METHODS: 220 patients underwent CT of the chest, abdomen and pelvis (CAP) using a standard FV protocol, and subsequently, a customised 1.0 mL/kg WBV protocol within one year. Both image sets were assessed for contrast enhancement using CT attenuation at selected regions-of-interest (ROIs). The visual image quality was evaluated by three radiologists using a 4-point Likert scale. Quantitative CT attenuation was correlated with the visual quality assessment to determine the HU's enhancement indicative of the image quality grades. Contrast media usage was calculated to estimate cost-savings from both protocols.
RESULTS: Mean patient age was 61 ± 14 years, and weight was 56.1 ± 8.7 kg. FV protocol produced higher contrast enhancement than WBV, p
MATERIAL AND METHODS: Forty-two glioma patients were subjected to MRI using a standard tumor protocol with diffusion tensor imaging (DTI). The tumor and peritumor regions were delineated using snake model with reference to structural and diffusion MRI. A preprocessing pipeline of the structural MRI image, DTI data, and tumor regions was implemented. Tractography was performed to delineate the white matter (WM) tracts in the selected tumor regions via probabilistic fiber tracking. DTI indices were investigated through comparative mapping of WM tracts and tumor regions in low-grade gliomas (LGG) and high-grade gliomas (HGG).
RESULTS: Significant differences were seen in the planar tensor (Cp) in peritumor regions; mean diffusivity, axial diffusivity and pure isotropic diffusion in solid-enhancing tumor regions; and fractional anisotropy, axial diffusivity, pure anisotropic diffusion (q), total magnitude of diffusion tensor (L), relative anisotropy, Cp and spherical tensor (Cs) in solid nonenhancing tumor regions for affected WM tracts. In most cases of HGG, the WM tracts were not completely destroyed, but found intact inside the tumor.
DISCUSSION: Probabilistic fiber tracking revealed the existence and distribution of WM tracts inside tumor core for both LGG and HGG groups. There were more DTI indices in the solid nonenhancing tumor region, which showed significant differences between LGG and HGG.
MATERIALS AND METHODS: Nine phantoms were fabricated with different bifurcation angles ranging from 55.3° to 134.5°. General X-ray and CCTA were employed to acquire 2D and 3D images of the bifurcation phantoms, respectively. Multiplanar reformation (MPR) and volume rendering technique (VRT) were used to measure the bifurcation angle between the left anterior descending (LAD) and left circumflex arteries (LCx). The measured angles were compared with the true values to determine the accuracy of each measurement technique. Inter-observer variability was evaluated. The two techniques were further applied on 50 clinical CCTA cases to verify its clinical value.
RESULTS: In the phantom setting, the mean absolute differences calculated between the true and measured angles by MPR and VRT were 2.4°±2.2° and 3.8°±2.9°, respectively. Strong correlation was found between the true and measured bifurcation angles. Furthermore, no significant differences were found between the bifurcation angles measured using either technique. In clinical settings, large difference of 12.0°±10.6° was found between the two techniques.
CONCLUSION: In the phantom setting, both techniques demonstrated a significant correlation to the true bifurcation angle. Despite the lack of agreement of the two techniques in the clinical context, our findings in phantoms suggest that MPR should be preferred to VRT for the measurement of coronary bifurcation angle by CCTA.