In the title compound, C24H23NO2, a whole mol-ecule is disordered over two sets of sites with occupancies in a ratio of 0.692 (6):0.308 (6). In the major disorder component, the naphthalene ring system forms a dihedral angle of 68.6 (5)° with the benzene ring. The corresponding angle in the minor component is 81.6 (10)°. In the crystal, mol-ecules are linked into chains propagating along the b-axis direction via weak C-H⋯O hydrogen bonds. The crystal packing is further consolidated by weak C-H⋯π inter-actions.
In this study, the interactive effects of feed flow rate (QF) and up-flow velocity (V up) on the performance of an up-flow anaerobic sludge fixed film (UASFF) reactor treating palm oil mill effluent (POME) were investigated. Long-term performance of the UASFF reactor was first examined with raw POME at a hydraulic loading rate (HRT) of 3 d and an influent COD concentration of 44300 mg/l. Extreme reactor instability was observed after 25 d. Raw POME was then chemically pretreated and used as feed. Anaerobic digestion of pretreated POME was modeled and analyzed with two operating variables, i.e. feed flow rate and up-flow velocity. Experiments were conducted based on a central composite face-centered design (CCFD) and analyzed using response surface methodology (RSM). The region of exploration for digestion of the pretreated POME was taken as the area enclosed by the feed flow rate (1.01, 7.63 l/d) and up-flow velocity (0.2, 3 m/h) boundaries. Twelve dependent parameters were either directly measured or calculated as response. These parameters were total COD (TCOD) removal, soluble COD (SCOD) removal, effluent pH, effluent total volatile fatty acid (TVFA), effluent bicarbonate alkalinity (BA), effluent total suspended solids (TSS), CH4 percentage in biogas, methane yield (Y M), specific methanogenic activity (SMA), food-to-sludge ratio (F/M), sludge height in the UASB portion and solid retention time (SRT). The optimum conditions for POME treatment were found to be 2.45 l/d and 0.75 m/h for QF and V up, respectively (corresponding to HRT of 1.5 d and recycle ratio of 23.4:1). The present study provides valuable information about interrelations of quality and process parameters at different values of the operating variables.
A new series of liquid crystals decorated gold nanoparticles is synthesized whose molecular architecture has azobenzenes moieties as the peripheral units connected to gold nanoparticles (Au NPs) via alkyl groups. The morphology and mesomorphic properties were investigated by field emission scanning electron microscope, high-resolution transmission electron microscopy, differential scanning calorimetry and polarizing optical microscopy. The thiolated ligand molecules (3a-c) showed enantiotropic smectic A phase, whereas gold nanoparticles (5a-c) exhibit nematic and smectic A phase with monotropic nature. HR-TEM measurement showed that the functionalized Au NPs are of the average size of 2nm and they are well dispersed without any aggregation. The trans-form of azo compounds showed a strong band in the UV region at ∼378nm for the π-π(∗) transition, and a weak band in the visible region at ∼472nm due to the n-π(∗) transition. These molecules exhibit attractive photoisomerization behaviour in which trans-cis transition takes about 15s whereas the cis-trans transition requires about 45min for compound 5c. The extent of reversible isomerization did not decay after 10 cycles, which proved that the photo-responsive properties of 5c were stable and repeatable. Therefore, these materials may be suitably exploited in the field of molecular switches and the optical storage devices.
The asymmetric unit of the title compound, C17H18O3, comprises three independent mol-ecules with similar geometries. In each mol-ecule, the carbonyl group is twisted away from the napthalene ring system, making dihedral angles of 1.0 (2), 1.05 (19)° and 1.5 (2)°. The butene group in all three mol-ecules are disordered over two sets of sites, with a refined occupancy ratio of 0.664 (6):0.336 (6). In the crystal, mol-ecules are oriented with respect to their carbonyl groups, forming head-to-head dimers via O-H⋯O hydrogen bonds. Adjacent dimers are further inter-connected by C-H⋯O hydrogen bonds into chains along the a-axis direction. The crystal structure is further stabilized by weak C-H⋯π inter-actions.
The aim of this research is to develop biocompatible nanofibrous mats using hydroxyethyl cellulose with improved cellular adhesion profiles and stability and use these fibrous mats as potential scaffold for skin tissue engineering. Glutaraldehyde was used to treat the scaffolds water insoluble as well as improve their biostability for possible use in biomedical applications. Electrospinning of hydroxyethyl cellulose (5 wt%) with poly(vinyl alcohol) (15 wt%) incorporated with and without collagen was blended at (1:1:1) and (1:1) ratios, respectively, and was evaluated for optimal criteria as tissue engineering scaffolds. The nanofibrous mats were crosslinked and characterized by scanning electron microscope, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Scanning electron microscope images showed that the mean diameters of blend nanofibers were gradually increased after chemically crosslinking with glutaraldehyde. Fourier transform infrared spectroscopy was carried out to understand chemical interactions in the presence of aldehyde groups. Thermal characterization results showed that the stability of hydroxyethyl cellulose/poly(vinyl alcohol) and hydroxyethyl cellulose/poly(vinyl alcohol)/collagen nanofibers was increased with glutaraldehyde treatment. Studies on cell-scaffolds interaction were carried out by culturing human fibroblast (hFOB) cells on the nanofibers by assessing the growth, proliferation, and morphologies of cells. The scanning electron microscope results show that better cell proliferation and attachment appeared on hydroxyethyl cellulose/poly(vinyl alcohol)/collagen substrates after 7 days of culturing, thus, promoting the potential of electrospun scaffolds as a promising candidate for tissue engineering applications.
The title compound, C(17)H(16)N(2)O(3), has an E conformation about the azobenzene (-N=N-) linkage. The benzene rings are twisted slightly with respect to each other [6.79 (9)°], while the dihedral angle between the plane through the carb-oxy group and the attached benzene ring is 3.2 (2)°. In the crystal, mol-ecules are oriented with the carb-oxy groups head-to-head, forming O-H⋯O hydrogen-bonded inversion dimers. These dimers are connected by C-H⋯O hydrogen-bonds into layers lying parallel to the (013) plane.
We evaluated the effects of a standardized Labisia pumila var. alata (LPva) extract on body weight change, hydroxysteroid (11-beta) dehydrogenase 1 (HSD11B1) expressions and corticosterone (CORT) level in ovariectomized (OVX) rats. The decoction of LPva has been used for generations among Malay women in Malaysia to maintain a healthy reproductive system.Thirty-six Sprague-Dawley OVX rats were treated orally with LPva extract (10, 20 or 50 mg/kg/day) or estrogen replacement (ERT) for 30 days. Sham operated rats were used as controls. Compared to untreated OVX rats, LPva-treated rats showed less weight gain and had significantly down-regulated HSD11B1 mRNA in liver tissues. HSD11B1 mRNA in adipose tissues increased by 55% (p < 0.05) in OVX rats but normalized in rats treated with LPva. Similarly, there was significant down-regulation (p < 0.05) of protein levels of HSD11B1 in both liver and adipose tissue of LPva and ERT groups, and CORT levels were significantly reduced in both groups of rats. This is the first study ever conducted to evaluate the beneficial effects of LPva in relation to weight gain caused by estrogen insufficiency. Results implied that the bioactive components in LPva extract affect not only HSD11B1 expressions in both adipose and liver tissues but also decrease circulating CORT. The extract should be explored for its potential use as a natural remedy for weight management.
In the title compound, C26H24N2O2, the benzimidazole ring system is almost planar [maximum displacement = 0.025 (1) Å] and makes dihedral angles of 80.48 (5) and 41.57 (5)° with the benzene rings, which are inclined to one another by 65.33 (6)°. In the crystal, mol-ecules are linked via C-H⋯π and weak π-π inter-actions [centroid-centroid distance = 3.8070 (7) Å and inter-planar distance = 3.6160 (5) Å].
In this present study, we reported broccoli (Brassica oleracea L.) as a potential candidate for the synthesis of gold and silver nanoparticles (NPs) in green chemistry method. The synthesized metal nanoparticles are evaluated their antimicrobial efficacy against different human pathogenic organisms. The physico-chemical properties of gold nanoparticles were analyzed using different analytical techniques such as a UV-Vis spectrophotometer, Field Emission Scanning Electron Microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and a Fourier Transform Infrared spectrophotometer. In addition, gold and silver NP antimicrobial efficacy was checked by disc diffusion assay. UV-Vis color intensity of the nanoparticles was shown at 540 and 450 nm for gold and silver nanoparticles respectively. Higher magnification of the Field Emission Scanning Electron Microscopy image shows the variable morphology of the gold nanoparticles such as spherical, rod and triangular shapes and silver nanoparticles were seen in spherical shapes. The average spherical size of the particles was observed in 24-38 nm for gold and 30-45 nm for silver NPs. X-ray diffraction pattern confirmed the presence of gold nanoparticles and silver nanoparticles which were crystalline in nature. Additionally, the functional metabolites were identified by the Fourier Transform Infrared spectroscopy. IR spectra revealed phenols, alcohols, aldehydes (sugar moieties), vitamins and proteins are present in the broccoli extract which are accountable to synthesize the nanoparticles. The synthesized gold and silver NPs inhibited the growth of the tested bacterial and fungal pathogens at the concentration of 50 μg/mL respectively. In addition, broccoli mediated gold and silver nanoparticles have shown potent antimicrobial activity against human pathogens.
Rhodomyrtus tomentosa (Aiton) Hassk. has a wide spectrum of pharmacological effects and has been used to treat wounds, colic diarrhoea, heartburns, abscesses and gynaecopathy. The potential antiproliferative activities of R. tomentosa extracts from different solvents were evaluated in vitro on HepG2, MCF-7 and HT 29 cell lines while antioxidant activity was monitored by radical scavenging assay (DPPH), copper reducing antioxidant capacity (CUPRAC) and β-carotene bleaching assay. Extracts from R. tomentosa show the viability of the cells in concentration-dependent manner. According to the IC50 obtained, the ethyl acetate extracts showed significant antiproliferative activity on HepG2 (IC50 11.47 ± 0.280 μg/mL), MCF-7 (IC50 2.68 ± 0.529 μg/mL) and HT 29 (IC50 16.18 ± 0.538 μg/mL) after 72 h of treatment. Bioassay guided fractionation of the ethyl acetate extract led to the isolation of lupeol. Methanol extracts show significant antioxidant activities in DPPH (EC50 110.25 ± 0.005 μg/ml), CUPRAC (EC50 53.84 ± 0.004) and β-carotene bleaching (EC50 58.62 ± 0.001) due to the presence of high total flavonoid and total phenolic content which were 110.822 ± 0.017 mg butylated hydroxytoluene (BHT)/g and 190.467 ± 0.009 mg gallic acid (GAE)/g respectively. Taken together, the results extracts show the R. tomentosa as a potential source of antioxidant and antiproliferative efficacy.
Clinacanthus nutans has attracted Malaysian public interest due to its high medicinal value in the prevention of cancer. Currently, the specific compound or compounds giving rise to the anticancer potential of C. nutans has not been investigated thoroughly. The extraction was carried out by MeOH at room temperature using the powdered bark of C. nutans, while chromatography was carried out on a silica gel RP-18 column using the crude methanolic extract. Six fractions collected from column chromatography were evaluated by MTT assay against two breast cancer cell lines: MDA-MB-231 and MCF-7. Amongst the fractions, A12 and A17 were shown to exhibit the highest activity. Two sulphur-containing compounds, viz., entadamide C (1) and clinamide D (2), were isolated from these fractions. Molecular docking simulation studies revealed that entadamide C and clinamide D could bind favourably to the caspase-3 binding site with the binding energy of -4.28 kcal/mol and -4.84 kcal/mol, respectively. This study provides empirical evidence for the presence of sulphur-containing compounds in the leaves of C. nutans that displayed anticancer effects which explains its ethnomedicinal application against breast cancer. The docking simulation study showed that both compounds could serve as important templates for future drug design and development.
In this study, a novel fibrous membrane of hydroxyethyl cellulose (HEC)/poly(vinyl alcohol) blend was successfully fabricated by electrospinning technique and characterized. The concentration of HEC (5%) with PVA (15%) was optimized, blended in different ratios (30-50%) and electrospun to get smooth nanofibers. Nanofibrous membranes were made water insoluble by chemically cross-linking by glutaraldehyde and used as scaffolds for the skin tissue engineering. The microstructure, morphology, mechanical and thermal properties of the blended HEC/PVA nanofibrous scaffolds were characterized by scanning electron microscope, Fourier transform infrared spectroscopy, differential scanning colorimetry, universal testing machine and thermogravimetric analysis. Cytotoxicity studies on these nanofibrous scaffolds were carried out using human melanoma cells by the MTT assays. The cells were able to attach and spread in the nanofibrous scaffolds as shown by the SEM images. These preliminary results show that these nanofibrous scaffolds that supports cell adhesion and proliferation is promising for skin tissue engineering.
Photosynthesis is one of the most fundamental biochemical processes on earth such that it is vital to the existence of most lives on this planet. In fact, unravelling the potentials in enhancing photosynthetic efficiency and electron transfer process, which are thought to improve plant growth is one of the emerging approaches in tackling modern agricultural shortcomings. In light of this, zero-dimensional carbon quantum dots (CQD) have emerged and garnered much interest in recent years which can enhance photosynthesis by modulating the associated electron transfer process. In this work, CQD was extracted from empty fruit bunch (EFB) biochar using a green acid-free microwave method. The resulting CQD was characterized using HRTEM, PL, UV-Vis and XPS. Typical rice (C3) and corn (C4) crops were selected in the present study in order to compare the significant effect of CQD on the two different photosynthetic pathways of crops. CQD was first introduced into crop via foliar spraying application instead of localised placement of CQD before seedling development. The influence of CQD on the photosynthetic efficiency of rice (C3) and corn (C4) leaves was determined by measuring both carbon dioxide conversion and the stomatal conductance of the leaf. As a result, the introduction of CQD greatly enhanced the photosynthesis in CQD-exposed crops. This is the first study focusing on phylogenetically constrained differences in photosynthetic responses between C3 and C4 crops upon CQD exposure, which gives a better insight into the understanding of photosynthesis process and shows considerable promise in nanomaterial research for sustainable agriculture practices.
The title compound, C23H22FN5S, exists in a trans conformation with respect to the methene C=C and the acyclic N=C bonds. The 1,2,4-triazole-5(4H)-thione ring makes dihedral angles of 88.66 (9) and 84.51 (10)°, respectively, with the indole and benzene rings. In the crystal, mol-ecules are linked by pairs of N-H⋯S hydrogen bonds, forming inversion dimers with an R 2 (2)(8) ring motif. The dimers are linked via C-H⋯π inter-actions, forming chains along [1-10]. The chains are linked via π-π inter-actions involving inversion-related triazole rings [centroid-centroid distance = 3.4340 (13) Å], forming layers parallel to the ab plane.
Bambara groundnut (Vigna subterranea L. Verdc.) is considered an emerging crop for the future and known as a crop for the new millennium. The core intention of this research work was to estimate the variation of landraces of Bambara groundnut considering their 14 qualitative and 27 numerical traits, to discover the best genotype fitted in Malaysia. The findings of the ANOVA observed a highly significant variation (p ≤ 0.01) for all the traits evaluated. There was a substantial variation (7.27 to 41.21%) coefficient value, and 14 out of the 27 numerical traits noted coefficient of variation (CV) ≥ 20%. Yield (kg/ha) disclosed positively strong to perfect high significant correlation (r = 0.75 to 1.00; p ≤ 0.001) with traits like fresh pod weight, dry pod weight, and dry seed weight. The topmost PCV and GCV values were estimated for biomass dry (41.09%) and fresh (40.53%) weight with high heritability (Hb) and genetic advance (GA) Hb = 95.19%, GA = 80.57% and Hb = 98.52%, GA = 82.86%, respectively. The topmost heritability was recorded for fresh pod weight (99.89%) followed by yield (99.75%) with genetic advance 67.95% and 62.03%, respectively. The traits with Hb ≥ 60% and GA ≥ 20% suggested the least influenced by the environment as well as governed by the additive genes and direct selection for improvement of such traits can be beneficial. To estimate the genetic variability among accessions, the valuation of variance components, coefficients of variation, heritability, and genetic advance were calculated. To authenticate the genetic inequality, an unweighted pair group produced with arithmetic mean (UPGMA) and principal component analysis was executed based on their measurable traits that could be a steadfast method for judging the degree of diversity. Based on the UPGMA cluster analysis, constructed five distinct clusters and 44 accessions from clusters II and IV consider an elite type of genotypes that produce more than one ton yield per hectare land with desirable traits. This study exposed an extensive disparity among the landraces and the evidence on genetic relatives will be imperative in using the existing germplasm for Bambara groundnut varietal improvement. Moreover, this finding will be beneficial for breeders to choose the desirable numerical traits of V. subterranea in their future breeding program.
A novel third generation H2O2 biosensor is fabricated using multiporous SnO2 nanofiber/carbon nanotubes (CNTs) composite as a matrix for the immobilization of redox protein onto glassy carbon electrode. The multiporous nanofiber (MPNFs) of SnO2 is synthesized by electrospinning technique from the tin precursor. This nanofiber shows high surface area and good electrical conductivity. The SnO2 nanofiber/CNT composite increases the efficiency of biomolecule loading due to its high surface area. The morphology of the nanofiber has been evaluated by scanning electron microscopy (SEM). Cyclic Voltammetry and amperometry technique are employed to study and optimize the performance of the fabricated electrode. A direct electron transfer between the protein's redox centre and the glassy carbon electrode is established after fabrication of the electrode. The fabricated electrode shows excellent electrocatalytic reduction to H2O2. The catalysis currents increases linearly to the H2O2 concentration in a wide range of 1.0 10-6-1.4×10-4M and the lowest detection limit was 30nM (S/N=3). Moreover, the biosensor showed a rapid response to H2O2, a good stability and reproducibility.
Green porous and ecofriendly scaffolds have been considered as one of the potent candidates for tissue engineering substitutes. The objective of this study is to investigate the biocompatibility of hydroxyethyl cellulose (HEC)/silver nanoparticles (AgNPs), prepared by the green synthesis method as a potential host material for skin tissue applications. The substrates which contained varied concentrations of AgNO3(0.4%-1.6%) were formed in the presence of HEC, were dissolved in a single step in water. The presence of AgNPs was confirmed visually by the change of color from colorless to dark brown, and was fabricated via freeze-drying technique. The outcomes exhibited significant porosity of >80%, moderate degradation rate, and tremendous value of water absorption up to 1163% in all samples. These scaffolds of HEC/AgNPs were further characterized by SEM, UV-Vis, ATR-FTIR, TGA, and DSC. All scaffolds possessed open interconnected pore size in the range of 50-150μm. The characteristic peaks of Ag in the UV-Vis spectra (417-421nm) revealed the formation of AgNPs in the blend composite. ATR-FTIR curve showed new existing peak, which implies the oxidation of HEC in the cellulose derivatives. The DSC thermogram showed augmentation in Tgwith increased AgNO3concentration. Preliminary studies of cytotoxicity were carried out in vitro by implementation of the hFB cells on the scaffolds. The results substantiated low toxicity of HEC/AgNPs scaffolds, thus exhibiting an ideal characteristic in skin tissue engineering applications.
This investigation was carried out to explore G × E interaction for yield and its associated attributes in 30 Bambara groundnut genotypes across four environments in tropical Malaysia. Such evaluations are essential when the breeding program's objective is to choose genotypes with broad adaption and yield potential. Studies of trait relationships, variance components, mean performance, and genetic linkage are needed by breeders when designing, evaluating, and developing selection criteria for improving desired characteristics in breeding programs. The evaluation of breeding lines of Bambara groundnut for high yield across a wide range of environments is important for long-term production and food security. Each site's experiment employed a randomized complete block design with three replicates. Data on vegetative and yield component attributes were recorded. The analysis of variance revealed that there were highly significant (p ≤ 0.01) differences among the 30 genotypes for all variables evaluated. A highly significant and positive correlation was identified between yield per hectare and dry seed weight (0.940), hundred seed weight (0.844), fresh pod weight (0.832), and total pod weight (0.750); the estimated correlation between dry weight of pods and seed yield was 1.0. The environment was more important than genotype and G × E in determining yield and yield components.A total of 49% variation is covered by PC1 (33.9%) and PC2 (15.1%) and the genotypes formed five distinct clusters based on Ward hierarchical clustering (WHC) method. The genotypes S5G1, S5G3, S5G5, S5G6, S5G8, S5G7, S5G2, S5G4, S5G10, S5G13, S5G11, and S5G14 of clusters I, II, and III were closest to the ideal genotype with superior yield across the environments. The PCA variable loadings revealed that an index based on dry pod weight, hundred seed weight, number of total pods and fresh pod weight could be used as a selection criteria to improve seed yield of Bambara groundnut.
In a breeding program, studies of genotypic and phenotypic relationships among agricultural crop traits are useful to design, evaluate, and develop selection criteria for desirable traits. Using path coefficient analysis, the present study was executed to estimate the phenotypic, genotypic, and environmental correlation coefficients between yield and yield-related traits and to determine the direct and indirect effects of yield-related traits on yield per plant. A total of 30 genotypes of Vigna subterranea were studied under tropical conditions at two sites over two planting seasons (considered as four environments). The experiment at each site used a randomized complete block design with three replicates. Data were collected on vegetative and yield component attributes. Based on analysis of variance, pooled results showed that there were positive and highly significant differences (p ≤ 0.01) among the 30 genotypes for all attributes studied. Highly significant and positive strong correlation at phenotypic level was observed for dry seed weight (0.856), hundred seed weight (0.754), fresh pod weight (0.789), and total pod weight (0.626) with yield in kg per hectare, while moderate positive correlations were observed for harvest cut (0.360) and days to maturity (0.356). However, a perfect positive correlation was observed for the dry weight of pods with seed yield. In contrast, days to 50% flowering (- 0.350) showed a negative significant relationship with yield per hectare. The dried pod weight attribute (1.00) had a high positive direct effect on yield. Fresh pod weight had the greatest indirect effect on yield per hectare, followed by the number of total pods by dry pod weight. As a result, dry pod weight, hundred seed weight, number of total pods, and fresh pod weight could be used as selection criteria to improve the seed yield of Bambara groundnut (Vigna subterranea).