Displaying publications 41 - 60 of 81 in total

Abstract:
Sort:
  1. Mehrbod P, Hair-Bejo M, Tengku Ibrahim TA, Omar AR, El Zowalaty M, Ajdari Z, et al.
    Int J Mol Med, 2014 Jul;34(1):61-73.
    PMID: 24788303 DOI: 10.3892/ijmm.2014.1761
    Influenza A virus is one of the most important health risks that lead to significant respiratory infections. Continuous antigenic changes and lack of promising vaccines are the reasons for the unsuccessful treatment of influenza. Statins are pleiotropic drugs that have recently served as anti-influenza agents due to their anti-inflammatory activity. In this study, the effect of simvastatin on influenza A-infected cells was investigated. Based on the MTT cytotoxicity test, hemagglutination (HA) assay and qPCR it was found that simvastatin maintained cell viability and decreased the viral load significantly as compared to virus-inoculated cells. The expression of important pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6 and interferon-γ), which was quantified using ELISA showed that simvastatin decreased the expression of pro-inflammatory cytokines to an average of 2-fold. Furthermore, the modulation of actin filament polymerization was determined using rhodamine staining. Endocytosis and autophagy processes were examined by detecting Rab and RhoA GTPase protein prenylation and LC3 lipidation using western blotting. The results showed that inhibiting GTPase and LC3 membrane localization using simvastatin inhibits influenza replication. Findings of this study provide evidence that modulation of RhoA, Rabs and LC3 may be the underlying mechanisms for the inhibitory effects of simvastatin as an anti-influenza compound.
  2. Sarmin S, Ethiraj B, Islam MA, Ideris A, Yee CS, Khan MMR
    Sci Total Environ, 2019 Dec 10;695:133820.
    PMID: 31416036 DOI: 10.1016/j.scitotenv.2019.133820
    The petrochemical wastewater (PCW) from acrylic acid plants possesses a very high chemical oxygen demand (COD) due to the presence of acrylic acid along with other organic acids. The treatment of PCW by conventional aerobic and anaerobic methods is energy intensive. Therefore, the treatment of PCW with concurrent power generation by employing microbial fuel cell (MFC) could be a potential alternative to solve the energy and environmental issues. This study demonstrates the potentiality of PCW from acrylic acid plant with an initial COD of 45,000 mg L-1 generating maximum power density of 850 mW m-2 at a current density of 1500 mA m-2 using acclimatized anaerobic sludge (AS) as biocatalyst. The predominant microbes present in acclimatized AS were identified using Biolog GEN III analysis, which include the electrogenic genera namely Pseudomonas spp. and Bacillus spp. along with methanogenic archea Methanobacterium spp. The mechanism of electron transfer was elucidated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) which clearly demonstrated the natural metabolite-based electron transfer across the electrode/biofilm/solution interface. The abundance of the electron shuttle metabolites was increased with the microbial growth in the bulk solution as well as in the biofilm leading to a high power generation. The COD removal efficiency and the coulombic efficiency (CE) were found to be 40% and 21%, respectively after 11 days of operation using initial COD of 45,000 mg L-1. The low COD removal efficiency could drastically be increased to 82% when the initial COD of PCW was 5000 mg L-1 generating a power density of 150 mW m-2. The current work proves the feasibility of the MFC for the treatment of acrylic acid plant PCW using acclimatized anaerobic sludge (AS) as a biocatalyst.
  3. Ashari KS, Roslan NS, Omar AR, Bejo MH, Ideris A, Mat Isa N
    PeerJ, 2019;7:e6948.
    PMID: 31293824 DOI: 10.7717/peerj.6948
    Salmonella enterica subsp. enterica serovar Stanley (S. Stanley) is a pathogen that contaminates food, and is related to Salmonella outbreaks in a variety of hosts such as humans and farm animals through products like dairy items and vegetables. Despite the fact that several vaccines of Salmonella strains had been constructed, none of them were developed according to serovar Stanley up to this day. This study presents results of genome sequencing and analysis on our S. Stanley UPM 517 strain taken from fecal swabs of 21-day-old healthy commercial chickens in Perak, Malaysia and used Salmonella enterica subsp. enterica serovar Typhimurium LT2 (S. Typhimurium LT2) as a reference to be compared with. First, sequencing and assembling of the Salmonella Stanley UPM 517 genome into a contiguous form were done. The work was then continued with scaffolding and gap filling. Annotation and alignment of the draft genome was performed with S. Typhimurium LT2. The other elements of virulence estimated in this study included Salmonella pathogenicity islands, resistance genes, prophages, virulence factors, plasmid regions, restriction-modification sites and the CRISPR-Cas system. The S. Stanley UPM 517 draft genome had a length of 4,736,817 bp with 4,730 coding sequence and 58 RNAs. It was discovered via genomic analysis on this strain that there were antimicrobial resistance properties toward a wide variety of antibiotics. Tcf and ste, the two fimbrial virulence clusters related with human and broiler intestinal colonizations which were not found in S. Typhimurium LT2, were atypically discovered in the S. Stanley UPM 517 genome. These clusters are involved in the intestinal colonization of human and broilers, respectively. There were seven Salmonella pathogenicity islands (SPIs) within the draft genome, which contained the virulence factors associated with Salmonella infection (except SPI-14). Five intact prophage regions, mostly comprising of the protein encoding Gifsy-1, Fels-1, RE-2010 and SEN34 prophages, were also encoded in the draft genome. Also identified were Type I-III restriction-modification sites and the CRISPR-Cas system of the Type I-E subtype. As this strain exhibited resistance toward numerous antibiotics, we distinguished several genes that had the potential for removal in the construction of a possible vaccine candidate to restrain and lessen the pervasiveness of salmonellosis and to function as an alternative to antibiotics.
  4. Raihan J, Ahmad U, Yong YK, Eshak Z, Othman F, Ideris A
    BMC Cancer, 2019 Apr 04;19(1):315.
    PMID: 30947706 DOI: 10.1186/s12885-019-5516-5
    BACKGROUND: Different strains of Newcastle disease virus (NDV) worldwide proved to have tumouricidal activity in several types of cancer cells. However, the possible anti-cancer activity of Malaysian NDV AF2240 strain and its mechanism of action remains unknown. The ability of cytokine-related apoptosis-inducing NDV AF2240 to treat breast cancer was investigated in the current study.

    METHODS: A total of 90 mice were used and divided into 15 groups, each group comprising of 6 mice. Tumour, body weight and mortality of the mice were determined throughout the experiment, to observe the effect of NDV and NDV + tamoxifen treatments on the mice. In addition, the toxic effect of the treatments was determined through liver function test. In order to elucidate the involvement of cytokine production induced by NDV, a total of six cytokines, i.e. IL-6, IFN-γ, MCP-1, IL-10, IL12p70 and TNF-α were measured using cytometric bead array assay (plasma) and enzyme-linked immunosorbent spot (isolated splenocytes).

    RESULTS: The results demonstrated that 4 T1 breast cancer cells in allotransplanted mice treated with AF2240 showed a noticeable inhibition of tumour growth and induce apoptotic-related cytokines.

    CONCLUSIONS: NDV AF2240 suppression of breast tumour growth is associated with induction of apoptotic-related cytokines. It would be important to further investigate the molecular mechanism underlaying cytokines production by Newcastle disease virus.

  5. Hou Z, Imam MU, Ismail M, Azmi NH, Ismail N, Ideris A, et al.
    Biosci Biotechnol Biochem, 2015;79(10):1570-8.
    PMID: 26057702 DOI: 10.1080/09168451.2015.1050989
    There are reports of improved redox outcomes due to consumption of Edible Bird's Nest (EBN). Many of the functional effects of EBN can be linked to its high amounts of antioxidants. Interestingly, dietary components with high antioxidants have shown promise in the prevention of aging and its related diseases like Alzheimer's disease. In this study, the antioxidative potentials of EBN and its constituents, lactoferrin (LF) and ovotransferrin (OVF), were determined and protective effects against hydrogen peroxide (H2O2)- induced toxicity on SH-SY5Y cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and acridine orange and propidium iodide (AO/PI) staining with microscopy were examined. Results showed that EBN and its constituents attenuated H2O2-induced cytotoxicity, and decreased radical oxygen species (ROS) through increased scavenging activity. Furthermore, LF, OVF, and EBN produced transcriptional changes in antioxidant related genes that tended towards neuroprotection as compared to H2O2-treated group. Overall, the results suggest that LF and OVF may produce synergistic or all-or-none antioxidative effects in EBN.
  6. Aljumaili OA, Bello MB, Yeap SK, Omar AR, Ideris A
    Onderstepoort J Vet Res, 2020 Sep 28;87(1):e1-e7.
    PMID: 33054260 DOI: 10.4102/ojvr.v87i1.1865
    Despite the availability of Newcastle disease (ND) vaccines for more than six decades, disease outbreaks continue to occur with huge economic consequences to the global poultry industry. The aim of this study is to develop a safe and effective inactivated vaccine based on a recently isolated Newcastle disease virus (NDV) strain IBS025/13 and evaluate its protective efficacy in chicken following challenge with a highly virulent genotype VII isolate. Firstly, high titre of IBS025/13 was exposed to various concentrations of binary ethylenimine (BEI) to determine the optimal conditions for complete inactivation of the virus. The inactivated virus was then prepared in form of a stable water-in-oil emulsion of black seed oil (BSO) or Freund's incomplete adjuvant (FIA) and used as vaccines in specific pathogen-free chicken. Efficacy of various vaccine preparations was also evaluated based on the ability of the vaccine to protect against clinical disease, mortality and virus shedding following challenge with highly virulent genotype\VII NDV isolate. The results indicate that exposure of NDV IBS025/13 to 10 mM of BEI for 21 h at 37 °C could completely inactivate the virus without tempering with the structural integrity of the viral hemagglutin-neuraminidase protein. More so, the inactivated vaccines adjuvanted with either BSO- or FIA-induced high hemagglutination inhibition antibody titre that protected the vaccinated birds against clinical disease and in some cases virus shedding, especially when used together with live attenuated vaccines. Thus, genotype VII-based NDV-inactivated vaccines formulated in BSO could substantially improve poultry disease control particularly when combined with live attenuated vaccines.
  7. Ismail M, Alsalahi A, Aljaberi MA, Ibrahim RM, Bakar FA, Ideris A
    Nutrients, 2021 Mar 23;13(3).
    PMID: 33806762 DOI: 10.3390/nu13031028
    Edible bird's nest (EBN) is constructed from saliva of swiftlets birds and consumed largely by Southeast and East Asians for its nutritional value and anti-aging properties. Although the neuroprotection of EBN in animals has been reported, there has not been yet systemically summarized. Thus, this review systemically outlined the evidence of the neuroprotective activity of EBN in modulating the cognitive functions of either healthy or with induced-cognitive dysfunction animals as compared to placebos. The related records from 2010 to 2020 were retrieved from PubMed, Scopus, Web of Science and ScienceDirect using pre-specified keywords. The relevant records to the effect of EBN on cognition were selected according to the eligibility criteria and these studies underwent appraisal for the risk of bias. EBN improved the cognitive functions of induced-cognitive dysfunction and enhanced the cognitive performance of healthy animals as well as attenuated the neuroinflammations and neuro-oxidative stress in the hippocampus of these animals. Malaysian EBN could improve the cognitive functions of experimental animals as a treatment in induced cognitive dysfunction, a nutritional cognitive-enhancing agent in offspring and a prophylactic conservative effect on cognition against exposure to subsequent noxious cerebral accidents in a dose-depended manner through attenuating neuroinflammation and neuro-oxidative stress. This systemic review did not proceed meta-analysis.
  8. Kristeen-Teo YW, Yeap SK, Tan SW, Omar AR, Ideris A, Tan SG, et al.
    BMC Vet Res, 2017 May 31;13(1):151.
    PMID: 28569155 DOI: 10.1186/s12917-017-1071-y
    BACKGROUND: Virulent Newcastle disease virus (NDV) was reported to cause rapid depletion of chicken bursa of Fabricius. Severe pathological condition of the organ is commonly associated with high levels of virus replication, intense inflammatory response and also the degree of apoptosis. In this study, the responses of chicken bursa of Fabricius infected with two different strains of velogenic NDV, namely AF2240 and IBS002, were investigated by observing cell population changes, oxidative stress, viral replication and cytokine expression in the organ. Subsequently, apoptosis of enriched bursal IgM+ cells was determined to help us elucidate possible host pathogen relationships between the chicken bursa of Fabricius and NDV infection.

    RESULTS: The depletion of IgM+ cells and infiltration of macrophages were observed to be higher in bursa infected with AF2240 as compared to IBS002. In line with the increment of the macrophage population, higher nitric oxide (NO) and malondialdehyde (MDA) contents which indicated higher oxidative stress were also detected in bursa infected with NDV AF2240. In addition, higher pro-inflammatory cytokines and chemokine gene expression such as chicken CXCLi2, IL-18 and IFN-γ were observed in AF2240 infected bursa. Depletion of IgM+ cells was further confirmed with increased cell death and apoptosis of the cells in AF2240 infected bursa as compared to IBS002. However, it was found that the viral load for NDV strain IBS002 was comparatively higher than AF2240 although the magnitude of the pro- inflammatory cytokines expression and cell apoptosis was lower than AF2240.

    CONCLUSION: The results of our study demonstrated that infection of NDV strains AF2240 and IBS002 caused apoptosis in bursa IgM+ cells and its severity was associated with increased expression of pro-inflammatory cytokines/chemokine, macrophage infiltration and oxidative stress as the infection duration was prolonged. However, of the two viruses, we observed that NDV AF2240 induced a greater magnitude of apoptosis in chicken bursa IgM+ cells in comparison to IBS002. This might be due to the high level of oxidative stress and inflammatory cytokines/chemokine as well as lower IL10 expression which subsequently led to a high rate of apoptosis in the chicken bursa of Fabricius although the detected viral load of AF2240 was lower than IBS002.

  9. Sohaimi NM, Bejo MH, Omar AR, Ideris A, Isa NM
    J Vet Sci, 2018 Nov 30;19(6):759-770.
    PMID: 30173491 DOI: 10.4142/jvs.2018.19.6.759
    Fowl adenovirus (FAdV) is distributed worldwide and causes economic losses in the poultry industry. The objectives of this study were to determine the hexon and fiber gene changes in an attenuated FAdV isolate from Malaysia in specific pathogen-free chicken embryonated eggs (SPF CEE) and its infectivity in commercial broiler chickens. SPF CEE were inoculated with 0.1 mL FAdV inoculum via the chorioallantoic membrane (CAM) for 20 consecutive passages. The isolate at passage 20 (E20), with a virus titer of 108.7TCID50/mL (TCID50, 50% tissue culture infective dose), was inoculated (0.5 mL) into one-day-old commercial broiler chicks either via oral or intraperitoneal routes. The study demonstrated that 100% embryonic mortality was recorded from E2 to E20 with a delayed pattern at E17 onwards. The lesions were confined to the liver and CAM. Substitutions of amino acids in the L1 loop of hexon at positions 49 and 66, and in the knob of fiber at positions 318 and 322 were recorded in the E20 isolate. The isolate belongs to serotype 8b and is non-pathogenic to broiler chickens, but it is able to induce a FAdV antibody titer. It appears that molecular changes in the L1 loop of hexon and the knob of fiber are markers for FAdV infectivity.
  10. Lawal N, Hair-Bejo M, Arshad SS, Omar AR, Ideris A
    J Pathog, 2018;2018:1068758.
    PMID: 30245887 DOI: 10.1155/2018/1068758
    Two Malaysian very virulent infectious bursal disease virus (vvIBDV) strains UPM0081 (also known as B00/81) and UPM190 (also known as UPM04/190) isolated from local IBD outbreaks in 2000 and 2004, respectively, were separately passaged for 12 consecutive times in 11-day-old specific pathogen free (SPF) chicken embryonated eggs (CEE) via the chorioallantoic membrane (CAM) route. The CEE passage 8 (EP8) isolates were passaged once in BGM-70 cell line yielding UPM0081EP8BGMP1 and UPM190EP8BGMP1, while the EP12 isolates were passaged 15 times in BGM-70 cell line yielding UPM0081EP12BGMP15 and UPM190EP12BGMP15 using T25 tissue culture flask. These isolates were all propagated once in bioreactor using cytodex 1 as microcarrier at 3 g per liter (3 g/L) yielding UPM0081EP8BGMP1BP1, UPM190EP8BGMP1BP1, UPM0081EP12BGMP15BP1, and UPM190EP12BGMP15BP1 isolates. The viruses were harvested at 3 days after inoculation, following the appearance of cytopathic effects (CPE) characterized by detachment from the microcarrier using standard protocol and filtered using 0.2 μm syringe filter. The filtrates were positive for IBDV by RT-PCR and immunofluorescence. Sequence and phylogenetic tree analysis indicated that the isolates were of the vvIBDV strains and were not different from the flask propagated parental viruses.
  11. Bello MB, Yusoff K, Ideris A, Hair-Bejo M, Peeters BPH, Omar AR
    Biomed Res Int, 2018;2018:7278459.
    PMID: 30175140 DOI: 10.1155/2018/7278459
    Newcastle disease (ND) is one of the most devastating diseases that considerably cripple the global poultry industry. Because of its enormous socioeconomic importance and potential to rapidly spread to naïve birds in the vicinity, ND is included among the list of avian diseases that must be notified to the OIE immediately upon recognition. Currently, virus isolation followed by its serological or molecular identification is regarded as the gold standard method of ND diagnosis. However, this method is generally slow and requires specialised laboratory with biosafety containment facilities, making it of little relevance under epidemic situations where rapid diagnosis is seriously needed. Thus, molecular based diagnostics have evolved to overcome some of these difficulties, but the extensive genetic diversity of the virus ensures that isolates with mutations at the primer/probe binding sites escape detection using these assays. This diagnostic dilemma leads to the emergence of cutting-edge technologies such as next-generation sequencing (NGS) which have so far proven to be promising in terms of rapid, sensitive, and accurate recognition of virulent Newcastle disease virus (NDV) isolates even in mixed infections. As regards disease control strategies, conventional ND vaccines have stood the test of time by demonstrating track record of protective efficacy in the last 60 years. However, these vaccines are unable to block the replication and shedding of most of the currently circulating phylogenetically divergent virulent NDV isolates. Hence, rationally designed vaccines targeting the prevailing genotypes, the so-called genotype-matched vaccines, are highly needed to overcome these vaccination related challenges. Among the recently evolving technologies for the development of genotype-matched vaccines, reverse genetics-based live attenuated vaccines obviously appeared to be the most promising candidates. In this review, a comprehensive description of the current and emerging trends in the detection, identification, and control of ND in poultry are provided. The strengths and weaknesses of each of those techniques are also emphasised.
  12. Mohamed Sohaimi N, Bejo MH, Omar AR, Ideris A, Mat Isa N
    PLoS One, 2019;14(12):e0225863.
    PMID: 31891571 DOI: 10.1371/journal.pone.0225863
    Fowl adenovirus (FAdV) is the causative agent of inclusion body hepatitis (IBH) in chickens with significant economic losses due to high mortality and poor production. It was objectives of the study to attenuate and determine the molecular characteristic of FAdV isolate (UPM1137) of Malaysia passages in primary chicken embryo liver (CEL) cells. The cytopathic effect (CPE) was recorded and the present of the virus was detected by polymerase chain reaction (PCR). Nucleotide and amino acid changes were determined and a phylogenetic tree was constructed. The pathogenicity and immunogenicity of the virus at passage 35 (CEL35) with virus titre of 106.7TCID50/mL was determined in day old specific pathogen free (SPF) chicks via oral or subcutaneous route of inoculation. The study demonstrated that the FAdV isolate was successfully propagated and attenuated in CEL cells up to 35th consecutive passages (CEL35) with delayed of CPE formation within 48 to 72 post inoculation (pi) from CEL20 onwards. The virus caused typical CPE with basophilic intranuclear inclusion bodies, refractile and clumping of cells. The virus is belong to serotype 8b with substitution of amino acid at position 44, 133 and 185 in L1 loop of hexon gene and in knob of fiber gene at position 348 and 360 at CEL35. It is non-pathogenic, but immunogenic in SPF chickens. It was concluded that the FAdV isolate was successfully attenuated in CEL cells with molecular changes in major capsid proteins which affect its infectivity in cell culture and SPF chickens.
  13. Ali- Saeed R, Alabsi AM, Ideris A, Omar AR, Yusoff K, Ali AM
    Asian Pac J Cancer Prev, 2019 Mar 26;20(3):757-765.
    PMID: 30909682
    Aim: Newcastle disease virus (NDV) is a member of genus Avulavirus within the family Paramyxoviridae. Interest
    of using NDV as an anticancer agent has arisen from its ability to kill tumor cells with limited toxicity to normal cells.
    Methods: In this investigation, the proliferation of brain tumor cell line, glioblastoma multiform (DBTRG.05MG)
    induced by NDV strain AF2240 was evaluated in-vitro, by using MTT proliferation assay. Furthermore, Cytological
    observations were studied using fluorescence microscopy and transmission electron microscopy, DNA laddering in
    agarose gel electrophoresis assay used to detect the mode of cell death and analysis of the cellular DNA content by
    flowcytometery. Results: MTT proliferation assay, Cytological observations using fluorescence microscopy and
    transmission electron microscopy show the anti-proliferation effect and apoptogenic features of NDV on DBTRG.05MG.
    Furthermore, analysis of the cellular DNA content showed that there was a loss of treated cells in all cell cycle phases
    (G1, S and G2/M) accompanied with increasing in sub-G1 region (apoptosis peak). Conclusion: It could be concluded
    that NDV strain AF2240 is a potent antitumor agent that induce apoptosis and its cytotoxicity increasing while increasing
    of time and virus titer.
  14. Ali R, Alabsi AM, Ali AM, Ideris A, Omar AR, Yusoff K, et al.
    Neurochem Res, 2011 Nov;36(11):2051-62.
    PMID: 21671106 DOI: 10.1007/s11064-011-0529-8
    Newcastle disease virus (NDV) is a member of genus Avulavirus within the family Paramyxoviridae. Interest of using NDV as an anticancer agent has arisen from its ability to kill tumor cells with limited toxicity to normal cells. In this investigation, the cytotolytic properties of NDV strain AF2240 were evaluated on brain tumor cell line, anaplastic astrocytoma (U-87MG), by using MTT assay. Cytological observations were studied using fluorescence microscopy and transmission electron microscopy to show the apoptogenic features of NDV on U-87MG. DNA laddering in agarose gel electrophoresis and terminal deoxyribonucleotide transferase-mediated dUTP-X nick end-labeling staining assay confirmed that the mode of cell death was by apoptosis. However, analysis of the cellular DNA content by flowcytometery showed that there was a loss of treated U-87MG cells in all cell cycle phases (G1, S and G2/M) accompanied with increasing in sub-G1 region (apoptosis peak). Early apoptosis was observed 6 h post-inoculation by annexin-V flow-cytometry method. It could be concluded that NDV strain AF2240 is a potent antitumor agent that induce apoptosis and its cytotoxicity increasing while increasing of time and virus titer.
  15. Lim KL, Jazayeri SD, Yeap SK, Mohamed Alitheen NB, Bejo MH, Ideris A, et al.
    Res Vet Sci, 2013 Dec;95(3):1224-34.
    PMID: 23948357 DOI: 10.1016/j.rvsc.2013.07.013
    We had examined the immunogenicity of a series of plasmid DNAs which include neuraminidase (NA) and nucleoprotein (NP) genes from avian influenza virus (AIV). The interleukin-15 (IL-15) and interleukin-18 (IL-18) as genetic adjuvants were used for immunization in combination with the N1 and NP AIV genes. In the first trial, 8 groups of chickens were established with 10 specific-pathogen-free (SPF) chickens per group while, in the second trial 7 SPF chickens per group were used. The overall N1 enzyme-linked immunosorbent assay (ELISA) titer in chickens immunized with the pDis/N1+pDis/IL-15 was higher compared to the chickens immunized with the pDis/N1 and this suggesting that chicken IL-15 could play a role in enhancing the humoral immune response. Besides that, the chickens that were immunized at 14-day-old (Trial 2) showed a higher N1 antibody titer compared to the chickens that were immunized at 1-day-old (Trial 1). Despite the delayed in NP antibody responses, the chickens co-administrated with IL-15 were able to induce earlier and higher antibody response compared to the pDis/NP and pDis/NP+pDis/IL-18 inoculated groups. The pDis/N1+pDis/IL-15 inoculated chickens also induced higher CD8+ T cells increase than the pDis/N1 group in both trials (P<0.05). The flow cytometry results from both trials demonstrated that the pDis/N1+pDis/IL-18 groups were able to induce CD4+ T cells higher than the pDis/N1 group (P<0.05). Meanwhile, pDis/N1+pDis/IL-18 group was able to induce CD8+ T cells higher than the pDis/N1 group (P<0.05) in Trial 2 only. In the present study, pDis/NP was not significant (P>0.05) in inducing CD4+ and CD8+ T cells when co-administered with the pDis/IL-18 in both trials in comparison to the pDis/NP. Our data suggest that the pDis/N1+pDis/IL-15 combination has the potential to be used as a DNA vaccine against AIV in chickens.
  16. Roslan NS, Jabeen S, Mat Isa N, Omar AR, Bejo MH, Ideris A
    Genome Announc, 2017 Nov 16;5(46).
    PMID: 29146857 DOI: 10.1128/genomeA.01272-17
    Salmonella enterica subsp. enterica serovar Typhimurium is one of several well-categorized Salmonella serotypes recognized globally. Here, we report the whole-genome sequence of S Typhimurium strain UPM 260, isolated from a broiler chicken.
  17. Lawal N, Hair-Bejo M, Arshad SS, Omar AR, Ideris A
    Adv Virol, 2017;2017:8359047.
    PMID: 29230245 DOI: 10.1155/2017/8359047
    Two Malaysian very virulent infectious bursal disease virus (vvIBDV) strains UPM0081 and UPM190 (also known as UPMB00/81 and UPM04/190, respectively) isolated from local IBD outbreaks were serially passaged 12 times (EP12) in specific pathogen free (SPF) chicken embryonated eggs (CEE) by chorioallantoic membrane (CAM) route. The EP12 isolate was further adapted and serially propagated in BGM-70 cell line up to 20 passages (P20). Characteristic cytopathic effects (CPEs) were subtly observed at P1 in both isolates 72 hours postinoculation (pi). The CPE became prominent at P5 with cell rounding, cytoplasmic vacuoles, granulation, and detachment from flask starting from day 3 pi, up to 7 days pi with titers of 109.50 TCID50/mL and log109.80 TCID50/mL for UPM0081 and UPM190, respectively. The CPE became subtle at P17 and disappeared by P18 and P19 for UPM0081 and UPM190, respectively. However, the presence of IBDV was confirmed by immunoperoxidase, immunofluorescence, and RT-PCR techniques. Phylogenetic analysis showed that these two isolates were of the vvIBDV. It appears that a single mutation of UPM190 and UPM0081 IBDV isolates at D279N could facilitate vvIBDV strain adaptability in CEE and BGM-70 cultures.
  18. Ugwu CC, Hair-Bejo M, Nurulfiza MI, Omar AR, Ideris A
    Vet World, 2022 Nov;15(11):2681-2692.
    PMID: 36590109 DOI: 10.14202/vetworld.2022.2681-2692
    BACKGROUND AND AIM: Fowl adenovirus (FAdV) 8b causes inclusion body hepatitis, resulting in major economic losses globally among chickens. The objectives were to inactivate FAdV 8b isolate propagated in chicken embryo liver (CEL) cells using a stirred tank bioreactor (UPM08136P5B1) and determine the humoral and cell-mediated immune response, efficacy, and virus shedding in broiler chickens.

    MATERIALS AND METHODS: The FAdV 8b isolate UPM08136P5B1 was inactivated using binary ethyleneimine, adjuvanted with Montanide 71VG, inoculated into day-old broiler chickens in a booster group (BG) and non-booster group (NBG), and challenged with a pathogenic FAdV 8b strain. Clinical signs, gross lesions, body weight (BW), liver: body weight ratio, FAdV antibody titer using enzyme-linked immunosorbent assay, and histopathological changes were recorded. The CD3+, CD4+, and CD8+ T-lymphocyte profiles of the liver, spleen, and thymus using flow cytometry, and viral load in liver and cloacal shedding using quantitative polymerase chain reaction were evaluated.

    RESULTS: Chickens in the challenged control group (CCG) exhibited mild clinical signs, gross lesions, and histopathological changes, which were absent in the inoculated groups, and had lower BW and higher liver BW ratio than chickens in the unchallenged control group (UCG); BG and NBG on 35- and 42-days post-inoculation (DPI). Chickens in NBG and BG had higher antibodies than UCG on 7, 21, 35, and 42 DPI. The challenged BG and NBG produced higher antibodies than the CCG on 35 DPI. T-lymphocytes were higher among the inoculated groups than UCG in the liver, spleen, and thymus. Inoculated challenged groups recorded higher CD3+, CD4+, and CD8+ T-lymphocytes on 35 and 42 DPI than CCG. The challenged control group had a significantly higher viral load in the liver than challenged that in BG on 35 DPI and BG and NBG on 42 DPI. The challenged control group had significantly higher challenge FAdV shedding than challenged inoculated groups on 35 and NBG on 42 DPI.

    CONCLUSION: UPM08136P5B1 was successfully inactivated and mixed with Montanide 71VG. The inactivated vaccine candidate that induced humoral and cellular immunity was effective, reduced FAdV load in the liver, and shedding in the cloaca, and could be useful against FAdV 8b infections in chickens.

  19. Tan SW, Ideris A, Omar AR, Yusoff K, Hair-Bejo M
    J Virol Methods, 2009 Sep;160(1-2):149-56.
    PMID: 19447142 DOI: 10.1016/j.jviromet.2009.05.006
    SYBR Green I real-time PCR was developed for detection and differentiation of Newcastle disease virus (NDV). Primers based on the nucleocapsid (NP) gene were designed to detect specific sequence of velogenic strains and lentogenic/vaccine strains, respectively. The assay was developed and tested with NDV strains which were characterized previously. The velogenic strains were detected only by using velogenic-specific primers with a threshold cycle (C(t)) 18.19+/-3.63 and a melting temperature (T(m)) 86.0+/-0.28 degrees C. All the lentogenic/vaccine strains, in contrast, were detected only when lentogenic-specific primers were used, with the C(t) value 14.70+/-2.32 and T(m) 87.4+/-0.21 degrees C. The assay had a dynamic detection range which spans over a 5log(10) concentration range, 10(9)-10(5) copies of DNA plasmid/reaction. The velogenic and lentogenic amplifications showed high PCR efficiency of 100% and 104%, respectively. The velogenic and lentogenic amplifications were highly reproducible with assay variability 0.45+/-0.31% and 1.30+/-0.65%, respectively. The SYBR Green I real-time PCR assay detected successfully the virus from tissue samples and oral swabs collected from the velogenic and lentogenic NDV experimental infection, respectively. In addition, the assay detected and differentiated accurately NDV pathotypes from suspected field samples where the results were in good agreement with both virus isolation and analysis of the fusion (F) cleavage site sequence. The assay offers an attractive alternative method for the diagnosis of NDV.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links