Displaying publications 41 - 60 of 175 in total

Abstract:
Sort:
  1. Gan HM, Lee MVL, Savka MA
    PeerJ, 2019;7:e6366.
    PMID: 30775173 DOI: 10.7717/peerj.6366
    The reported Agrobacterium radiobacter DSM 30174T genome is highly fragmented, hindering robust comparative genomics and genome-based taxonomic analysis. We re-sequenced the Agrobacterium radiobacter type strain, generating a dramatically improved genome with high contiguity. In addition, we sequenced the genome of Agrobacterium tumefaciens B6T, enabling for the first time, a proper comparative genomics of these contentious Agrobacterium species. We provide concrete evidence that the previously reported Agrobacterium radiobacter type strain genome (Accession Number: ASXY01) is contaminated which explains its abnormally large genome size and fragmented assembly. We propose that Agrobacterium tumefaciens be reclassified as Agrobacterium radiobacter subsp. tumefaciens and that Agrobacterium radiobacter retains it species status with the proposed name of Agrobacterium radiobacter subsp. radiobacter. This proposal is based, first on the high pairwise genome-scale average nucleotide identity supporting the amalgamation of both Agrobacterium radiobacter and Agrobacterium tumefaciens into a single species. Second, maximum likelihood tree construction based on the concatenated alignment of shared genes (core genes) among related strains indicates that Agrobacterium radiobacter NCPPB3001 is sufficiently divergent from Agrobacterium tumefaciens to propose two independent sub-clades. Third, Agrobacterium tumefaciens demonstrates the genomic potential to synthesize the L configuration of fucose in its lipid polysaccharide, fostering its ability to colonize plant cells more effectively than Agrobacterium radiobacter.
  2. Pong LY, Parkkinen S, Dhanoa A, Gan HM, Wickremesinghe IAC, Syed Hassan S
    PeerJ, 2019;7:e6697.
    PMID: 31065454 DOI: 10.7717/peerj.6697
    BACKGROUND: Dengue caused by dengue virus (DENV) serotypes -1 to -4 is the most important mosquito-borne viral disease in the tropical and sub-tropical countries worldwide. Yet many of the pathophysiological mechanisms of host responses during DENV infection remain largely unknown and incompletely understood.

    METHODS: Using a mouse model, the miRNA expressions in liver during DENV-1 infection was investigated using high throughput miRNA sequencing. The differential expressions of miRNAs were then validated by qPCR, followed by target genes prediction. The identified miRNA targets were subjected to gene ontology (GO) annotation and pathway enrichment analysis to elucidate the potential biological pathways and molecular mechanisms associated with DENV-1 infection.

    RESULTS: A total of 224 and 372 miRNAs out of 433 known mouse miRNAs were detected in the livers of DENV-1-infected and uninfected mice, respectively; of these, 207 miRNAs were present in both libraries. The miR-148a-3p and miR-122-5p were the two most abundant miRNAs in both groups. Thirty-one miRNAs were found to have at least 2-fold change in upregulation or downregulation, in which seven miRNAs were upregulated and 24 miRNAs were downregulated in the DENV-1-infected mouse livers. The miR-1a-3p was found to be the most downregulated miRNA in the DENV-1-infected mouse livers, with a significant fold change of 0.10. To validate the miRNA sequencing result, the expression pattern of 12 miRNAs, which were highly differentially expressed or most abundant, were assessed by qPCR and nine of them correlated positively with the one observed in deep sequencing. In silico functional analysis revealed that the adaptive immune responses involving TGF-beta, MAPK, PI3K-Akt, Rap1, Wnt and Ras signalling pathways were modulated collectively by 23 highly differentially expressed miRNAs during DENV-1 infection.

    CONCLUSION: This study provides the first insight into the global miRNA expressions of mouse livers in response to DENV-1 infection in vivo and the possible roles of miRNAs in modulating the adaptive immune responses during DENV-1 infection.

  3. Yeo LF, Aghakhanian FF, Tan JSY, Gan HM, Phipps ME
    F1000Res, 2019;8:175.
    PMID: 31275564 DOI: 10.12688/f1000research.17706.3
    Background: The indigenous people of Peninsular Malaysia, also known as Orang Asli, have gradually been urbanized. A shift towards non-communicable diseases commonly associated with sedentary lifestyles have been reported in many tribes. This study engaged with a semi-urbanized Temiar tribe from Kampong Pos Piah, Perak, who are experiencing an epidemiological transition. Methods:  Weight, height, waist circumference, blood pressure, HbA1C and lipid levels were measured as indicators of cardio-metabolic health. DNA was extracted from saliva using salting-out method followed by PCR amplification of the V3-V4 region of the 16S rRNA gene and sequencing on Illumina MiSeq. Microbiome analysis was conducted on Qiime v1.9. Statistical analysis was conducted using Qiime v1.9 and R.   Results: The study revealed that 60.4% of the Temiar community were overweight/obese, with a higher prevalence among women. HbA1C levels showed that 45% of Temiar had pre-diabetes. Insulin resistance was identified in 21% of Temiar by using a surrogate marker, TG/HDL. In total, 56.5% of Temiar were pre-hypertensive, and the condition was prevalent across all age-groups. The saliva microbiome profiles of Temiar revealed significant differences by gender, BMI, abdominal obesity as well as smoking status. The relative abundance of the genus Bifidobacterium was increased in men whereas the genera  Prevotella, Capnocytophaga, Leptotrichia, Neisseria and Streptococcus were increased in women. Proteobacteria was significantly depleted in smokers. Conclusions: Temiar from Pos Piah had a high prevalence of cardio-metabolic risks, including general and abdominal obesity, pre-diabetes, prehypertension and hypertension. This phenomenon has not been previously reported in this tribe. The saliva microbiome profiles were significantly different for individuals of different gender, BMI, abdominal obesity and smoking status.
  4. Gan HM, Szegedi E, Fersi R, Chebil S, Kovács L, Kawaguchi A, et al.
    Front Microbiol, 2019;10:1896.
    PMID: 31456792 DOI: 10.3389/fmicb.2019.01896
    Crown gall (CG) is a globally distributed and economically important disease of grapevine and other important crop plants. The causal agent of CG is Agrobacterium or Allorhizobium strains that harbor a tumor-inducing plasmid (pTi). The microbial community within the CG tumor has not been widely elucidated and it is not known if certain members of this microbial community promote or inhibit CG. This study investigated the microbiotas of grapevine CG tumor tissues from seven infected vineyards located in Hungary, Japan, Tunisia, and the United States. Heavy co-amplification of grapevine chloroplast and mitochondrial ribosomal RNA genes was observed with the widely used Illumina V3-V4 16S rRNA gene primers, requiring the design of a new reverse primer to enrich for bacterial 16S rRNA from CG tumors. The operational taxonomic unit (OTU) clustering approach is not suitable for CG microbiota analysis as it collapsed several ecologically distinct Agrobacterium species into a single OTU due to low interspecies genetic divergence. The CG microbial community assemblages were significantly different across sampling sites (ANOSIM global R = 0.63, p-value = 0.001) with evidence of site-specific differentially abundant ASVs. The presence of Allorhizobium vitis in the CG microbiota is almost always accompanied by Xanthomonas and Novosphingobium, the latter may promote the spread of pTi plasmid by way of acyl-homoserine lactone signal production, whereas the former may take advantage of the presence of substrates associated with plant cell wall growth and repair. The technical and biological insights gained from this study will contribute to the understanding of complex interaction between the grapevine and its microbial community and may facilitate better management of CG disease in the future.
  5. Brandon-Mong GJ, Littlefair JE, Sing KW, Lee YP, Gan HM, Clare EL, et al.
    Bull. Entomol. Res., 2018 Dec;108(6):792-799.
    PMID: 29441836 DOI: 10.1017/S000748531800010X
    Arthropod communities in the tropics are increasingly impacted by rapid changes in land use. Because species showing distinct seasonal patterns of activity are thought to be at higher risk of climate-related extirpation, global warming is generally considered a lower threat to arthropod biodiversity in the tropics than in temperate regions. To examine changes associated with land use and weather variables in tropical arthropod communities, we deployed Malaise traps at three major anthropogenic forests (secondary reserve forest, oil palm forest, and urban ornamental forest (UOF)) in Peninsular Malaysia and collected arthropods continuously for 12 months. We used metabarcoding protocols to characterize the diversity within weekly samples. We found that changes in the composition of arthropod communities were significantly associated with maximum temperature in all the three forests, but shifts were reversed in the UOF compared with the other forests. This suggests arthropods in forests in Peninsular Malaysia face a double threat: community shifts and biodiversity loss due to exploitation and disturbance of forests which consequently put species at further risk related to global warming. We highlight the positive feedback mechanism of land use and temperature, which pose threats to the arthropod communities and further implicates ecosystem functioning and human well-being. Consequently, conservation and mitigation plans are urgently needed.
  6. Lopes-Lima M, Bolotov IN, Do VT, Aldridge DC, Fonseca MM, Gan HM, et al.
    Mol Phylogenet Evol, 2018 10;127:98-118.
    PMID: 29729933 DOI: 10.1016/j.ympev.2018.04.041
    Two Unionida (freshwater mussel) families are present in the Northern Hemisphere; the Margaritiferidae, representing the most threatened of unionid families, and the Unionidae, which include several genera of unresolved taxonomic placement. The recent reassignment of the poorly studied Lamprotula rochechouartii from the Unionidae to the Margaritiferidae motivated a new search for other potential species of margaritiferids from members of Gibbosula and Lamprotula. Based on molecular and morphological analyses conducted on newly collected specimens from Vietnam, we here assign Gibbosula crassa to the Margaritiferidae. Additionally, we reanalyzed all diagnostic characteristics of the Margaritiferidae and examined museum specimens of Lamprotula and Gibbosula. As a result, two additional species are also moved to the Margaritiferidae, i.e. Gibbosula confragosa and Gibbosula polysticta. We performed a robust five marker phylogeny with all available margaritiferid species and discuss the taxonomy within the family. The present phylogeny reveals the division of Margaritiferidae into four ancient clades with distinct morphological, biogeographical and ecological characteristics that justify the division of the Margaritiferidae into two subfamilies (Gibbosulinae and Margaritiferinae) and four genera (Gibbosula, Cumberlandia, Margaritifera, and Pseudunio). The systematics of the Margaritiferidae family is re-defined as well as their distribution, potential origin and main biogeographic patterns.
  7. Gan HM, Austin C, Linton S
    Mar Biotechnol (NY), 2018 Oct;20(5):654-665.
    PMID: 29995174 DOI: 10.1007/s10126-018-9836-2
    The Christmas Island red crab, Gecarcoidea natalis, is an herbivorous land crab that consumes mostly fallen leaf litter. In order to subsist, G. natalis would need to have developed specialised digestive enzymes capable of supplying significant amounts of metabolisable sugars from this diet. To gain insights into the carbohydrate metabolism of G. natalis, a transcriptome assembly was performed, with a specific focus on identifying transcripts coding for carbohydrate active enzyme (CAZy) using in silico approaches. Transcriptome sequencing of the midgut gland identified 70 CAZy-coding transcripts with varying expression values. At least three newly discovered putative GH9 endo-β-1,4-glucanase ("classic cellulase") transcripts were highly expressed in the midgut gland in addition to the previously characterised GH9 and GH16 (β-1,3-glucanase) transcripts, and underscoring the utility of whole transcriptome in uncovering new CAZy-coding transcripts. A highly expressed transcript coding for GH5_10 previously missed by conventional screening of cellulase activity was inferred to be a novel endo-β-1,4-mannase in G. natalis with in silico support from homology modelling and amino acid alignment with other functionally validated GH5_10 proteins. Maximum likelihood tree reconstruction of the GH5_10 proteins demonstrates the phylogenetic affiliation of the G. natalis GH5_10 transcript to that of other decapods, supporting endogenous expression. Surprisingly, crustacean-derived GH5_10 transcripts were near absent in the current CAZy database and yet mining of the transcriptome shotgun assembly (TSA) recovered more than 100 crustacean GH5_10s in addition to several other biotechnological relevant CAZys, underscoring the unappreciated potential of the TSA database as a valuable resource for crustacean CAZys.
  8. Tan MH, Gan HM, Lee YP, Linton S, Grandjean F, Bartholomei-Santos ML, et al.
    Mol Phylogenet Evol, 2018 10;127:320-331.
    PMID: 29800651 DOI: 10.1016/j.ympev.2018.05.015
    The infraorder Anomura consists of a morphologically and ecologically heterogeneous group of decapod crustaceans, and has attracted interest from taxonomists for decades attempting to find some order out of the seemingly chaotic diversity within the group. Species-level diversity within the Anomura runs the gamut from the "hairy" spindly-legged yeti crab found in deep-sea hydrothermal vent environments to the largest known terrestrial invertebrate, the robust coconut or robber crab. Owing to a well-developed capacity for parallel evolution, as evidenced by the occurrence of multiple independent carcinization events, Anomura has long tested the patience and skill of both taxonomists attempting to find order, and phylogeneticists trying to establish stable hypotheses of evolutionary inter-relationships. In this study, we performed genome skimming to recover the mitogenome sequences of 12 anomuran species including the world's largest extant invertebrate, the robber crab (Birgus latro), thereby over doubling these resources for this group, together with 8 new brachyuran mitogenomes. Maximum-likelihood (ML) and Bayesian-inferred (BI) phylogenetic reconstructions based on amino acid sequences from mitogenome protein-coding genes provided strong support for the monophyly of the Anomura and Brachyura and their sister relationship, consistent with previous studies. The majority of relationships within families were supported and were largely consistent with current taxonomic classifications, whereas many relationships at higher taxonomic levels were unresolved. Nevertheless, we have strong support for a polyphyletic Paguroidea and recovered a well-supported clade of a subset of paguroids (Diogenidae + Coenobitidae) basal to all other anomurans, though this requires further testing with greater taxonomic sampling. We also introduce a new feature to the MitoPhAST bioinformatics pipeline (https://github.com/mht85/MitoPhAST) that enables the extraction of mitochondrial gene order (MGO) information directly from GenBank files and clusters groups based on common MGOs. Using this tool, we compared MGOs across the Anomura and Brachyura, identifying Anomura as a taxonomic "hot spot" with high variability in MGOs among congeneric species from multiple families while noting the broad association of highly-rearranged MGOs with several anomuran lineages inhabiting extreme niches. We also demonstrate the value of MGOs as a source of novel synapomorphies for independently reinforcing tree-based relationships and for shedding light on relationships among challenging groups such as the Aegloidea and Lomisoidea that were unresolved in phylogenetic reconstructions. Overall, this study contributes a substantial amount of new genetic material for Anomura and attempts to further resolve anomuran evolutionary relationships where possible based on a combination of sequence and MGO information. The new feature in MitoPhAST adds to the relatively limited number of bioinformatics tools available for MGO analyses, which can be utilized widely across animal groups.
  9. Gan HM, Lee MVJ, Savka MA
    Microbiol Resour Announc, 2018 Sep;7(9).
    PMID: 30533933 DOI: 10.1128/MRA.01045-18
    Using Illumina and Nanopore reads, we assembled a high-quality draft genome sequence of Allorhizobium vitis K309T (= ATCC 49767T, = NCPPB 3554T), a phytopathogenic strain isolated from a grapevine in Australia. The hybrid approach generated 50% fewer contigs and a 3-fold increase in the N 50 value compared with the previous Illumina-only assembly.
  10. Tan MH, Austin CM, Hammer MP, Lee YP, Croft LJ, Gan HM
    Gigascience, 2018 03 01;7(3):1-6.
    PMID: 29342277 DOI: 10.1093/gigascience/gix137
    Background: Some of the most widely recognized coral reef fishes are clownfish or anemonefish, members of the family Pomacentridae (subfamily: Amphiprioninae). They are popular aquarium species due to their bright colours, adaptability to captivity, and fascinating behavior. Their breeding biology (sequential hermaphrodites) and symbiotic mutualism with sea anemones have attracted much scientific interest. Moreover, there are some curious geographic-based phenotypes that warrant investigation. Leveraging on the advancement in Nanopore long read technology, we report the first hybrid assembly of the clown anemonefish (Amphiprion ocellaris) genome utilizing Illumina and Nanopore reads, further demonstrating the substantial impact of modest long read sequencing data sets on improving genome assembly statistics.

    Results: We generated 43 Gb of short Illumina reads and 9 Gb of long Nanopore reads, representing approximate genome coverage of 54× and 11×, respectively, based on the range of estimated k-mer-predicted genome sizes of between 791 and 967 Mbp. The final assembled genome is contained in 6404 scaffolds with an accumulated length of 880 Mb (96.3% BUSCO-calculated genome completeness). Compared with the Illumina-only assembly, the hybrid approach generated 94% fewer scaffolds with an 18-fold increase in N50 length (401 kb) and increased the genome completeness by an additional 16%. A total of 27 240 high-quality protein-coding genes were predicted from the clown anemonefish, 26 211 (96%) of which were annotated functionally with information from either sequence homology or protein signature searches.

    Conclusions: We present the first genome of any anemonefish and demonstrate the value of low coverage (∼11×) long Nanopore read sequencing in improving both genome assembly contiguity and completeness. The near-complete assembly of the A. ocellaris genome will be an invaluable molecular resource for supporting a range of genetic, genomic, and phylogenetic studies specifically for clownfish and more generally for other related fish species of the family Pomacentridae.

  11. Cheng TH, Saidin J, Danish-Daniel M, Gan HM, Mat Isa MN, Abu Bakar MF, et al.
    Genome Announc, 2018 Feb 08;6(6).
    PMID: 29439033 DOI: 10.1128/genomeA.00022-18
    Serratia marcescens
    subsp.sakuensisstrain K27 was isolated from sponge (Haliclona amboinensis). The genome of this strain consists of 5,325,727 bp, with 5,140 open reading frames (ORFs), 3 rRNAs, and 67 tRNAs. It contains genes for the production of amylases, lipases, and proteases. Gene clusters for the biosynthesis of nonribosomal peptides and thiopeptide were also identified.
  12. Lamb AM, Gan HM, Greening C, Joseph L, Lee YP, Morán-Ordóñez A, et al.
    Mol Ecol, 2018 02;27(4):898-918.
    PMID: 29334409 DOI: 10.1111/mec.14488
    Diversifying selection between populations that inhabit different environments can promote lineage divergence within species and ultimately drive speciation. The mitochondrial genome (mitogenome) encodes essential proteins of the oxidative phosphorylation (OXPHOS) system and can be a strong target for climate-driven selection (i.e., associated with inhabiting different climates). We investigated whether Pleistocene climate changes drove mitochondrial selection and evolution within Australian birds. First, using phylogeographic analyses of the mitochondrial ND2 gene for 17 songbird species, we identified mitochondrial clades (mitolineages). Second, using distance-based redundancy analyses, we tested whether climate predicts variation in intraspecific genetic divergence beyond that explained by geographic distances and geographic position. Third, we analysed 41 complete mitogenome sequences representing each mitolineage of 17 species using codon models in a phylogenetic framework and a biochemical approach to identify signals of selection on OXPHOS protein-coding genes and test for parallel selection in mitolineages of different species existing in similar climates. Of 17 species examined, 13 had multiple mitolineages (range: 2-6). Climate was a significant predictor of mitochondrial variation in eight species. At least two amino acid replacements in OXPHOS complex I could have evolved under positive selection in specific mitolineages of two species. Protein homology modelling showed one of these to be in the loop region of the ND6 protein channel and the other in the functionally critical helix HL region of ND5. These findings call for direct tests of the functional and evolutionary significance of mitochondrial protein candidates for climate-associated selection.
  13. Gan HM, Tan MH, Lee YP, Schultz MB, Horwitz P, Burnham Q, et al.
    Mol Phylogenet Evol, 2018 01;118:88-98.
    PMID: 28966124 DOI: 10.1016/j.ympev.2017.09.022
    To further understand the evolutionary history and mitogenomic features of Australia's highly distinctive freshwater crayfish fauna, we utilized a recently described rapid mitogenome sequencing pipeline to generate 24 new crayfish mitogenomes including a diversity of burrowing crayfish species and the first for Astacopsis gouldi, the world's largest freshwater invertebrate. Whole mitogenome-based phylogeny estimates using both Bayesian and Maximum Likelihood methods substantially strengthen existing hypotheses for systematic relationships among Australian freshwater crayfish with evidence of pervasive diversifying selection and accelerated mitochondrial substitution rate among the members of the clade representing strongly burrowing crayfish that may reflect selection pressures for increased energy requirement for adaptation to terrestrial environment and a burrowing lifestyle. Further, gene rearrangements are prevalent in the burrowing crayfish mitogenomes involving both tRNA and protein coding genes. In addition, duplicated control regions were observed in two closely related Engaeus species, together with evidence for concerted evolution. This study significantly adds to the understanding of Australian freshwater crayfish evolutionary relationships and suggests a link between mitogenome evolution and adaptation to terrestrial environments and a burrowing lifestyle in freshwater crayfish.
  14. Loke MF, Chua EG, Gan HM, Thulasi K, Wanyiri JW, Thevambiga I, et al.
    PLoS One, 2018;13(12):e0208584.
    PMID: 30576312 DOI: 10.1371/journal.pone.0208584
    Colorectal cancer (CRC) is ranked the third most common cancer in human worldwide. However, the exact mechanisms of CRC are not well established. Furthermore, there may be differences between mechanisms of CRC in the Asian and in the Western populations. In the present study, we utilized a liquid chromatography-mass spectrometry (LC-MS) metabolomic approach supported by the 16S rRNA next-generation sequencing to investigate the functional and taxonomical differences between paired tumor and unaffected (normal) surgical biopsy tissues from 17 Malaysian patients. Metabolomic differences associated with steroid biosynthesis, terpenoid biosynthesis and bile metabolism could be attributed to microbiome differences between normal and tumor sites. The relative abundances of Anaerotruncus, Intestinimonas and Oscillibacter displayed significant relationships with both steroid biosynthesis and terpenoid and triterpenoid biosynthesis pathways. Metabolites involved in serotonergic synapse/ tryptophan metabolism (Serotonin and 5-Hydroxy-3-indoleacetic acid [5-HIAA]) were only detected in normal tissue samples. On the other hand, S-Adenosyl-L-homocysteine (SAH), a metabolite involves in methionine metabolism and methylation, was frequently increased in tumor relative to normal tissues. In conclusion, this study suggests that local microbiome dysbiosis may contribute to functional changes at the cancer sites. Results from the current study also contributed to the list of metabolites that are found to differ between normal and tumor sites in CRC and supported our quest for understanding the mechanisms of carcinogenesis.
  15. Md Zoqratt MZH, Eng WWH, Thai BT, Austin CM, Gan HM
    PeerJ, 2018;6:e5826.
    PMID: 30397546 DOI: 10.7717/peerj.5826
    Aquaculture production of the Pacific white shrimp is the largest in the world for crustacean species. Crucial to the sustainable global production of this important seafood species is a fundamental understanding of the shrimp gut microbiota and its relationship to the microbial ecology of shrimp pond. This is especially true, given the recently recognized role of beneficial microbes in promoting shrimp nutrient intake and in conferring resistance against pathogens. Unfortunately, aquaculture-related microbiome studies are scarce in Southeast Asia countries despite the severe impact of early mortality syndrome outbreaks on shrimp production in the region. In this study, we employed the 16S rRNA amplicon (V3-V4 region) sequencing and amplicon sequence variants (ASV) method to investigate the microbial diversity of shrimp guts and pond water samples collected from aquaculture farms located in Malaysia and Vietnam. Substantial differences in the pond microbiota were observed between countries with the presence and absence of several taxa extending to the family level. Microbial diversity of the shrimp gut was found to be generally lower than that of the pond environments with a few ubiquitous genera representing a majority of the shrimp gut microbial diversity such as Vibrio and Photobacterium, indicating host-specific selection of microbial species. Given the high sequence conservation of the 16S rRNA gene, we assessed its veracity at distinguishing Vibrio species based on nucleotide alignment against type strain reference sequences and demonstrated the utility of ASV approach in uncovering a wider diversity of Vibrio species compared to the conventional OTU clustering approach.
  16. Watts MP, Gan HM, Peng LY, Lê Cao KA, Moreau JW
    Environ Sci Technol, 2017 Nov 21;51(22):13353-13362.
    PMID: 29064247 DOI: 10.1021/acs.est.7b04152
    Thiocyanate (SCN-) is a contaminant requiring remediation in gold mine tailings and wastewaters globally. Seepage of SCN--contaminated waters into aquifers can occur from unlined or structurally compromised mine tailings storage facilities. A wide variety of microorganisms are known to be capable of biodegrading SCN-; however, little is known regarding the potential of native microbes for in situ SCN- biodegradation, a remediation option that is less costly than engineered approaches. Here we experimentally characterize the principal biogeochemical barrier to SCN- biodegradation for an autotrophic microbial consortium enriched from mine tailings, to arrive at an environmentally realistic assessment of in situ SCN- biodegradation potential. Upon amendment with phosphate, the consortium completely degraded up to ∼10 mM SCN- to ammonium and sulfate, with some evidence of nitrification of the ammonium to nitrate. Although similarly enriched in known SCN--degrading strains of thiobacilli, this consortium differed in its source (mine tailings) and metabolism (autotrophy) from those of previous studies. Our results provide a proof of concept that phosphate limitation may be the principal barrier to in situ SCN- biodegradation in mine tailing waters and also yield new insights into the microbial ecology of in situ SCN- bioremediation involving autotrophic sulfur-oxidizing bacteria.
  17. Harrisson KA, Amish SJ, Pavlova A, Narum SR, Telonis-Scott M, Rourke ML, et al.
    Mol Ecol, 2017 Nov;26(22):6253-6269.
    PMID: 28977721 DOI: 10.1111/mec.14368
    Adaptive differences across species' ranges can have important implications for population persistence and conservation management decisions. Despite advances in genomic technologies, detecting adaptive variation in natural populations remains challenging. Key challenges in gene-environment association studies involve distinguishing the effects of drift from those of selection and identifying subtle signatures of polygenic adaptation. We used paired-end restriction site-associated DNA sequencing data (6,605 biallelic single nucleotide polymorphisms; SNPs) to examine population structure and test for signatures of adaptation across the geographic range of an iconic Australian endemic freshwater fish species, the Murray cod Maccullochella peelii. Two univariate gene-association methods identified 61 genomic regions associated with climate variation. We also tested for subtle signatures of polygenic adaptation using a multivariate method (redundancy analysis; RDA). The RDA analysis suggested that climate (temperature- and precipitation-related variables) and geography had similar magnitudes of effect in shaping the distribution of SNP genotypes across the sampled range of Murray cod. Although there was poor agreement among the candidate SNPs identified by the univariate methods, the top 5% of SNPs contributing to significant RDA axes included 67% of the SNPs identified by univariate methods. We discuss the potential implications of our findings for the management of Murray cod and other species generally, particularly in relation to informing conservation actions such as translocations to improve evolutionary resilience of natural populations. Our results highlight the value of using a combination of different approaches, including polygenic methods, when testing for signatures of adaptation in landscape genomic studies.
  18. Gan HM, Eng WWH, Barton MK, Adams LE, Samsudin NA, Bartl AJ, et al.
    Genome Announc, 2017 Aug 24;5(34).
    PMID: 28839032 DOI: 10.1128/genomeA.00857-17
    We report here the genome sequences of Salmonella enterica subsp. enterica serovar Typhimurium strains TT6675 and TT9097, which we utilize for genetic analyses of giant bacterial viruses. Our analyses identified several genetic variations between the two strains, most significantly confirming strain TT6675 as a serine suppressor and TT9097 as a nonsuppressor.
  19. Gan HM, Rajasekaram G, Eng WWH, Kaniappan P, Dhanoa A
    Genome Announc, 2017 Aug 10;5(32).
    PMID: 28798179 DOI: 10.1128/genomeA.00768-17
    We report the whole-genome sequences of two carbapenem-resistant clinical isolates of Klebsiella quasipneumoniae subsp. similipneumoniae obtained from two different patients. Both strains contained three different extended-spectrum β-lactamase genes and showed strikingly high pairwise average nucleotide identity of 99.99% despite being isolated 3 years apart from the same hospital.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links