Displaying publications 41 - 52 of 52 in total

Abstract:
Sort:
  1. Palaniveloo K, Ong KH, Satriawan H, Abdul Razak S, Suciati S, Hung HY, et al.
    3 Biotech, 2023 Oct;13(10):337.
    PMID: 37701628 DOI: 10.1007/s13205-023-03725-6
    Alzheimer's disease (AD) is a neurodegenerative disease that causes deterioration in intelligence and psychological activities. Yet, till today, no cure is available for AD. The marine environment is an important sink of bioactive compounds with neuroprotective potential with reduced adverse effects. Recently, we collected the red algae Laurencia snackeyi from Terumbu Island, Malaysia which is known to be rich in halogenated metabolites making it the most sought-after red algae for pharmaceutical studies. The red alga was identified based on basic morphological characteristics, microscopic observation and chemical data from literature. The purplish-brown algae was confirmed a new record. In Malaysia, this species is poorly documented in Peninsular Malaysia as compared to its eastern continent Borneo. Thus, this study intended to investigate the diversity of secondary metabolites present in the alga and its cholinesterase inhibiting potential for AD. The extract inhibited both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50 values of  14.45 ± 0.34 μg mL-1 and 39.59 ± 0.24 μg mL-1, respectively. Subsequently, we isolated the synderanes, palisadin A (1), aplysistatin (2) and 5-acetoxypalisadin B (3) that was not exhibit potential. Mass spectrometry analysis detected at total of 33 additional metabolites. The computational aided molecular docking using the AChE and BChE receptors on all metabolites shortlisted 5,8,11,14-eicosatetraynoic acid (31) and 15-hydroxy-1-[2-(hydroxymethyl)-1-piperidinyl]prost-13-ene-1,9-dione (42) with best inhibitory properties, respectively with the lowest optimal combination of S-score and RMSD values. This study shows the unexplored potential of marine natural resources, however, obtaining sufficient biomass for detailed investigation is an uphill task. Regardless, there is a lot of potential for future prospects with a wide range of marine natural resources to study and the incorporation of synthetic chemistry, in vivo studies in experimental design.

    SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-023-03725-6.

  2. Khoo CS, Shukor MF, Tan JK, Tan MM, Yong LL, Sahibulddin SZ, et al.
    Epilepsy Behav, 2023 Oct;147:109432.
    PMID: 37716324 DOI: 10.1016/j.yebeh.2023.109432
    BACKGROUND: Vitamin D deficiency among adult people with epilepsy (PWE) is scarcely studied, despite its essential role in bone health and maintaining homeostasis. Several studies have studied the relationship between factors related to epilepsy and vitamin D metabolism. We aim to investigate this in our multi-ethnic society.

    METHODS: This was a single-center cross-sectional study. We recruited 159 participants diagnosed with epilepsy on antiseizure medications (ASMs). We included those aged 18 years and above, excluding patients with long-term medical conditions that would affect vitamin D metabolism. Sociodemographic data and details of epilepsy were collated. Venous sampling was performed to analyze the levels of albumin-corrected calcium, phosphate, alkaline phosphatase, and 25-hydroxyvitamin D3 [25(OH)D]. Serum 25(OH)D level is defined as deficient (<20 ng/ml), insufficient (20-29 ng/ml), and sufficient (≥30 ng/ml).

    RESULTS: The study reported that 73 (45.9%) participants had vitamin D deficiency, 38 (23.9%) had vitamin D insufficiency, and 48 (30.2%) patients had sufficient vitamin D levels. The predictors identified were PWE aged 18 to 44 years old (p = 0.001), female gender (OR 3.396, p = 0.002), and ethnicity (p 

  3. M H Subari IAA, Mutthumanickam G, Hj Jikal M, Shah MD, Tan JK, Tan YS, et al.
    Toxicon, 2024 Nov 28;251:108133.
    PMID: 39426425 DOI: 10.1016/j.toxicon.2024.108133
    In Malaysia, mushroom poisoning poses a significant public health concern, particularly as local communities frequently consume wild mushrooms without fully recognizing the potential dangers they present. Ingestion of wild mushrooms, which resemble edible species but contain deadly chemicals, is the main cause of poisoning risk. The genus Entoloma (Fr.) P. Kumm is dispersed worldwide, with over 1500 species recorded. Entoloma mastoideum, a poisonous mushroom, was recorded for the first time at Kota Marudu district, Sabah, Malaysia, where ten cases of mushroom poisoning outbreaks were recorded during the rainy season of October 2019. The morphological characters of the specimens were documented and their microscopic features were analyzed using compound microscope and scanning electron microscope. A phylogenetic tree was constructed using Maximum likelihood and Bayesian analysis. Chemical profiling of the poisonous mushroom specimen was done via liquid chromatograph mass spectrometry (LC-MS/MS) to identify toxic metabolites. The phylogenetic analysis showed that the Bornean E. mastoideum is closely related to the Chinese isolates (100% BS/1.0 PP). LC-MS/MS profiling detected a total of 162 metabolites that were classified into ten general groups, where several toxic compounds were detected amongst the aromatics, essential amino acids, and fatty acid derivatives. The toxic compounds identified in the mushroom extract, including amino acid derivatives such as 3,4,5,6-tetrahydroxyynorleucine, valpromide, and betaine, have been reported to cause neurotoxicity, cardiotoxicity, liver damage, and gastrointestinal harm. The presence of these toxic compounds underscores the need for caution when consuming wild mushrooms. Further research on poisonous Entoloma species is vital for developing accurate identification methods and understanding their toxic potential. This knowledge is essential for enhancing public awareness, preventing mushroom poisoning incidents and safeguarding public health.
  4. Mohd Faiz MN, Abd Rahman MSH, Nurazfalina AAA, Jennifer T, Nabil S, Tan JK, et al.
    Med J Malaysia, 2024 Jul;79(4):443-451.
    PMID: 39086342
    INTRODUCTION: Oral health problems are frequently overlooked in patients with epilepsy. We evaluate the oral health status of epilepsy patients from a tertiary teaching hospital.

    MATERIALS AND METHODS: We conducted a cross-sectional study of epilepsy patients from the neurology clinic, Hospital Canselor Tuanku Muhriz, Kuala Lumpur. The dental assessment included the decayed, missing and filled teeth (DMFT) criteria, as well as the plaque and periodontal status by dentists.

    RESULTS: A total of 151 patients were recruited. The median age of onset of epilepsy was 16 (IQR 7-30) years, with generalised seizures at 59.6% and focal seizures in 40.4% of patients. Fair or poor oral health was present in 59 (39.1%) and gingivitis was seen in 65 (43%). The median DMFT decayed (D), missing (M) and filled teeth (FT) was 3 (IQR 1- 7). The median age of patients with fair or poor oral health was older (40 years, IQR 31-51) than the patients with excellent or good oral health (33 years, IQR 26-45), (p=0.014). Multivariate logistic regression analysis showed that carbamazepine (Odds Ratios, OR: 3.694; 95% Confidence Intervals, 95%CI: 1.314, 10.384) and hypertension (OR 6.484; 95%CI: 1.011, 41.594) are the risk factors for fair or poor oral health. Phenytoin use is 4.271 times more likely to develop gingivitis (OR 4.271; 95% CI: 1.252, 14.573).

    CONCLUSION: Factors that contribute to fair or poor oral health include age, antiseizure medications like phenytoin and carbamazepine, and hypertension. Effective preventive strategies should be implemented to maintain oral health in epilepsy patients.

  5. Goon DE, Ab-Rahim S, Mohd Sakri AH, Mazlan M, Tan JK, Abdul Aziz M, et al.
    Sci Rep, 2021 Oct 25;11(1):21001.
    PMID: 34697380 DOI: 10.1038/s41598-021-00454-9
    Excessive high fat dietary intake promotes risk of developing non-alcoholic fatty liver disease (NAFLD) and predisposed with oxidative stress. Palm based tocotrienol-rich fraction (TRF) has been reported able to ameliorate oxidative stress but exhibited poor bioavailability. Thus, we investigated whether an enhanced formulation of TRF in combination with palm kernel oil (medium-chain triglycerides) (ETRF) could ameliorate the effect of high-fat diet (HFD) on leptin-deficient male mice. All the animals were divided into HFD only (HFD group), HFD supplemented with ETRF (ETRF group) and HFD supplemented with TRF (TRF group) and HFD supplemented with PKO (PKO group). After 6 weeks, sera were collected for untargeted metabolite profiling using UHPLC-Orbitrap MS. Univariate analysis unveiled alternation in metabolites for bile acids, amino acids, fatty acids, sphingolipids, and alkaloids. Bile acids, lysine, arachidonic acid, and sphingolipids were downregulated while xanthine and hypoxanthine were upregulated in TRF and ETRF group. The regulation of these metabolites suggests that ETRF may promote better fatty acid oxidation, reduce oxidative stress and pro-inflammatory metabolites and acts as anti-inflammatory in fatty liver compared to TRF. Metabolites regulated by ETRF also provide insight of its role in fatty liver. However, further investigation is warranted to identify the mechanisms involved.
  6. Venmathi Maran BA, Palaniveloo K, Mahendran T, Chellappan DK, Tan JK, Yong YS, et al.
    Molecules, 2023 Aug 15;28(16).
    PMID: 37630329 DOI: 10.3390/molecules28166075
    Vibriosis and parasitic leech infestations cause the death of various farmed fish, such as groupers, hybrid groupers, sea bass, etc., in Malaysia and other Southeast Asian countries. In the absence of natural control agents, aquaculture operators rely on toxic chemicals to control Vibrio infections and parasitic leeches, which can have a negative impact on the environment and health. In the present study, we investigated the antivibrio and antiparasitic activities of the aqueous extract of giant sword fern (GSF) (Nephrolepis biserrata, Nephrolepidaceae, locally known as "Paku Pedang") against four Vibrio spp. and the parasitic leech Zeylanicobdella arugamensis, as well as its metabolic composition using the ultra-high-performance liquid chromatography-high-resolution mass spectrometry system (UHPLC-HRMS). The data show that the aqueous extract of GSF at a concentration of 100 mg/mL exhibits potent bactericidal activity against V. parahaemolyticus with a zone of inhibition of 19.5 mm. In addition, the extract showed dose-dependent activity against leeches, resulting in the complete killing of the parasitic leeches within a short period of 11-43 min when tested at concentrations ranging from 100 to 25 mg/mL. The UHPLC-HRMS analysis detected 118 metabolites in the aqueous extract of GSF. Flavonoids were the primary metabolites, followed by phenolic, aromatic, fatty acyl, terpenoid, vitamin and steroidal compounds. Notably, several of these metabolites possess antibacterial and antiparasitic properties, including cinnamaldehyde, cinnamic acid, apigenin, quercetin, cynaroside, luteolin, naringenin, wogonin, 6-gingerol, nicotinamide, abscisic acid, daidzein, salvianolic acid B, etc. Overall, our study shows the significant antibacterial and antiparasitic potential of the GSF aqueous extract, which demonstrates the presence of valuable secondary metabolites. Consequently, the aqueous extract is a promising natural alternative for the effective control of Vibrio infections and the treatment of parasitic leeches in aquaculture systems.
  7. Awuah WA, Ahluwalia A, Ghosh S, Roy S, Tan JK, Adebusoye FT, et al.
    Eur J Med Res, 2023 Nov 16;28(1):529.
    PMID: 37974227 DOI: 10.1186/s40001-023-01504-w
    Single-cell ribonucleic acid sequencing (scRNA-seq) has emerged as a transformative technology in neurological and neurosurgical research, revolutionising our comprehension of complex neurological disorders. In brain tumours, scRNA-seq has provided valuable insights into cancer heterogeneity, the tumour microenvironment, treatment resistance, and invasion patterns. It has also elucidated the brain tri-lineage cancer hierarchy and addressed limitations of current models. Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis have been molecularly subtyped, dysregulated pathways have been identified, and potential therapeutic targets have been revealed using scRNA-seq. In epilepsy, scRNA-seq has explored the cellular and molecular heterogeneity underlying the condition, uncovering unique glial subpopulations and dysregulation of the immune system. ScRNA-seq has characterised distinct cellular constituents and responses to spinal cord injury in spinal cord diseases, as well as provided molecular signatures of various cell types and identified interactions involved in vascular remodelling. Furthermore, scRNA-seq has shed light on the molecular complexities of cerebrovascular diseases, such as stroke, providing insights into specific genes, cell-specific expression patterns, and potential therapeutic interventions. This review highlights the potential of scRNA-seq in guiding precision medicine approaches, identifying clinical biomarkers, and facilitating therapeutic discovery. However, challenges related to data analysis, standardisation, sample acquisition, scalability, and cost-effectiveness need to be addressed. Despite these challenges, scRNA-seq has the potential to transform clinical practice in neurological and neurosurgical research by providing personalised insights and improving patient outcomes.
  8. Ekeuku SO, Tan JK, Al-Saadi HM, Ahmad F, Elvy Suhana MR, Arlamsyah AM, et al.
    Life (Basel), 2023 Dec 15;13(12).
    PMID: 38137944 DOI: 10.3390/life13122343
    Osteoarthritis (OA) is a degenerative joint condition with limited disease-modifying treatments currently. Palm tocotrienol-rich fraction (TRF) has been previously shown to be effective against OA, but its mechanism of action remains elusive. This study aims to compare serum metabolomic alteration in Sprague-Dawley rats with monosodium iodoacetate (MIA)-induced OA which were treated with palm TRF, glucosamine sulphate, or a combination of both. This study was performed on thirty adult male rats, which were divided into normal control (n = 6) and OA groups (n = 24). The OA group received intra-articular injections of MIA and daily oral treatments of refined olive oil (vehicle, n = 6), palm TRF (100 mg/kg, n = 6), glucosamine sulphate (250 mg/kg, n = 6), or a combination of TRF and glucosamine (n = 6) for four weeks. Serum was collected at the study's conclusion for metabolomic analysis. The findings revealed that MIA-induced OA influences amino acid metabolism, leading to changes in metabolites associated with the biosynthesis of phenylalanine, tyrosine and tryptophan as well as alterations in the metabolism of phenylalanine, tryptophan, arginine and proline. Supplementation with glucosamine sulphate, TRF, or both effectively reversed these metabolic changes induced by OA. The amelioration of metabolic effects induced by OA is linked to the therapeutic effects of TRF and glucosamine. However, it remains unclear whether these effects are direct or indirect in nature.
  9. Abdul Sani NF, Ahmad Damanhuri MH, Amir Hamzah AIZ, Abu Bakar ZH, Tan JK, Nor Aripin KN, et al.
    Free Radic Res, 2018 Sep;52(9):1000-1009.
    PMID: 30079776 DOI: 10.1080/10715762.2018.1506877
    Ageing is associated with increased oxidative stress accompanied by cognitive decline. The aim of this study was to evaluate oxidative stress biomarkers and their possible relationship with cognitive performances during ageing among the Malay population. Approximately 160 healthy Malay adults aged between 28 and 79 years were recruited around Selangor and Klang Valley. Cognitive function was assessed by Montreal Cognitive Assessment (MoCA), forward digit span (FDS), backward digit span (BDS), digit symbol, Rey Auditory Verbal Learning Test immediate recalled [RAVLT(I)] and delayed recalled [RAVLT(D)], and visual reproduction immediate recalled (VR-I) and delayed recalled (VR-II). DNA damage, plasma protein carbonyl and malondialdehyde (MDA) levels were also determined. Cognitive function test showed significant lower scores of MoCA, BDS, RAVLT(I), RAVLT(D), digit symbol, VR-I, and VR-II in the older age group (60 years old) compared with the 30-, 40-, and 50-year-old group. The extent of DNA damage was sequential with age: 60 > 50 > 40 > 30, whereas protein carbonyl was higher in 40-, 50-, and 60-year-old groups compared with the youngest group (30 years old). However, the MDA level was observed unchanged in all age groups. Approximately 21.88% of the participants had cognitive impairment. Multiple logistic regression analysis revealed that DNA damage and protein carbonyl levels are predictors for cognitive impairment in healthy Malays. In conclusion, cognitive decline occurred in healthy adult Malay population at an early age of 30 years old with corresponding higher DNA damage and protein oxidation.
  10. Tan JK, Zakaria SNA, Gunasekaran G, Abdul Sani NF, Nasaruddin ML, Jaafar F, et al.
    Oxid Med Cell Longev, 2023;2023:4416410.
    PMID: 36785791 DOI: 10.1155/2023/4416410
    Aging is a complex process characterized by progressive loss of functional abilities due to the accumulation of molecular damages. Metabolomics could offer novel insights into the predictors and mechanisms of aging. This cross-sectional study is aimed at identifying age-associated plasma metabolome in a Malay population. A total of 146 (90 females) healthy participants aged 28-69 were selected for the study. Untargeted metabolomics profiling was performed using liquid chromatography-tandem mass spectrometry. Association analysis was based on the general linear model. Gender-associated metabolites were adjusted for age, while age-associated metabolites were adjusted for gender or analyzed in a gender-stratified manner. Gender-associated metabolites such as 4-hydroxyphenyllactic acid, carnitine, cortisol, and testosterone sulfate showed higher levels in males than females. Deoxycholic acid and hippuric acid were among the metabolites with a positive association with age after being adjusted for gender, while 9(E),11(E)-conjugated linoleic acid, cortisol, and nicotinamide were negatively associated with age. In gender-stratified analysis, glutamine was one of the common metabolites that showed a direct association with age in both genders, while metabolites such as 11-deoxy prostaglandin F2β, guanosine monophosphate, and testosterone sulfate were inversely associated with age in males and females. This study reveals several age-associated metabolites in Malays that could reflect the changes in metabolisms during aging and may be used to discern the risk of geriatric syndromes and disorders later. Further studies are required to determine the interplay between these metabolites and environmental factors on the functional outcomes during aging.
  11. Tan HJ, Goh CH, Khoo CS, Ng CF, Tan JK, Wan Zaidi WA, et al.
    Neurol Clin Neurosci, 2023 Jan;11(1):17-26.
    PMID: 36714457 DOI: 10.1111/ncn3.12677
    BACKGROUND: Neurological involvement associated with SARS-CoV-2 infection has been reported from different regions of the world. However, data from South East Asia are scarce. We described the neurological manifestations and their associated factors among the hospitalized COVID-19 patients from an academic tertiary hospital in Malaysia.

    METHODS: A cross-sectional observational study of hospitalized COVID-19 patients was conducted. The neurological manifestations were divided into the self-reported central nervous system (CNS) symptoms, stroke associated symptoms, symptoms of encephalitis or encephalopathy and specific neurological complications. Multiple logistic regression was performed using demographic and clinical variables to determine the factors associated with outcome.

    RESULTS: Of 156 hospitalized COVID-19 patients with mean age of 55.88 ± 6.11 (SD) years, 23.7% developed neurological complications, which included stroke, encephalitis and encephalopathy. Patients with neurological complications were more likely to have diabetes mellitus (p = 0.033), symptoms of stroke [limb weakness (p 

  12. Awuah WA, Huang H, Kalmanovich J, Mehta A, Mikhailova T, Ng JC, et al.
    Medicine (Baltimore), 2023 Aug 11;102(32):e34614.
    PMID: 37565922 DOI: 10.1097/MD.0000000000034614
    The circadian rhythm (CR) is a fundamental biological process regulated by the Earth's rotation and solar cycles. It plays a critical role in various bodily functions, and its dysregulation can have systemic effects. These effects impact metabolism, redox homeostasis, cell cycle regulation, gut microbiota, cognition, and immune response. Immune mediators, cycle proteins, and hormones exhibit circadian oscillations, supporting optimal immune function and defence against pathogens. Sleep deprivation and disruptions challenge the regulatory mechanisms, making immune responses vulnerable. Altered CR pathways have been implicated in diseases such as diabetes, neurological conditions, and systemic autoimmune diseases (SADs). SADs involve abnormal immune responses to self-antigens, with genetic and environmental factors disrupting self-tolerance and contributing to conditions like Systemic Lupus Erythematosus, Rheumatoid Arthritis, and Inflammatory Myositis. Dysregulated CR may lead to increased production of pro-inflammatory cytokines, contributing to the systemic responses observed in SADs. Sleep disturbances significantly impact the quality of life of patients with SADs; however, they are often overlooked. The relationship between sleep and autoimmune conditions, whether causal or consequential to CR dysregulation, remains unclear. Chrono-immunology investigates the role of CR in immunity, offering potential for targeted therapies in autoimmune conditions. This paper provides an overview of the connections between sleep and autoimmune conditions, highlighting the importance of recognizing sleep disturbances in SADs and the need for further research into the complex relationship between the CR and autoimmune diseases.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links