetics at the residual limb.
  17. Abd Razak NA, Abu Osman NA, Gholizadeh H, Ali S
    Biomed Eng Online, 2014 Apr 23;13:49.
    PMID: 24755242 DOI: 10.1186/1475-925X-13-49
    BACKGROUND: The design and performance of a new development prosthesis system known as biomechatronics wrist prosthesis is presented in this paper. The prosthesis system was implemented by replacing the Bowden tension cable of body powered prosthesis system using two ultrasonic sensors, two servo motors and microcontroller inside the prosthesis hand for transradial user.

    METHODS: The system components and hand prototypes involve the anthropometry, CAD design and prototyping, biomechatronics engineering together with the prosthetics. The modeler construction of the system develop allows the ultrasonic sensors that are placed on the shoulder to generate the wrist movement of the prosthesis. The kinematics of wrist movement, which are the pronation/supination and flexion/extension were tested using the motion analysis and general motion of human hand were compared. The study also evaluated the require degree of detection for the input of the ultrasonic sensor to generate the wrist movements.

    RESULTS: The values collected by the vicon motion analysis for biomechatronics prosthesis system were reliable to do the common tasks in daily life. The degree of the head needed to bend to give the full input wave was about 45°-55° of rotation or about 14 cm-16 cm. The biomechatronics wrist prosthesis gave higher degree of rotation to do the daily tasks but did not achieve the maximum degree of rotation.

    CONCLUSION: The new development of using sensor and actuator in generating the wrist movements will be interesting for used list in medicine, robotics technology, rehabilitations, prosthetics and orthotics.

  18. Oshkour AA, Abu Osman NA, Davoodi MM, Yau YH, Tarlochan F, Wan Abas WA, et al.
    Int J Numer Method Biomed Eng, 2013 Dec;29(12):1412-27.
    PMID: 23922316 DOI: 10.1002/cnm.2583
    This study focused on developing a 3D finite element model of functionally graded femoral prostheses to decrease stress shielding and to improve total hip replacement performance. The mechanical properties of the modeled functionally graded femoral prostheses were adjusted in the sagittal and transverse planes by changing the volume fraction gradient exponent. Prostheses with material changes in the sagittal and transverse planes were considered longitudinal and radial prostheses, respectively. The effects of cemented and noncemented implantation methods were also considered in this study. Strain energy and von Mises stresses were determined at the femoral proximal metaphysis and interfaces of the implanted femur components, respectively. Results demonstrated that the strain energy increased proportionally with increasing volume fraction gradient exponent, whereas the interface stresses decreased on the prostheses surfaces. A limited increase was also observed at the surfaces of the bone and cement. The periprosthetic femur with a noncemented prosthesis exhibited higher strain energy than with a cemented prosthesis. Radial prostheses implantation displayed more strain energy than longitudinal prostheses implantation in the femoral proximal part. Functionally graded materials also increased strain energy and exhibited promising potentials as substitutes of conventional materials to decrease stress shielding and to enhance total hip replacement lifespan.
  19. Makinejad MD, Abu Osman NA, Abu Bakar Wan Abas W, Bayat M
    Clinics (Sao Paulo), 2013 Sep;68(9):1180-8.
    PMID: 24141832 DOI: 10.6061/clinics/2013(09)02
    This study provides an experimental and finite element analysis of knee-joint structure during extended-knee landing based on the extracted impact force, and it numerically identifies the contact pressure, stress distribution and possibility of bone-to-bone contact when a subject lands from a safe height.
  20. Abu Osman NA, Nordin NI, Tan KC, Hosri NAHA, Pei Q, Ng EP, et al.
    Materials (Basel), 2023 Jan 16;16(2).
    PMID: 36676604 DOI: 10.3390/ma16020867
    Hydrazine borane (HB) is a chemical hydrogen storage material with high gravimetric hydrogen density of 15.4 wt%, containing both protic and hydridic hydrogen. However, its limitation is the formation of unfavorable gaseous by-products, such as hydrazine (N2H4) and ammonia (NH3), which are poisons to fuel cell catalyst, upon pyrolysis. Previous studies proved that confinement of ammonia borane (AB) greatly improved the dehydrogenation kinetics and thermodynamics. They function by reducing the particle size of AB and establishing bonds between silica functional groups and AB molecules. In current study, we employed the same strategy using MCM-41 and silica aerogel to investigate the effect of nanosizing towards the hydrogen storage properties of HB. Different loading of HB to the porous supports were investigated and optimized. The optimized loading of HB in MCM-41 and silica aerogel was 1:1 and 0.25:1, respectively. Both confined samples demonstrated great suppression of melting induced sample foaming. However, by-products formation was enhanced over dehydrogenation in an open system decomposition owing to the presence of extensive Si-O···BH3(HB) coordination that further promote the B-N bond cleavage to release N2H4. The Si-OH···N(N2H4) hydrogen bonding may further promote N-N bond cleavage in the resulting N2H4, facilitating the formation of NH3. As temperature increases, the remaining N-N-B oligomeric chains in the porous silica, which are lacking the long-range structure may further undergo intramolecular B-N or N-N cleavage to release substantial amount of N2H4 or NH3. Besides open system decomposition, we also reported a closed system decomposition where complete utilization of the N-H from the released N2H4 and NH3 in the secondary reaction can be achieved, releasing mainly hydrogen upon being heated up to high temperatures. Nanosizing of HB particles via PMMA encapsulation was also attempted. Despite the ester functional group that may favor multiple coordination with HB molecules, these interactions did not impart significant change towards the decomposition of HB selectively towards dehydrogenation.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links