Displaying publications 41 - 47 of 47 in total

Abstract:
Sort:
  1. Al-Baldawi IA, Abdullah SRS, Almansoory AF, Ismail N', Hasan HA, Anuar N
    Sci Rep, 2020 08 19;10(1):13980.
    PMID: 32814793 DOI: 10.1038/s41598-020-70740-5
    In the present study, the potential of Salvinia molesta for biodecolorization of methyl orange (MO) dye from water was examined. Six glass vessels were filled with 4 L of water contaminated with MO with three concentrations (5, 15, and 25 mg/L), three with plants and another three without plant as contaminant control. The influence of operational parameters, including initial dye concentration, pH, temperature, and plant growth, on the efficacy of the biodecolorization process by S. molesta was determined. Temperature and pH was in the range of 25-26 °C and 6.3 to 7.3, respectively. Phytotransformation was monitored after 10 days through Fourier transform infrared (FTIR) spectroscopy, and a significant variation in the peak positions was demonstrated when compared to the control plant spectrum, indicating the adsorption of MO. The highest biodecolorization was 42% in a 5 mg/L MO dye concentration at pH 7.3 and at 27 °C. According to the FTIR results, a potential method for the biodecolourization of MO dye by S. molesta was proven. Salvinia molesta can be successfully used for upcoming eco-friendly phytoremediation purposes for dye removal.
  2. Titah HS, Halmi MIEB, Abdullah SRS, Hasan HA, Idris M, Anuar N
    Int J Phytoremediation, 2018 Jun 07;20(7):721-729.
    PMID: 29723047 DOI: 10.1080/15226514.2017.1413337
    In this study, the removal of arsenic (As) by plant, Ludwigia octovalvis, in a pilot reed bed was optimized. A Box-Behnken design was employed including a comparative analysis of both Response Surface Methodology (RSM) and an Artificial Neural Network (ANN) for the prediction of maximum arsenic removal. The predicted optimum condition using the desirability function of both models was 39 mg kg-1 for the arsenic concentration in soil, an elapsed time of 42 days (the sampling day) and an aeration rate of 0.22 L/min, with the predicted values of arsenic removal by RSM and ANN being 72.6% and 71.4%, respectively. The validation of the predicted optimum point showed an actual arsenic removal of 70.6%. This was achieved with the deviation between the validation value and the predicted values being within 3.49% (RSM) and 1.87% (ANN). The performance evaluation of the RSM and ANN models showed that ANN performs better than RSM with a higher R2 (0.97) close to 1.0 and very small Average Absolute Deviation (AAD) (0.02) and Root Mean Square Error (RMSE) (0.004) values close to zero. Both models were appropriate for the optimization of arsenic removal with ANN demonstrating significantly higher predictive and fitting ability than RSM.
  3. Al-Mansoory AF, Idris M, Abdullah SRS, Anuar N
    Environ Sci Pollut Res Int, 2017 May;24(13):11998-12008.
    PMID: 26330312 DOI: 10.1007/s11356-015-5261-5
    Greenhouse experiments were carried out to determine the phytotoxic effects on the plant Ludwigia octovalvis in order to assess its applicability for phytoremediation gasoline-contaminated soils. Using plants to degrade hydrocarbons is a challenging task. In this study, different spiked concentrations of hydrocarbons in soil (1, 2, and 3 g/kg) were tested. The results showed that the mean efficiency of total petroleum hydrocarbon (TPH) removal over a 72-day culture period was rather high. The maximum removal of 79.8 % occurred for the 2 g/kg concentration, while the removal rate by the corresponding unplanted controls was only (48.6 %). The impact of gasoline on plants included visual symptoms of stress, yellowing, growth reduction, and perturbations in the developmental parameters. The dry weight and wet weight of the plant slightly increased upon exposure to gasoline until day 42. Scanning electron microscopy (SEM) indicated change to the root and stem structure in plant tissue due to the direct attachment with gasoline contaminated compared to the control sample. The population of living microorganisms in the contaminated soil was found to be able to adapt to different gasoline concentrations. The results showed that L. octovalvis and rhizobacteria in gasoline-contaminated soil have the potential to degrade organic pollutants.
  4. Mohd Kashim MIA, Abdul Haris AA, Hasim NA, Abd Mutalib S, Anuar N
    Foods, 2022 Oct 17;11(20).
    PMID: 37430984 DOI: 10.3390/foods11203235
    Meat culturing technology goes beyond laboratory research and materialises in the market. Nonetheless, this technology has raised concerns among Muslim consumers worldwide due to its medium, especially foetal bovine serum (FBS), which originates from blood. Thus, the aim of this research was to determine the halal status of cultured meat by detecting species-specific DNA of bovine serum as one of the media used during meat production. Polymerase chain reaction (PCR) analysis was conducted by targeting mitochondrial cytochrome oxidase II (COII) gene sequences, producing a 165 bp amplicon. The sequences of the primers used were Bovine-F, 5'-CAT CAT AGC AAT TGC CAT AGT CC-3' and Bovine-R, 5'-GTA CTA GTA GTA TTA GAG CTA GAA TTA G-3'. DNA extraction was conducted using a QIAGEN Blood and Tissue™ commercial kit. The presence study also included a literature review on the Istihalah (transformation) concept in order to determine the halal status of cultured meat. The results revealed that bovine DNA was detected in all samples tested using PCR analysis. Therefore, Istihalah tammah (perfect transformation) does not occur due to the ability of PCR analysis to detect bovine DNA in FBS and is prohibited according to Shariah law.
  5. Jaapar SZ, Kalil MS, Anuar N
    Pak J Biol Sci, 2009 Sep 15;12(18):1253-9.
    PMID: 20384278
    Photo fermentation is a biological process that can be applied for hydrogen production. The process is environmental friendly which is operated under mild conditions using renewable resources. In order to increase yield of H2 produced by Rhodobacter sphaeroides, some experimental factors that may enhance H2 production were studied. The effect of operating parameters including agitation, aeration and light on hydrogen production using R. sphaeroides NCIMB 8253 was investigated. Rhodobacter sphaeroides NCIMB 8253 was grown in 100 mL serum bottle containing growth medium with maliec acid as the sole organic carbon source. The cultures were incubated anaerobically at 30 degrees C with tungsten lamp (100 W) as the light source (3.8 klux) and argon gas was purged for maintaining anaerobic condition. The results show that maximum hydrogen produced was higher (54.37 mL) in static culture with 69.98% of H2 in the total gas compared with shake culture (11.57 mL) with 57.86% of H2. By using static culture, H2 produced was five times higher compared with non-static in both aerobic and anaerobic condition. It was found that growth and H2 production with fluorescent lamp showed better results than growth and H2 production with tungsten light.
  6. Anuar N, Sabri AH, Bustami Effendi TJ, Abdul Hamid K
    Heliyon, 2020 Jul;6(7):e04570.
    PMID: 32775730 DOI: 10.1016/j.heliyon.2020.e04570
    Lipophilic compounds constitute a majority of therapeutics in the pipeline of drug discovery. Despite possessing enhanced efficacy and permeability, some of these drugs suffer poor solubility necessitating the need of a suitable drug delivery system. Nanoemulsion is a drug delivery system that provides enhanced solubility for poorly soluble drugs in an attempt to improve the oral bioavailability. The purpose of this study is to develop a nanoemulsion system using ibuprofen as a model drug in order to investigate the potential of this colloidal system to enhance the absorption of poorly water-soluble drugs. Ibuprofen loaded-nanoemulsion with different drug concentrations (1.5, 3 and 6% w/w) were formulated from olive oil, sucrose ester L-1695 and glycerol using D-phase emulsification technique. A pseudoternary phase diagram was utilised to identify the optimal excipient composition to formulate the nanoemulsion system. In vitro diffusion chamber studies using rodent intestinal linings highlighted improved absorption profile when ibuprofen was delivered as nanoemulsion in comparison to microemulsions and drug-in-oil systems. This was further corroborated by in vivo studies using rat model that highlighted a two-fold increase in ibuprofen absorption when the drug was administered as a nanoemulsion relative to drug-in-oil system. On the other hand, when ibuprofen was administered as microemulsions, only a 1.5-fold increase in absorption was observed relative to drug-in-oil system. Thus, this study highlights the potential of using nanoemulsion as a drug delivery system to enhance the oral bioavailability of hydrophobic drugs.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links